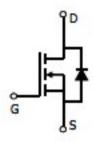


30V N-Channel MOSFET


General Description

The HT3402 uses advanced trench technology to Provide excellent $R_{DS(ON)}$, low gate change and Operation with gate voltages as low as 2.5V. This Device is suitable for use as a load switch applications.

Product Summary

V_{DS}	30V
I _D (at V _{GS} =10V)	4A
$R_{DS(ON)}$ (at V_{GS} =-10V)	$<$ 55m Ω
$R_{DS(ON)}$ (at V_{GS} =-4.5V)	< 70m Ω
$R_{DS(ON)}$ (at V_{GS} =-2.5V)	<110m Ω

Absolute Maximum Ratings TA=25°C unless otherwise noted

Pa	rameter	Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	-30	V
Gate-Source Voltage		V_{GS}	<u>+</u> 12	V
Continuous Drain	T _A =25°C	I _D	4	Α
Current (A)	T _A =70°C		3.4	
Junction and Storage Temperature Range		I _{DM}	15	
Power Dissipation	TA=25°C	P_{D}	1.4	W
(A)	TA=70°C		1	
Junction and Storage Temperature Range		T_{J},T_{STG}	-55 to 150	${\mathbb C}$

Thermal Characteristics

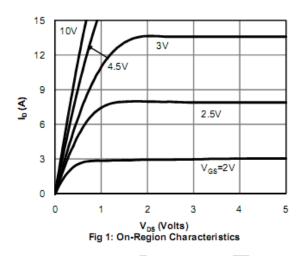
Parameter		Symbol	Тур	Max	Units
Maximum junction-to-Ambient(A)	t≤ 10s	RθJA	70	90	° C/W
Maximum junction-to-Ambient(A)	Steady-State		100	125	° C/W
Maximum junction-to-Lead(C)	Steady-State	Røjl	63	80	° C/W

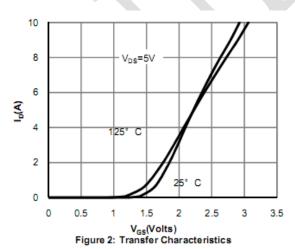
Ver1.0 1

Electrical Characteristics

(TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units
STATIC PA	RAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V	30			V
IDSS	Zero Gate Voltage Dra	in V _{DS} =24V,V _{GS} =0V			1	μA
	Current	TJ=55℃			5	
IGSS	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	0.6	1	1.4	V
ID(ON)	On state drain current	V _{GS} =4.5V, V _{DS} =5V	10			Α
RDS(ON)	Static Drain-Source	V _{GS} =10V, I _D =4A		45	55	mΩ
On-Resistance	On-Resistance	T _J =125°C		66	80	
		V_{GS} =4.5V, I_D =3A		55	70	mΩ
		V _{GS} =2.5V, I _D =2A		83	110	mΩ
g FS	Forward Transconductance	V_{DS} =5V, I_D =4A		8		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.8	1	V
Is	Maximum Body-Diode Continuous Current				2.5	Α
DYNAMIC	PARAMETERS					
Ciss	Input Capacitance	VGS=0V, VDS=-15V, f=1MHz		390		pF
Coss	Output Capacitance			54.5		pF
Crss	Reverse Transfer Capacitance			41		pF
Rg	Gate resistance	VGS=0V, VDS=0V, f=1MHz		3		Ω
SWITCHIN	G PARAMETERS					
Qg	Total Gate Charge	VGS=4.5V, VDS=15V, ID=4A		4.34		nC
Qgs	Gate Source Charge			0.6		nC
Qgd	Gate Drain Charge			1.38		nC
tD(on)	Turn-On DelayTime	VGS=10V,VDS=15V,		3.3		nC
tr	Turn-On Rise Time	R_L =3.75 Ω , R_{GEN} =6 Ω		1		ns
tD(off)	Turn-Off DelayTime			21.7		ns
tf	Turn-Off Fall Time			2.1		ns
trr	Body Diode Reverse I Recovery Time	I _F =-4A, dI/dt=100A/μs		12		ns
Qrr	Body Diode Reverse I Recovery Charge	I _F =-4A, dI/dt=100A/μs		6.3		nC


Ver1.0 2



A: The value of RθJA is measured with the device mounted on 1in ² FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermalresistance rating.

- B: Repetitive rating, pulse width limited by junction temperature.
- C. The R θ JA is the sum of the thermal impedence from junction to lead R θ JL and lead to ambient.
- D. The static characteristics in Figures 1 to 6,12,14 are obtained using <300 µs pulses, duty cycle 0.5%
- E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

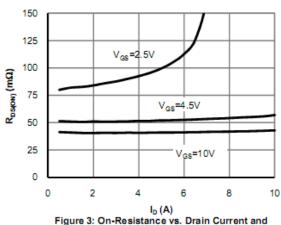


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

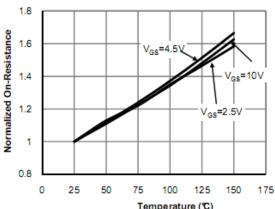
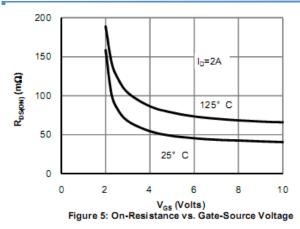
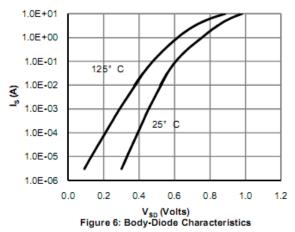
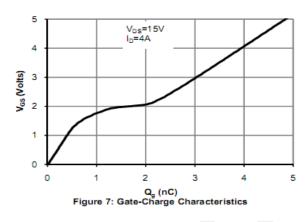
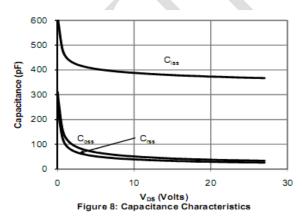
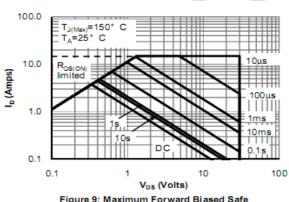




Figure 4: On-Resistance vs. Junction Temperature


Ver1.0 3





TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

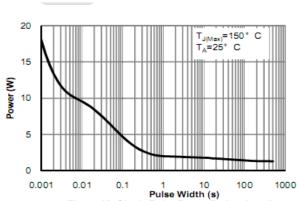
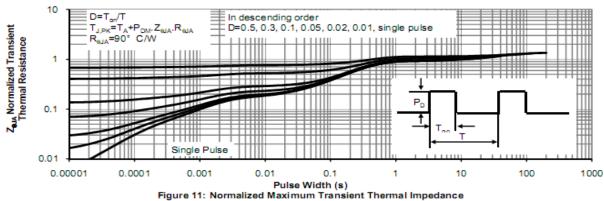



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Ver1.0 4

Copyright © 2008 by HOTCHIP TECHNOLOGY CO., LTD.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, HOTCHIP assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and HOTCHIP makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. HOTCHIP's products are not authorized for use as critical components in life support devices or systems. HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.net.cn.

Ver1.0 5