



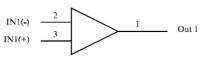
#### QUADRUPLE OPERATIONAL AMPLIFIERS

#### **GENERAL DESCRIPTION**

The HT358 consists two independent high gain operational amplifiers with internal compensated. The two op-amps operate over a wide voltage range from a single power supply. Also use a split power supply. The device has low power supply voltage. The low power drain also makes the HT358 a good choice for battery operation.

The HT358 is a versatile, rugged workhorse with a thousand-and-one use, from amplifying signals from a variety of transducers to drain blocks, or any op-amp function. The attached pages offer some recipes that will have your project cooking in no time.

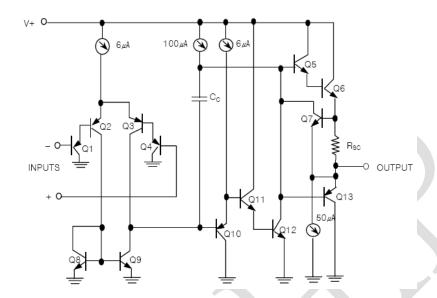
#### **FEATURES**


- Internally frequency compensated for unity gain.
- Large DC voltage gain:100dB
- Wide power supply range:  $3V\sim40V$ (or  $\pm$  1.5 $V\sim\pm16V$ ),
- Input common-mode voltage range includes ground
- ◆ Large output voltage swing:0V DC to Vcc-1.5V DC.
- Low input offset voltage:2mV(TYP.),and offet current 5nADC
- Wide bandwidth (unity gain): 1 MHz Package outline: DIP8, SOP8

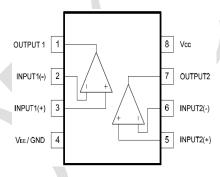
### **Applications**

- Cordless Telephone
- Switching Power Supply
- Battery Chargers

# Internal Diagram


### **Logic Diagram**




IN2(-) 6 7 Out 2



# **Equivalent Circuit**



### **Pin Description**



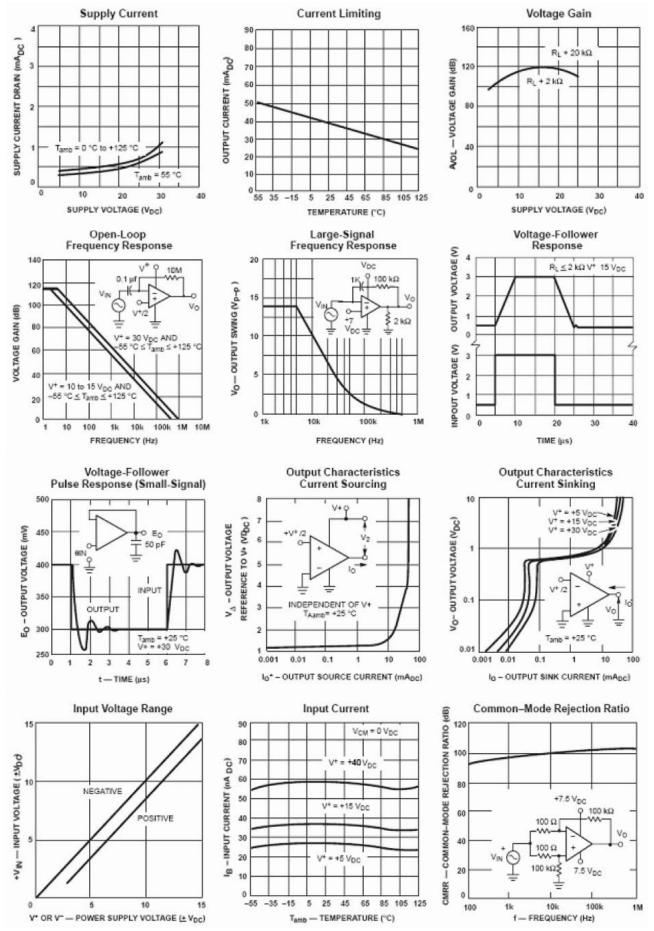
# **Absolute Maximum Ratings**

| Symbol           | Parameter                                    | Value       | Unit       |
|------------------|----------------------------------------------|-------------|------------|
| Vcc              | Power supply Voltage                         | 40 or ± 16  | V          |
| $V_{IDR}$        | Input Differential Voltage Range(a)          | ±40         | V          |
| V <sub>ICR</sub> | Input Common Mode Voltage Range              | -0.3 to 40  | V          |
| T <sub>OPR</sub> | Operating Temperature Range                  | -25 to 85   | $^{\circ}$ |
| Tstg             | storage Temperature (TA=+25°C)               | -55 to +150 | $^{\circ}$ |
| TL               | Lead Temperatur,1mm from Case for 10 Seconds | 280         | $^{\circ}$ |

Maximum Ratings are those Values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. Notes:

a. Split Power Supplies.

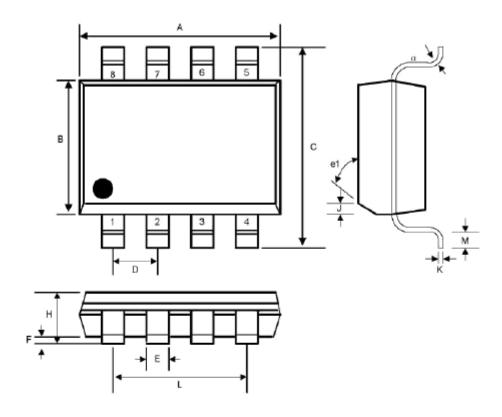



**Electrical Characteristics** (At specified free-air temperature, Vcc= 5V [unless otherwise noted])

| otherwise noted])    |                                                         |                                                            |                   |                               |      |              |      |  |
|----------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------|-------------------------------|------|--------------|------|--|
| Symbol               | Parameter                                               | Test conditions*                                           |                   | Min.                          | Тур. | Max.         | Unit |  |
| V <sub>10</sub>      | Input Offset voltage                                    | Vcc=5V to MAX,<br>Vic=V <sub>ICR Min</sub> ,               | 25℃               |                               | 2    | 4            | 4 mV |  |
|                      |                                                         | Vo=1. 4V                                                   | Full range        |                               |      | 7            | ,    |  |
| lpha V <sub>10</sub> | Average temperature coefficient of input offset voltage |                                                            | Full range        |                               | 10   |              | PA/℃ |  |
| ${ m I}_{1B}$        | Input bias Current                                      | Vo=1. 4V                                                   | 25℃<br>Full range |                               | -40  | -250<br>-500 | nA   |  |
| V <sub>ICR</sub>     | Common-mode input<br>voltage range                      | Vcc=5V to MAX                                              | 25℃<br>Full range | 0 to<br>Vcc-1.5<br>0 to Vcc-2 |      |              | v    |  |
|                      |                                                         | RL≥2KΩ                                                     | 25°C              | Vcc-1. 5                      |      |              |      |  |
| V <sub>OH</sub>      | High-level output voltage                               | Vcc=30V, $R_L$ =2K $\Omega$                                | Full range        | 26                            |      | -            | V    |  |
|                      |                                                         | Vcc=30V,<br>R <sub>L</sub> =10KΩ                           | Full range        | 27                            | 28   |              |      |  |
| V <sub>OL</sub>      | Low-level output voltage                                | Vcc=5V, $R_L$ =10K $\Omega$                                | Full range        |                               | 5    | 20           | mV   |  |
|                      | Large-signal                                            | Vcc=15V,                                                   | 25℃               | 25                            | 100  |              | V/mV |  |
| A <sub>VD</sub>      | differential voltage amplification                      | Vo=1V to 11V,<br>$R_L \geqslant 2K\Omega$                  | Full range        | 15                            |      |              |      |  |
| CMRR                 | Common-mode rejection ratio                             | Vcc=30V, V <sub>CM</sub> =0V<br>to (V <sub>CC</sub> -1.5V) | 25℃               | 65                            | 85   |              | dB   |  |
| Ksvr                 | Supply voltage rejection ratio (△Vcc/△V <sub>10</sub> ) | $Vcc=15v$ , $R_L \ge 2K\Omega$ , $V_0=1V$ to $11V$         | 25℃               | 85                            | 100  |              | dB   |  |
| Vo1/Vo2              | Crosstalk attenuation                                   | f=1 kHz to 20 kHz                                          | 25℃               |                               |      | 120          | dB   |  |
|                      | Output current                                          | V <sub>IN+</sub> =1V,                                      | 25℃               | -20                           | -30  |              | mA   |  |
| lo                   |                                                         | V <sub>IN-</sub> =0V, Vcc=15V,<br>Vo=2V                    | Full range        | -10                           |      |              |      |  |
|                      |                                                         | V <sub>IN+</sub> =0V,                                      | 25℃               | 5                             | 8    |              | шл.  |  |
|                      |                                                         | V <sub>IN-</sub> =1V, Vcc=15V,<br>Vo=2V                    | Full range        | 3                             |      |              |      |  |
| los                  | Short-circuit output current                            | Vcc at 5V<br>GND at -5V, Vo=0                              | 25℃               |                               | +40  | +60          | mA   |  |
| 1.                   | supply current(two amplifiers)                          | Vo=-2. 5V, No<br>load                                      | Full range        |                               | 0. 5 | 1.0          |      |  |
| 1cc                  |                                                         | Vcc=30, No load                                            | Full range        |                               | 0.6  | 1. 2         | T mA |  |

★ All characteristics are measured under open loop conditions with zero common-mode input voltage unless otherwise specified. "MAX" Vcc for testing purposes is 30 V. Full range is 0°C to 80  $^{\circ}$ C

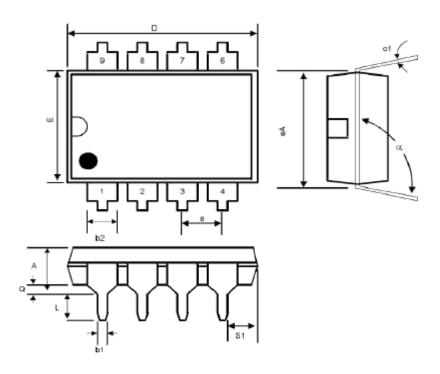



# **Typical Performance Characteristics**





# **PACKAGE DESCRIPTION**


### **SOP8 PACKAGE OUTLINE DIMENSIONS**



| SYMBOL | INCHES         |       | MILLIMETERS |      | MOTER |
|--------|----------------|-------|-------------|------|-------|
|        | MIN            | MAX   | MIN         | MAX  | NOTES |
| A      | 0.188          | 0.197 | 4.80        | 5.00 |       |
| В      | 0.149          | 0.158 | 3.80        | 4.00 | -     |
| C      | 0.228          | 0.244 | 5.80        | 6.20 | -     |
| D      | 0.050 BSC      |       | 1.27 BSC    |      | -     |
| E      | 0.013          | 0.020 | 0.33        | 0.51 | -     |
| F      | 0.004          | 0.010 | 0.10        | 0.25 | -     |
| H      | 0.053          | 0.069 | 1.35        | 1.75 | -     |
| J      | 0.011          | 0.019 | 0.28        | 0.48 |       |
| K      | 0.007          | 0.010 | 0.19        | 0.25 | -     |
| M      | 0.016          | 0.050 | 0.40        | 1.27 |       |
| L      | 0.150 REF      |       | 3.81 REF    |      | -     |
| e1     | 45°            |       | 45°         |      | -     |
| а      | $\mathbf{o}_0$ | 80    | 00          | 80   |       |



# **DIP8 PACKAGE OUTLINE DIMENSIONS**



| SYMBOL           | INC       | HES   | MILLIN   | METERS | NOTES |
|------------------|-----------|-------|----------|--------|-------|
| SIMBOL           | MIN       | MAX   | MIN      | MAX    | NOTES |
| A                | -         | 0.200 | -        | 5.08   |       |
| b1               | 0.014     | 0.023 | 0.36     | 0.58   | -     |
| b2               | 0.045     | 0.065 | 1.14     | 1.65   | -     |
| c1               | 0.008     | 0.015 | 0.20     | 0.38   | -     |
| D                | 0.355     | 0.400 | 9.02     | 10.16  | -     |
| E                | 0.220     | 0.310 | 5.59     | 7.87   | +     |
| e                | 0.100 BSC |       | 2.54 BSC |        | -     |
| eA               | 0.300 BSC |       | 7.62 BSC |        |       |
| $\mathbf{L}_{:}$ | 0.125     | 0.200 | 3.18     | 5.08   | -     |
| Q                | 0.015     | 0.060 | 0.38     | 1.52   | +     |
| s1               | 0.005     | -     | 0.13     | -      | -     |
| α                | 90°       | 105°  | 90°      | 1050   |       |



### Copyright © 2008 by HOTCHIP TECHNOLOGY CO., LTD.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, HOTCHIP assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and HOTCHIP makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. HOTCHIP's products are not authorized for use as critical components in life support devices or systems. HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.net.cn.