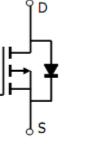

HT3401

P-Channel Enhancement Mode Field Effect Transistor

G


General Description

The HT3401 uses advanced trench technology to Provide excellent RDS(ON),low gate change and Operation with gate voltages as low as 2.5V.This Device is suitable for use as a load switch or in PWM applications. Standard product HT3401 is Pb-free (meets ROHS & Sony 259 specifications).

Features

 $V_{DS}(V)=-30V$ $I_{D}=-4.2A(V_{GS}=-10V)$ $R_{DS(ON)}<50m \Omega (V_{GS}=-10V)$ $R_{DS(ON)}<65m \Omega (V_{GS}=-4.5V)$ $R_{DS(ON)}<120m \Omega (V_{GS}=-2.5V)$

Absolute Maximum Ratings (TA=25°C unless otherwise noted)

Parameter			Symbo	I	Maximum		Units				
Drain-Source Voltage			VDS			-30	V				
Gate-Source Voltage			VGS		<u>+</u> 12		V				
Continuous Drain	TA=25°C		ID		-4.2		А				
Current (A)	TA=70°C				-3.5						
Junction and Storage Temperature Range			IDM		-3.0						
Power Dissipation	TA=25°C		PD		1.4		W				
(A)	TA=70°C				1						
Junction and Storage Temperature Range			TJ,TSTO	3	-55 to 150		°C				
Thermal Character	ristics										
Parameter			Symbol	Т	ӯр	Max	Units				
Maximum junction-to-Ambient(A)		t≪ 10s	RθJA	6	65	90	°C/W				
Maximum junction-to-Ambient(A) Steady-State		Steady-State		8	35	125	°C/W				
Maximum junction-to-Lead(C) Steady-State		Røjl	2	43	60	°C/W					

Electrical Characteristics (TJ=25°C unless otherwise noted)

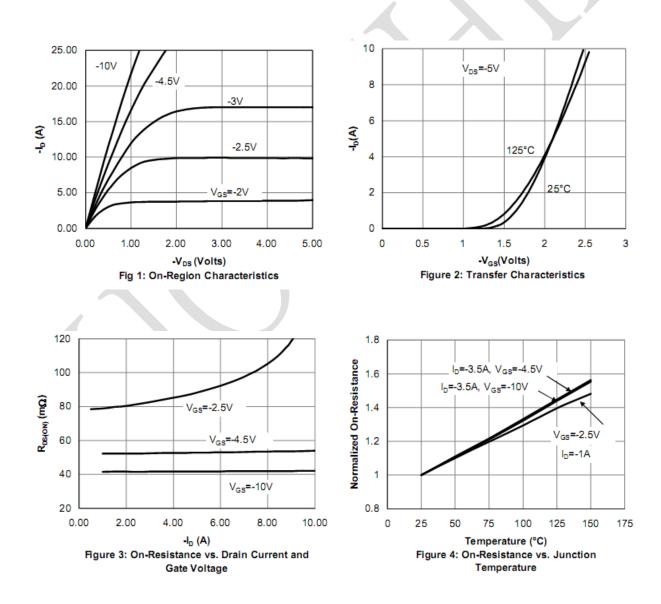
Symbol	Parameter		Conditions	Min	Тур	Max	Units
STATIC PA	RAMETERS						
BV _{DSS}	Drain-Source Breakdor Voltage	own	ID=-250µA, VGS=0V	-30			V
IDSS	Zero Gate Voltage Dra	ain VDS=-24V,VGS=0V				-1	μA
	Current		TJ=55 ℃			-5	
IGSS	Gate-Body leakage current	,	VDS=0V, VGS=±12V			±100	nA
V _{GS(th)}	Gate Threshold Voltage		VDS=VGS ID=-250µA	-0.7	-1	-1.3	V
ID(ON)	On state drain current	,	VGS=-4.5V, VDS=-5V	-25			Α
RDS(ON)	Static Drain-Source	,	VGS=-10V, ID=-4.2A		42	50	mΩ
	On-Resistance		TJ=125°C			75	
		`	VGS=-4.5V, ID=-4A		53	65	mΩ
			VGS=-2.5V, ID=-1A		80	120	mΩ
g fs	Forward Transconductance		VDS=-5V, ID=-5A	7	11		S
V_{SD}	Diode Forward Voltage		IS=-1A,VGS=0V		-0.75	-1	V
ls	Maximum Body-Diode Contir	s Current			-2.2	Α	
I _{SM}	Pulsed Body-Diode Current ^B			-30	Α		
DYNAMIC	PARAMETERS				•		
Ciss	Input Capacitance	VGS	=0V, VDS=-15V, f=1MHz		954		pF
Coss	Output Capacitance				115		pF
Crss	Reverse Transfer Capacitance				77		pF
Rg	Gate resistance	VGS	=0V, VDS=0V, f=1MHz		6		Ω
SWITCHIN	G PARAMETERS						
Qg	Total Gate Charge VC		=4.5V, VDS=-15V,		9.4		nC
Qgs	Gate Source Charge	ID=-4	4A		2		nC
Qgd	Gate Drain Charge				3		nC
tD(on)	Turn-On DelayTime		=-10V,VDS=-15V,		6.3		nC
tr			3.6Ω,		3.2		ns
tD(off)			N=6Ω		38.2		ns
tf	Turn-Off Fall Time				12		ns
trr	Body Diode Reverse IF= Recovery Time		4A, dl/dt=100A/µs		20.2		ns
Qrr	Body Diode Reverse Recovery Charge	IF=-4	4A, dl/dt=100A/µs		11.2		nC

HT3401

A: The value of R θ JA is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T A

=25°C. The

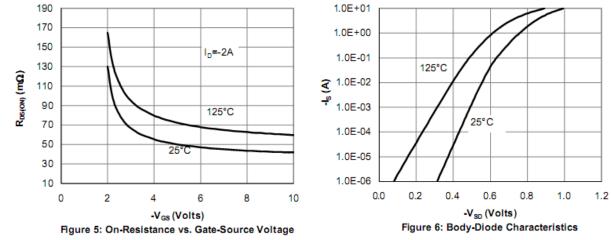
value in any a given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

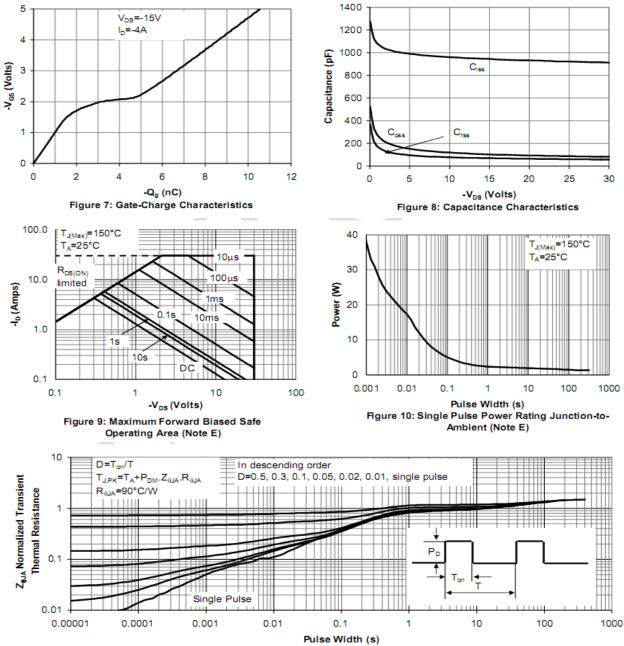

B: Repetitive rating, pulse width limited by junction temperature.

C. The R θ JA is the sum of the thermal impedence from junction to lead R θ JL and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using <300 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2


FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating.


TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

HT3401

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Copyright © 2008 by HOTCHIP TECHNOLOGY CO., LTD.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, HOTCHIP assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and HOTCHIP makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. HOTCHIP's products are not authorized for use as critical components in life support devices or systems. HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.net.cn.