

HT3786D

Overview:

The HT3786D is a universal charger control chip with built-in reference voltage and power detection.

It has short circuit protection and over temperature protection functions

Features:

- ÿ Battery level detection, driving LCD screen to display battery energy status
- ÿ Automatic identification of battery polarity
- \ddot{y} Built-in reference source, stable output when no-load, no need for external components to adjust no-load voltage
- ÿ Short circuit protection function
- ÿ Over temperature protection function
- ÿ Highly integrated, few peripheral devices

Pinout and description:

Serial number	name	describe		
	S5	LCD Battery Frame S5		
2	S4	LCD fourth stage S4		
3	S3	LCD third stage S3		
4	S2	LCD second segment S2		
5	S1	LCD first segment S1		
6	WITH	LCD common terminal (COM)		
7	GND	Negative pole of power supply (ground)		
8	ВТР	Battery positive terminal (B+)		
9	VDD	Power supply positive terminal		
10	BTN	Battery negative		

terminal (B-) Table 1 Description of each pin of HT3786D

Ver1.0

Application Circuit Diagram

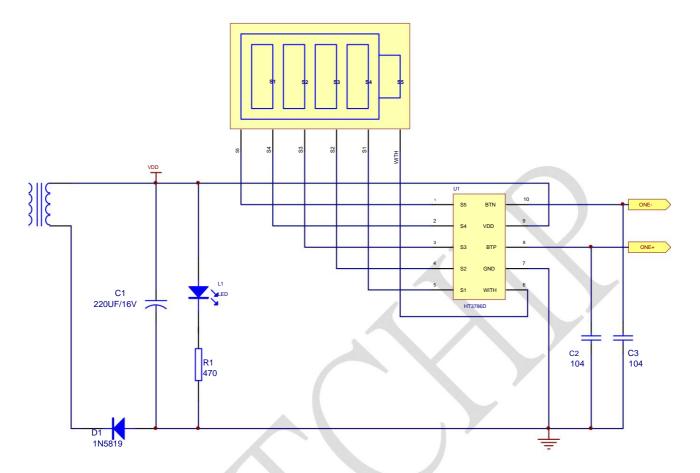


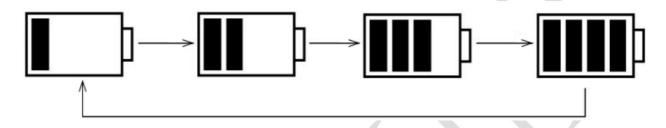
Figure 1 HT3786D application solution

Working mode P	ower status Battery s	status S1 BAT<3.8V Off Off		S2	S3	S4 S5 off	on
Battery detection	disconnect	3.8ÿBAT<4.0V On C	ff 4.0ÿBAT	<4.15V			
		On On 4.15ÿBAT<4.25	V On On 4.	25ÿBAT		Off	
		On On Disconnect On C	n			Off	
					off	Off	
					off	Lianglia	ng
Battery No Load	Access				off on on	Lianglia	ng
		BAT<3.8V Surg	e Surge	Surge Surg	e Bright		
		3.8ÿBAT<4.0V Bri	ght Surg	e Surge Sui	ge Bright		
Normal chargi	ing access	4.0ÿBAT<4.15V Or	n On Sur	ge Surge O	n		
		4.15ÿBAT<4.25V O	n On On	Surge On			
		4.25ÿBAT bright bri	ght bright b	right			
Battery short circuit	Access	Short circuit off	off off flas	h			

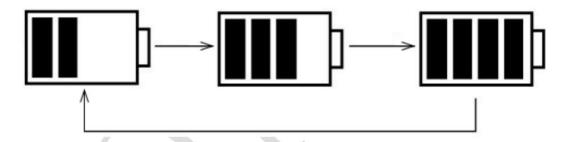
Table 2 HT3786D working status table

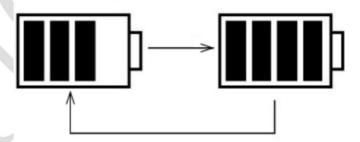
Note: Battery status parameters are typical values

Ver1.0 2



HT3786D


Normal charging LCD display working status diagram


Diagram of sequential cyclic stepping on and off when BAT<3.80V

3.80ÿBAT<4.0V, sequential cyclic stepping on and off diagram

Schematic diagram of cyclic stepping on and off when 4.0ÿBAT<4.15V

Schematic diagram of cyclic stepping on and off when 4.15 $\ddot{y}BAT$ <4.25V

4.25ÿBAT full light

Note: BAT voltage is a typical value

HT3786D

Battery detection

When the battery is connected while the power is off, the HT3786D will control the battery accordingly through the automatic "polarity recognition" system.

The states of LCD S1-S5 (hereinafter referred to as "indication states") are described in Table 2.

Battery No Load

When the power is connected but the battery is not connected, the voltage difference between BTP and BTN is 4.25V (typical value), indicating the status.

Description of Table 2.

Normal charging and saturation detection

When the power supply is connected and a partially charged battery (battery voltage < 4.15V) is connected, the power supply starts to charge the battery through the control of the HT3786D.

The current is about 400mA (typical value), and the voltage at both ends of the battery increases slowly. When the battery voltage rises to 4.25V (typical value), the charging process

The battery is saturated. For the indication status during this process, please refer to the description in Table 2. When the battery voltage is <4.15V, the battery is recharged.

Short circuit protection

If a battery short circuit occurs after the power supply is connected, the HT3786D internal "short circuit protection" system will automatically reduce the charging current to 25mA (typical value), and a short circuit status indication is given at the same time (see Table 2 for the indication status).

Can be recharged.

Over temperature protection

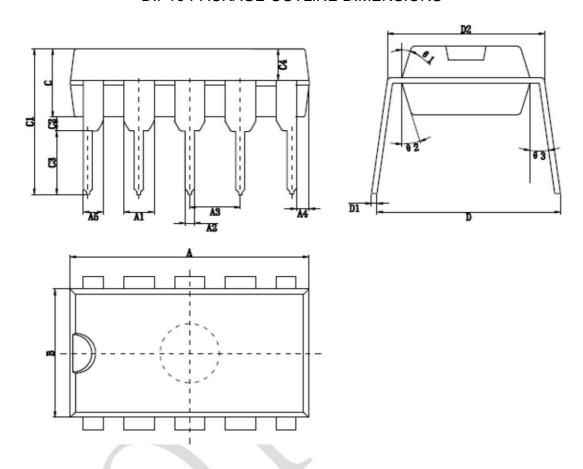
If the chip junction temperature exceeds TO (150 ÿ typical value) during charging, the internal "overtemperature protection" system will automatically reduce the charging current until When the junction temperature drops to TR (130°C typical), the IC resumes normal charging state.

Limit parameters

	symbol	scope	unit
Characteristics	VDD	8	V
Operating Voltage	COME	-0.3ÿVDD+0.3	V
Input Voltage	TOPR	-20ÿ+90	ÿ
Operating Temperature Node Temperature	TJ	150	ÿ

Typical parameters (Unless otherwise specified, all parameters are measured at room temperature and with GND terminal potential as 0 potential)

Parameter Name	Parameter Symbol	Test conditions	Min Typ M	ax Unit		
Input Voltage	VDD No-		5		8	٧
load voltage	Vo	VDD=5Vÿ8V	4.18	4.25	4.28 V	
Saturation voltage	Vs	VDD=5Vÿ8V	4.20	4.27	4.30 V	
Charging current	ICHARGE	VDD=5V, VBTP-VBTN =3.6V VDD=5V,		400	ÿ mA	
Short circuit	VSHORT	VBTP-VBTN : 1.5Vÿ0.2V ÿ VBTP-VBTN ÿ3.7ÿ3.9V \	BTP-	1	ÿV	
detection 1st grid	Vc1	VBTN ÿ3.9ÿ4.1V VBTP-VBTN ÿ		3.8		V
transition point 2nd grid	Vc2	3.95ÿ4.25V VBTP-VBTN ÿ		4.0		٧
transition point 3rd grid	Vc3	4.15ÿ4.35V		4.15		٧
transition point 4th grid	Vc4			4.25		V
transition point Electrosta	ic protection ESD Human Body Mode	Table 2 HT3786D		4000	·	V


Typical Parameters

Ver1.0

Package size information

DIP10 PACKAGE OUTLINE DIMENSIONS

标准尺寸	最小(mm)	最大(=)	标注 尺寸	最小(mm)	最大(皿)	
A	11. 75	11. 95	23	0.	50TYP	
A1	1. 524TYP		S	3. 25	3. 35	
A2	0. 452	0.462	C4	1. 47	1. 57	
A3	2. 51	2. 52	D	8. 10	8. 70	
A	0. 51TYP		D1	0. 249	0. 259	
A5	0. 99TYP		D2	7. 60	7. 90	
В	6. 10	6. 30	01	17° TYP4		
C	3. 20	3. 40	62	17° TYP4		
C1	7. 18	7. 38	63	5° TYP		

Ver1.0 5