
HT46RU26/HT46CU26

A/D Type 8-Bit MCU with UART

Rev. 1.00 1 June 12, 2008

General Description

The HT46RU26/HT46CU26 is an 8-bit high perfor-

mance RISC architecture microcontrollers, designed

especially for applications that interface directly to ana-

log signals, such as those from sensors.

The device includes an integrated multi-channel Analog

to Digital Converter in addition to four Pulse Width Mod-

ulator outputs. The usual Holtek MCU features such as

power down and wake-up functions, oscillator options,

programmable frequency divider, etc. combine to en-

sure user applications require a minimum of external

components.

With a fully integrated UART function and both SPI and

I2C interfaces, a convenient means is provided for easy

and efficient interfacing to external personal computers

or other external hardware.

The benefits of these combined integrated functions, in

addition to low power consumption, high performance,

I/O flexibility and low-cost, provide these devices with

the versatility to suit a wide range of application possibil-

ities such as sensor signal processing, motor driving, in-

dustrial control, consumer products, subsystem

controllers, etc.

The HT46CU26 is under development and will be avail-

able soon.

Features

� Operating voltage:

fSYS=4MHz: 2.2V~5.5V

fSYS=8MHz: 3.3V~5.5V

� 48 bidirectional I/O lines

� External interrupt input shared with I/O line

� Single 8-bit Timer/Event Counter

� Two 16-bit Programmable Timer/Event Counters

� 32� �16 Program Memory in 4 banks

� 768 � 8 byte Data Memory in 4 banks

� Integrated Crystal and RC oscillators

� Watchdog Timer function

� PFD for audio frequency generation

� Power down and wake-up functions to reduce power

consumption

� Up to 0.5�s instruction cycle with 8MHz system clock

at VDD=5V

� 16-level subroutine nesting

� 8-channel 12-bit resolution A/D converter

� 4-channel 8-bit PWM outputs shared with

I/O lines

� Real Time Clock with 8-bit prescaler

� Universal Asynchronous Receiver Transmitter �
UART

� I
2
C Bus slave function

� SPI Bus

� Bit manipulation instructions

� Table read instructions

� 63 powerful instructions

� All instructions executed in one or two machine

cycles

� Low voltage reset function

� 48/56-pin SSOP package types

Technical Document

� Tools Information

� FAQs

� Application Note
� HA0003E Communicating between the HT48 & HT46 Series MCUs and the HT93LC46 EEPROM
� HA0049E Read and Write Control of the HT1380
� HA0052E Microcontroller Application - Battery Charger
� HA0075E MCU Reset and Oscillator Circuits Application Note

Device Types

Devices which have the letter �R� within their part number, indicate that they are OTP devices offering the advantages

of easy and effective program updates, using the Holtek range of development and programming tools. These devices

provide the designer with the means for fast and low-cost product development cycles. Devices which have the letter

�C� within their part number indicate that they are mask version devices. These devices offer a complementary device

for applications that are at a mature state in their design process and have high volume and low cost demands.

Fully pin and functionally compatible with their OTP sister devices, the mask version devices provide the ideal substi-

tute for products which have gone beyond their development cycle and are facing cost-down demands.

In this datasheet, for convenience, when describing device functions, only the OTP types are mentioned by name,

however the same described functions also apply to the Mask type devices.

Block Diagram

Note: This block diagram represents the OTP devices, for the mask devices there is no Device Programming

Circuitry.

HT46RU26/HT46CU26

Rev. 1.00 2 June 12, 2008

� � �
� � � � � � �
	
 � � � �

� �
 � �
	
 � � � �

� �
 � � � � �
� � �
 �

� �
 � � � � �
� � �
 � � � � � � � � �
 � �

� � � �

� � � �
	 � �
� � �

�
 �

� � � � � �

� �

 � � �

� � �
 � � � �
 �

� � ! � � � �
 � �
� � �

 �
� � � � � � �
 � �

" � #
$ � �
 � �

�
 �

% ! �
� � � &
 �

 �

� � 	
'
 �
 � �
 � �

� � � � � � � � � � �

(�
) �
 � � �
'
 �
 � �
 � �

� � �
 � �� % � �� � �� * �

� � �
� � � � � � � � � � �

� � � � � �
 � �

�
 � � +

� ! �
� � �
 �

Pin Assignment

Pin Description

Pin Name I/O
Configuration

Options
Description

PA0~PA2

PA3/PFD

PA4

PA5/INT

PA6/SDA

PA7/SCL

I/O

Pull-high

Wake-up

PFD

I2C Bus

Bidirectional 8-bit input/output port. Each bit can be configured as a wake-up in-

put using configuration options. Software instructions determine if the pin is a

CMOS output or Schmitt Trigger input. Configuration options determine if the

pins have pull-high resistors. Pins PA3 and PA5 are shared with PFD and INT.

Pins PA6 and PA7 are shared with I2C Bus pins SDA and SCL.

PB0/AN0~

PB7/AN7
I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt Trigger input. Configuration options determine if the

pins have pull-high resistors. The A/D inputs are selected via software instruc-

tions. Once selected as an A/D input, the I/O function and pull-high resistor op-

tions are disabled automatically.

PC0/TX

PC1/RX

PC2~PC5

PC6/OSC3

PC7/OSC4

I/O
Pull-high

OSC3/OSC4

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt Trigger input. Configuration options determine if the

pins have pull-high resistors. Pins PC0 and PC1 are pin-shared with UART pins

TX and RX. Pins PC6 and PC7 are pin-shared with RTC oscillator pins OSC3

and OSC4. The RTC oscillator function is selected via a configuration option. If

the RTC oscillator option is selected then a 32768Hz crystal is connected to

these two pins.

HT46RU26/HT46CU26

Rev. 1.00 3 June 12, 2008

� � � � � � � � � 	 � � � �
 � � �
� � � � �
 � � �

, �

, -

, .

, /

, ,

, 0

, *

, 1

, 2

0 3

0 �

0 -

0 .

0 /

0 ,

0 0

0 *

0 1

0 2

* 3

* �

* -

* .

* /

1

*

0

,

/

.

-

�

3

1 2

1 1

1 *

1 0

1 ,

1 /

1 .

1 -

1 �

1 3

* 2

* 1

* *

* 0

* ,

� 4 / ! % 5 /

� 4 , ! % 5 ,

� % 0 ! � (�

� % *

� % 1

� % 2

� 4 0 ! % 5 0

� 4 * ! % 5 *

� 4 1 ! % 5 1

� 4 2 ! % 5 2

� 	 � *

� (0 ! � � �

� (* ! � � �

� (1 ! � � 6

� � -

� � .

� � /

� � ,

$ � �

� (2 ! � � �

� 	 � 2

� � 2 ! � 7

� � 1 ! � 7

� � *

� 4 . ! % 5 .

� 4 - ! % 5 -

� % ,

� % / ! � 5 �

� % . ! � � %

� % - ! � � "

� (,

� (/

� (.

� (-

� � � *

� � � 1

$ � �

� 8 �

� 	 � 1

� � 0 ! � � 	 0

� � * ! � � 	 *

� � 1 ! � � 	 1

� � 2 ! � � 	 2

� � - ! � � � ,

� � . ! � � � 0

� � /

� � ,

� � 0

� � � � � � � � 	 � � � �
 � � �
� � � � �
 � � �

/ .

/ /

/ ,

/ 0

/ *

/ 1

/ 2

, 3

, �

, -

, .

, /

, ,

, 0

, *

, 1

, 2

0 3

0 �

0 -

0 .

0 /

0 ,

0 0

0 *

0 1

0 2

* 3

1

*

0

,

/

.

-

�

3

1 2

1 1

1 *

1 0

1 ,

1 /

1 .

1 -

1 �

1 3

* 2

* 1

* *

* 0

* ,

* /

* .

* -

* �

� 4 / ! % 5 /

� 4 , ! % 5 ,

� % 0 ! � (�

� % *

� % 1

� % 2

� 4 0 ! % 5 0

� 4 * ! % 5 *

� 4 1 ! % 5 1

� 4 2 ! % 5 2

� 	 � *

� (0 ! � � �

� (* ! � � �

� (1 ! � � 6

� � -

� � .

� � /

� � ,

$ � �

� (2 ! � � �

� 	 � 2

� � 2 ! � 7

� � 1 ! � 7

� � *

� ' 2

� ' 1

� ' *

� ' 0

� 4 . ! % 5 .

� 4 - ! % 5 -

� % ,

� % / ! � 5 �

� % . ! � � %

� % - ! � � "

� (,

� (/

� (.

� (-

� � � *

� � � 1

$ � �

� 8 �

� 	 � 1

� � 0 ! � � 	 0

� � * ! � � 	 *

� � 1 ! � � 	 1

� � 2 ! � � 	 2

� � - ! � � � ,

� � . ! � � � 0

� � /

� � ,

� � 0

� ' -

� ' .

� ' /

� ' ,

Pin Name I/O
Configuration

Options
Description

PD0/PWM0

PD1/PWM1

PD2/PWM2

PD3/PWM3

PD4~PD7

I/O
Pull-high

PWM

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt Trigger input. Configuration options determine if the

pins have pull-high resistors. PD0~PD3 are pin-shared with PWM0~PWM3, the

function of each pin is selected via configuration option.

PF0/SCS

PF1/SCK

PF2/SDI

PF3/SDO

PF4~PF7

I/O
Pull-high

SIO

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt Trigger input. Configuration options determine if the

pins have pull-high resistors. Pins PF0~PF3 are pin-shared with SPI interface

pins SCS, SCK, SDO and SDI.

PG0~PG7 I/O Pull-high

Bidirectional 8-bit input/output port. Software instructions determine if the pin is

a CMOS output or Schmitt Trigger input. Configuration options determine if the

pins have pull-high resistors.

TMR0 I � Timer/Event Counter 0 Schmitt trigger input. No pull-high resistor

TMR1 I � Timer/Event Counter 1 Schmitt trigger input. No pull-high resistor

TMR2 I � Timer/Event Counter 2 Schmitt trigger input. No pull-high resistor

RES I � Schmitt trigger reset input. Active low

OSC1

OSC2

I

O

Crystal

or RC

OSC1, OSC2 are connected to an external RC network or external crystal, de-

termined by configuration option, for the internal system clock. If the RC system

clock option is selected, pin OSC2 can be used to measure the system clock at

1/4 frequency.

VSS � � Negative power supply, ground

VDD � � Positive power supply

Note: Individual pins can be selected to have a pull-high resistor.

Port PG does not exist on the 48-pin package

Absolute Maximum Ratings

Supply VoltageVSS�0.3V to VSS+6.0V Storage Temperature�50�C to 125�C

Input Voltage..............................VSS�0.3V to VDD+0.3V Operating Temperature...........................�40�C to 85�C
IOL Total ..150mA IOH Total..�100mA

Total Power Dissipation500mW

Note: These are stress ratings only. Stresses exceeding the range specified under �Absolute Maximum Ratings� may

cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed

in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

HT46RU26/HT46CU26

Rev. 1.00 4 June 12, 2008

D.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage
� fSYS=4MHz 2.2 � 5.5 V

� fSYS=8MHz 3.3 � 5.5 V

IDD1
Operating Current

(Crystal OSC, RC OSC)

3V No load, fSYS=4MHz,

ADC Off, UART Off

� 1 2 mA

5V � 2.5 5 mA

IDD2
Operating Current

(Crystal OSC, RC OSC)

3V No load, fSYS=4MHz,

ADC Off, UART On

� 1.5 3 mA

5V � 3 6 mA

IDD3
Operating Current

(Crystal OSC, RC OSC)
5V

No load, fSYS=8MHz,

ADC Off, UART Off
� 4 8 mA

IDD4
Operating Current

(Crystal OSC, RC OSC)
5V

No load, fSYS=8MHz,

ADC Off, UART On
� 5 10 mA

IDD5
Operating Current

(fSYS=RTC OSC)

3V No load, ADC Off,

UART Off

� 0.3 0.6 mA

5V � 0.6 1 mA

ISTB1
Standby Current (WDT

Enabled, fS=WDT OSC)

3V No load, system HALT,

UART Off

� 2 5 �A

5V � 6 10 �A

ISTB2
Standby Current (WDT

Enabled, fS=RTC OSC)

3V
No load, system HALT

� 2.5 5 �A

5V � 10 20 �A

ISTB3
Standby Current

(WDT Disabled)

3V No load, system HALT,

UART Off

� � 1 �A

5V � � 2 �A

VIL1
Input Low Voltage for I/O Ports,

TMR and INT
� � 0 � 0.3VDD V

VIH1
Input High Voltage for I/O Ports,

TMR and INT
� � 0.7VDD � VDD V

VIL2 Input Low Voltage (RES) � � 0 � 0.4VDD V

VIH2 Input High Voltage (RES) � � 0.9VDD � VDD V

VLVR Low Voltage Reset

� Configuration option:2.1V 1.98 2.10 2.22 V

Configuration option:3.15V 2.98 3.15 3.32 V

Configuration option:4.2V 3.98 4.20 4.42 V

IOL I/O Port Sink Current
3V VOL=0.1VDD 4 8 � mA

5V VOL=0.1VDD 10 20 � mA

IOH I/O Port Source Current
3V VOH=0.9VDD �2 �4 � mA

5V VOH=0.9VDD �5 �10 � mA

RPH Pull-high Resistance
3V � 20 60 100 k	

5V � 10 30 50 k	

IADC
Additional Power Consumption

if A/D Converter is Used

3V
�

� 0.5 1 mA

5V � 1.5 3 mA

DNL ADC Differential Non-Linear 5V tAD=1�s � �
2 LSB

INL ADC Integral Non-Linear 5V tAD=1�s �
2.5
4 LSB

HT46RU26/HT46CU26

Rev. 1.00 5 June 12, 2008

A.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock
� 2.2V~5.5V 400 � 4000 kHz

� 3.3V~5.5V 400 � 8000 kHz

fTIMER
Timer I/P Frequency

(TMR)

� 2.2V~5.5V 0 � 4000 kHz

� 3.3V~5.5V 0 � 8000 kHz

tWDTOSC Watchdog Oscillator Period
3V � 45 90 180 �s

5V � 32 65 130 �s

tRES External Reset Low Pulse Width � � 1 � � �s

tSST System Start-up Timer Period �
Wake-up from Power

Down
� 1024 � *tSYS

tLVR Low Voltage Reset Time � � 0.25 1 2 ms

tINT Interrupt Pulse Width � � 1 � � �s

tAD A/D Clock Period � � 1 � � �s

tADC A/D Conversion Time � � � 80 � tAD

tADCS A/D Sampling Time � � � 32 � tAD

tIIC I2C Bus Clock Period � � 64 � � *tSYS

Note: *tSYS=1/fSYS

HT46RU26/HT46CU26

Rev. 1.00 6 June 12, 2008

HT46RU26/HT46CU26

Rev. 1.00 7 June 12, 2008

System Architecture

A key factor in the high-performance features of the

Holtek range of microcontrollers is attributed to the inter-

nal system architecture. The range of devices take ad-

vantage of the usual features found within RISC

microcontrollers providing increased speed of operation

and enhanced performance. The pipelining scheme is

implemented in such a way that instruction fetching and

instruction execution are overlapped, hence instructions

are effectively executed in one cycle, with the exception

of branch or call instructions. An 8-bit wide ALU is used

in practically all operations of the instruction set. It car-

ries out arithmetic operations, logic operations, rotation,

increment, decrement, branch decisions, etc. The inter-

nal data path is simplified by moving data through the

Accumulator and the ALU. Certain internal registers are

implemented in the Data Memory and can be directly or

indirectly addressed. The simple addressing methods of

these registers along with additional architectural fea-

tures ensure that a minimum of external components is

required to provide a functional I/O and A/D control sys-

tem with maximum reliability and flexibility. This makes

these devices suitable for low-cost, high-volume pro-

duction for controller applications that have to interface

to external analog inputs such as those from sensors.

Clocking and Pipelining

The main system clock, derived from either a Crys-

tal/Resonator or RC oscillator is subdivided into four in-

ternally generated non-overlapping clocks, T1~T4. The

Program Counter is incremented at the beginning of the

T1 clock during which time a new instruction is fetched.

The remaining T2~T4 clocks carry out the decoding and

execution functions. In this way, one T1~T4 clock cycle

forms one instruction cycle. Although the fetching and

execution of instructions takes place in consecutive in-

struction cycles, the pipelining structure of the

microcontroller ensures that instructions are effectively

executed in one instruction cycle. The exception to this

are instructions where the contents of the Program

Counter are changed, such as subroutine calls or

jumps, in which case the instruction will take one more

instruction cycle to execute.

When the RC oscillator is used, OSC2 is freed for use as

a T1 phase clock synchronizing pin. This T1 phase clock

has a frequency of fSYS/4 with a 1:3 high/low duty cycle.

For instructions involving branches, such as jump or call

instructions, two machine cycles are required to com-

plete instruction execution. An extra cycle is required as

the program takes one cycle to first obtain the actual

jump or call address and then another cycle to actually

execute the branch. The requirement for this extra cycle

should be taken into account by programmers in timing

sensitive applications

(

 � � � � � �
 9 � : � � ;

8 <
 � �

 � � � �
 9 � : � � � 1 ; (

 � � � � � �
 9 � : � � = 1 ;

8 <
 � �

 � � � �
 9 � : � � ; (

 � � � � � �
 9 � : � � = * ;

8 <
 � �

 � � � �
 9 � : � � = 1 ;

� � � � = 1 � � = *

� � � � � � �
 � � � � � � � +
: � � �

 � � � � � � + ;

� � � �
 � � � � � + � � 1

� � � � � � � � � � � �

 �

� � � �
 � � � � � + � � *

� � � �
 � � � � � + � � 0

� � � �
 � � � � � + � � ,

� �
 � � � � � �

System Clocking and Pipelining

(

 � � � � � �
 9 � 1 8 <
 � �

 � � � �
 9 � 1

(

 � � � � � �
 9 � *

(� � � � � � �
 � � �

1

*

0

,

/

. � 8 " % > ?

	 � $ � % @ A 1 * B C

� % " " � � 8 " % >

� � " � A 1 * B C

?

?

5 � �

8 <
 � �

 � � � �
 9 � *

(

 � � � � � �
 9 � 0

(

 � � � � � �
 9 � . 8 <
 � �

 � � � �
 9 � .

(

 � � � � � �
 9 � -

Instruction Fetching

HT46RU26/HT46CU26

Rev. 1.00 8 June 12, 2008

Program Counter

During program execution, the Program Counter is used

to keep track of the address of the next instruction to be

executed. It is automatically incremented by one each

time an instruction is executed except for instructions,

such as �JMP� or �CALL� that demand a jump to a

non-consecutive Program Memory address. However, it

must be noted that only the lower 8 bits, known as the

Program Counter Low Register, are directly address-

able by user.

When executing instructions requiring jumps to

non-consecutive addresses such as a jump instruction,

a subroutine call, interrupt or reset, etc., the

microcontroller manages program control by loading the

required address into the Program Counter. For condi-

tional skip instructions, once the condition has been

met, the next instruction, which has already been

fetched during the present instruction execution, is dis-

carded and a dummy cycle takes its place while the cor-

rect instruction is obtained.

The lower byte of the Program Counter, known as the

Program Counter Low register or PCL, is available for

program control and is a readable and writeable regis-

ter. By transferring data directly into this register, a short

program jump can be executed directly, however, as

only this low byte is available for manipulation, the

jumps are limited to the present page of memory, that is

256 locations. When such program jumps are executed

it should also be noted that a dummy cycle will be in-

serted.

As the Program Memory is stored in four banks, note

that the Bank Selection is under the control of bits 5 and

6 of the Bank Pointer. It is these two Bank Pointer bits

that control the highest address bits of the Program

Counter as shown in the diagram.

Mode
Program Counter

b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

External, A/D Converter or SPI

Interrupt - configuration option select
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Timer/Event Counter 0 Overflow 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Timer/Event Counter 1 Overflow 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

UART Bus Interrupt 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

I
2
C Bus or SPI Interrupt

- configuration option select
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Multi-function Interrupt 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Skip Program Counter + 2 (within the current bank)

Loading PCL PC14 PC13 PC12 PC11 PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch BP.6 BP.5 #12 #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: Configuration Options select the function of some interrupt vectors

PC14~PC8: Current Program Counter bits

@7~@0: PCL bits

BP.5, PB.6: Bank Pointer bit.

#12~#0: Instruction code address bits

S14~S0: Stack register bits

1 0 1 * � - 2

� � � � � � � �
 � � � � � �

4 �
9 /

� � � � � � � � � � � � � � � � �

4 �
9 .

1 ,

HT46RU26/HT46CU26

Rev. 1.00 9 June 12, 2008

Stack

This is a special part of the memory which is used to

save the contents of the Program Counter only. The

stack has 16 levels and is neither part of the data nor

part of the program space, and is neither readable nor

writeable. The activated level is indexed by the Stack

Pointer, SP, and is neither readable nor writeable. At a

subroutine call or interrupt acknowledge signal, the con-

tents of the Program Counter are pushed onto the stack.

At the end of a subroutine or an interrupt routine, sig-

naled by a return instruction, RET or RETI, the Program

Counter is restored to its previous value from the stack.

After a device reset, the Stack Pointer will point to the

top of the stack.

If the stack is full and an enabled interrupt takes place,

the interrupt request flag will be recorded but the ac-

knowledge signal will be inhibited. When the Stack

Pointer is decremented, by RET or RETI, the interrupt

will be serviced. This feature prevents stack overflow al-

lowing the programmer to use the structure more easily.

However, when the stack is full, a CALL subroutine in-

struction can still be executed which will result in a stack

overflow. Precautions should be taken to avoid such

cases which might cause unpredictable program

branching.

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the

microcontroller that carries out arithmetic and logic op-

erations of the instruction set. Connected to the main

microcontroller data bus, the ALU receives related in-

struction codes and performs the required arithmetic or

logical operations after which the result will be placed in

the specified register. As these ALU calculation or oper-

ations may result in carry, borrow or other status

changes, the status register will be correspondingly up-

dated to reflect these changes. The ALU supports the

following functions:

� Arithmetic operations: ADD, ADDM, ADC, ADCM,

SUB, SUBM, SBC, SBCM, DAA

� Logic operations: AND, OR, XOR, ANDM, ORM,

XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,

RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ,

SIZA, SDZA, CALL, RET, RETI

Program Memory

The Program Memory is the location where the user

code or program is stored. The device contains

One-Time Programmable, OTP, memory where users

can program their application code into the device. By

using the appropriate programming tools, OTP devices

offer users the flexibility to freely develop their applica-

tions which may be useful during debug or for products

requiring frequent upgrades or program changes. OTP

devices are also applicable for use in applications that

require low or medium volume production runs.

Structure

The Program Memory has a capacity of 32K by 16 bits.

The Program Memory is addressed by the Program

Counter and also contains data, table information and

interrupt entries. Table data, which can be setup in any

location within the Program Memory, is addressed by

separate table pointer registers. The Program Memory

is subdivided into four individual banks each of 8K ca-

pacity. The Program Memory Bank is selected using the

Bank Pointer. Care must exercised when manipulating

the Bank Pointer Register as it is also used to control the

Data Memory Bank Pointer.

Special Vectors

Within the Program Memory, certain locations are re-

served for special usage such as reset and interrupts.

� Location 000H

This vector is reserved for use by the device reset for

program initialisation. After a device reset is initiated, the

program will jump to this location and begin execution.

� Location 004H

This vector is used by the external interrupt, the AD

converter interrupt and the SPI interrupt. One of these

three interrupt sources must be chosen to use this

vector location using a configuration option. If the ex-

ternal interrupt pin on the device goes low, an A/D

conversion finishes or 8-bits of data have been trans-

ferred on the SPI bus, the program will jump to this lo-

cation and begin execution if the corresponding

interrupt is enabled and the stack is not full.

� Location 008H

This internal vector is used by Timer/Event Counter 0.

If a Timer/Event Counter 0 overflow occurs, the pro-

gram will jump to this location and begin execution if

the Timer/Event Counter 0 interrupt is enabled and

the stack is not full.

� Location 00CH

This internal vector is used by Timer/Event Counter 1.

If a Timer/Event Counter 1 overflow occurs, the pro-

gram will jump to this location and begin execution if

the Timer/Event Counter 1 interrupt is enabled and

the stack is not full.

� � � � � � � � � � � �

 �

�
 � � + � "
 &
 � � 1

�
 � � + � "
 &
 � � *

�
 � � + � "
 &
 � � 0

�
 � � + � "
 &
 � � 1 .

� � � � � � �
	
 � � � �

� � � � D � �
 � � +

�
 � � +
� � � �

 �

4 �

 � � � � D � �
 � � +

HT46RU26/HT46CU26

Rev. 1.00 10 June 12, 2008

� Location 010H

This internal vector is used by the UART. If a UART in-

terrupt occurs, resulting from a transmit data register

empty, received data available, transmission idle,

overrun error or address detected, the program will

jump to this location and begin execution if the UART

interrupt is enabled and the stack is not full.

� Location 014H

This internal vector is used by the I
2
C interrupt and the

SPI interrupt. One of these two interrupt sources must

be chosen to use this vector location using a configu-

ration option. If an I
2
C or SPI interrupt occurs, result-

ing from an I
2
C slave address match or when 8-bits of

data have been transferred on the I
2
C/SPI bus, the

program will jump to this location and begin execution

if the corresponding interrupt is enabled and the stack

is not full.

� Location 018H

This area is reserved for the Multi-function interrupt. If

a Multi-function interrupt occurs, resulting from a

Timer/Event Counter 2 overflow, a real time clock

time-out, or a Time base time-out, the program will

jump to this location and begin execution if the corre-

sponding interrupt is enabled and the stack is not full.

Managing Multiple Banks

As the Program Memory is divided up into several

Memory banks, there are some special considerations

that have to be taken into account. First, the sections of

program which are to be located into different banks are

placed using the ROMBANK directive. When using the

CALL instruction to call routines located in a different

bank, or when using the JMP instructions to directly

jump to a location in a different bank, the target bank

must be first selected by correctly setting up the Bank

Pointer prior to executing the CALL or JMP instruction.

This of course can be achieved by directly controlling Bit

5 of the Bank Pointer, BP, but can also be done by using

the BANK directive as shown in the example. Then,

when a CALL or JMP instruction is executed, the Bank

Pointer value stored in the BP register will be automati-

cally loaded into the Program Counter. When the RET

instruction is encountered in a subroutine called from a

different bank, the program will automatically return to

the original bank, however, the BP value will not be

changed and will remain at the value where the subrou-

tine is located. For this reason the BP must be carefully

managed when moving between banks. The following

example illustrates how to use the CALL and JMP in-

structions between different banks:

2 1 , B

2 2 2 B

2 2 � B

2 2 � B

2 1 2 B

2 2 , B

2 1 � B

� 2 2 B

� ((B
1 (2 2 B

1 (((B

� � �
 � � � � E �
 � � �
$
 �
 � �

8 <

 � � � � � � 5 �
� �

 � � �
 � $
 �
 � � @
% ! � � � � � &
 �

 �

� �

 � � �
 � $
 �
 � � � � � �
� � � � � �

 � � �
 � $
 �
 � �

� � �
 � ! � � � �

 � � 2
� �

 � � �
 � $
 �
 � �

� � �
 � ! � � � �

 � � 1
� �

 � � �
 � $
 �
 � �

� % � � � 4 � �
� �

 � � �
 � $
 �
 � �

	 � �
 � � (� � �
 � � �
� �

 � � �
 � $
 �
 � �

� * � � 4 � �
� �

 � � �
 � $
 �
 � � � � �
� � � � � �

 � � �
 � $
 �
 � �

1 . � � �
 �

4 � � + � 2

4 � � + � 1

4 � � + � *

4 � � + � 0

Program Memory Structure

HT46RU26/HT46CU26

Rev. 1.00 11 June 12, 2008

include HT46RU26.inc
:
:

rombank 0 codesec0 ; define rombank 0
rombank 1 codesec1 ; define rombank 1

:
:

codesec0 .section at 000h �code� ; locates the following program section into Bank 0
clr bp ; re-initializing the BP
jmp start
:
:

start:
:
:

lab0:
:
:

mov a, BANK routb1 ; routine �routb1� is located in Bank 1
mov bp,a ; load bank number for routb1 into BP
call routb1 ; call subroutine located in Bank 1
clr bp ; program will return to this location

; after RET in Bank 1
: ; but BP will retain Bank 1 value
: ; so clear the BP

codesec1 .section at 000h �code� ; locates following program section into Bank 1
:
:

routb1 proc
:
:
ret ; return program to Bank 0 but BP will

; retain Bank 1 value
routb1 endp

:
:

When managing interrupts, care has to be exercised in

supervising the Bank Pointer. Irrespective of what Bank

the program is presently running in, when an interrupt

occurs, whether it be an external interrupt or internal in-

terrupt, the program will immediately jump to its respec-

tive interrupt vector located in Bank 0. Note however

that, although in all cases the program will jump to Bank

0, the Bank Pointer will retain its original value and not

indicate Bank 0. For this reason, after entering the inter-

rupt subroutine, in addition to the usual backup of the

accumulator and status register, it is important to

backup its original value immediately and also clear the

Bank Pointer to indicate Bank 0 especially if other calls

or jumps are encountered within Bank 0. Before the

RETI instruction in the interrupt subroutine is executed,

the Bank Pointer, along with the accumulator and status

register, must be restored to ensure the program returns

to the correct Bank and point from where the subroutine

was called. The following example illustrates how inter-

rupts can be managed:

include HT46RU26.inc
:
:

rombank 0 codesec0 ; define rombank 0
rombank 1 codesec1 ; define rombank 1

:
:

codesec0 .section at 000h �code� ; locates the following program section into Bank 0
clr bp ; clear bank pointer after power-on reset
:
:
org 004h ; jump here from any bank when ext0 int.

; occurs - BP retains original value

mov accbuf0,a ; backup accumulator
mov a,bp ; backup bank pointer
clr bp ; clear bp to indicate Bank 0 otherwise

; original BP value will remain and give
; rise to false jmp or call addresses

jmp ext0_int ; jump to external 0 interrupt subroutine
:
:
org 008h ; jump here from any bank when ext1_int.

; occurs - BP retains original value
mov accbuf1,a ; backup accumulator
mov a,bp ; backup bank pointer
clr bp ; clear bp to indicate Bank 0 otherwise

; original BP value will remain and give rise to false jmp or

HT46RU26/HT46CU26

Rev. 1.00 12 June 12, 2008

; call addresses
jmp ext1_int ; jump to timer 0 interrupt subroutine
:
:
org 00Ch ; jump here from any bank when timer 0 int.

; occurs - BP retains original value
:
:

ext0_int: ; external interrupt subroutine
mov bp_exti,a ; backup bank pointer
mov a,status ; backup status register
mov statusbuf0,a ; backup status register
:
:
mov a,statusbuf0 ; restore status register
mov status,a
mov a,bp_exti ; restore bank pointer
mov bp,a
mov a,accbuf0 ; restore accumulator

; return to main program and original calling bank
:
:

ext1_int: ; ext1_int interrupt subroutine
mov bp_tmr0,a ; backup bank pointer
mov a,status ; backup status register
mov statusbuf1,a
:
:
mov a,statusbuf1 ; restore status register
mov status,a
mov a,bp_tmr0 ; restore bank pointer
mov bp,a
mov a,accbuf1 ; restore accumulator

reti ; return to main program and original calling bank
:
:

Look-up Table

Any location within the Program Memory can be defined

as a look-up table where programmers can store fixed

data. To use the look-up table, the table pointers must

first be setup by placing the lower order address of the

look up data to be retrieved in the table low pointer regis-

ter, TBLP, and the higher order address in the table high

pointer register, TBHP. These registers define the full

address of the look-up table in any bank.

After setting up the table pointers, the table data can be

retrieved from the current Program Memory page or last

Program Memory page using the �TABRDC[m]� or

�TABRDL [m]� instructions, respectively. When these in-

structions are executed, the lower order table byte from

the Program Memory will be transferred to the user de-

fined Data Memory register [m] as specified in the in-

struction. The higher order table data byte from the

Program Memory will be transferred to the TBLH special

register. Any unused bits in this transferred higher order

byte will be read as �0�.

The following diagram illustrates the addressing/data

flow of the look-up table:

Table Program Example

The following example shows how the table pointer and

table data is defined and retr ieved from the

microcontroller. This example uses raw table data lo-

cated in the last page which is stored there using the

ORG statement. The value at this ORG statement is

000H, however, this only indicates the offset value from

the start address of Bank 1 which in this case is 2000H.

The table pointer high byte is setup to have a value of

20H while the value of the table pointer low byte is setup

here to have an initial value of 05H. This will ensure that

the data byte read from the data table will be located at

the Program Memory address 2005H, or 5 locations af-

ter the first address defined by the ORG statement.

When the TABRDC [m] instruction is executed, the table

data low byte which has a value of FFH, will be trans-

ferred to the user defined temp register, while the table

data high byte, which has a value of 55H, will be trans-

ferred to the TBLH register.

� � � � � � � �
	
 � � � �

� 4 " �

� 4 " B �
 � � D �
 � � � � � A � C

� � � �
 � � � �

 �
 � � B � � � � 4 �

 � � � �
 � � � �

 �
 � � " � # � 4 �

� 4 B �

HT46RU26/HT46CU26

Rev. 1.00 13 June 12, 2008

include HT46RU26.inc
:
:

data .section �data�
temp db ?
:
:

rombank 0 codesec0 ; Bank 0 definition
rombank 1 codesec1 ; Bank 1 definition

:
:

codesec0 .section at 0 code
jmp start
:
org 010h

start:
:
:
mov a,020h ; setup table high byte address
mov tbhp,a
:
:
mov a,005h ; setup table low byte address
mov tblp,a ; table pointer address is now 2005H
tabrdc temp ; read table data from PC address 2005H
nop ; FFH will be placed in the temp

; register and 55H will be placed in the TBLH register
codesec1 .section at 000h code ; Bank 1 code located here

org 0000h ; this defines the offset from the start address of Bank 1
; which is 2000H

dc 000AAh, 011BBh, 022CCh, 033DDh, 044EEh, 055FFh
:
:

Because the TBLH register is a read-only register and

cannot be restored, care should be taken to ensure its

protection if both the main routine and Interrupt Service

Routine use table read instructions. If using the table

read instructions, the Interrupt Service Routines may

change the value of the TBLH and subsequently cause

errors if used again by the main routine. As a rule it is

recommended that simultaneous use of the table read

instructions should be avoided. However, in situations

where simultaneous use cannot be avoided, the inter-

rupts should be disabled prior to the execution of any

main routine table-read instructions. Note that all table

related instructions require two instruction cycles to

complete their operation.

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM

internal memory and is the location where temporary in-

formation is stored. Divided into two sections, the first of

these is an area of RAM where special function registers

are located. These registers have fixed locations and

are necessary for correct operation of the device. Many

of these registers can be read from and written to di-

rectly under program control, however, some remain

protected from user manipulation. The second area of

Data Memory is reserved for general purpose use. All

locations within this area are read and write accessible

under program control. This General Purpose area of

the Data Memory is divided into four separate banks,

known as Bank 0~Bank 3. Switching between banks is

accomplished by setting the Bank Pointer to the correct

value.

Instruction
Table Location Bits

b14~b8 b7 b6 b5 b4 b3 b2 b1 b0

TABRDC [m] TBHP @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1111111 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: PC14~PC8: Current Program Counter bits

@7~@0: Table Pointer TBLP bits

HT46RU26/HT46CU26

Rev. 1.00 14 June 12, 2008

Structure

The two sections of Data Memory, the Special Purpose

and General Purpose Data Memory are located at con-

secutive locations. All are implemented in RAM and are

8 bits wide. The start address of the Data Memory is the

address �00H�. The Special Purpose Data Memory is

mapped into each bank and can therefore be read from

within any bank.

General Purpose Data Memory

All microcontroller programs require an area of

read/write memory where temporary data can be stored

and retrieved for use later. It is this area of RAM memory

that is known as General Purpose Data Memory. This

area of Data Memory is fully accessible by the user pro-

gram for both read and write operations. By using the

�SET [m].i� and �CLR [m].i� instructions individual bits

can be set or reset under program control giving the

user a large range of flexibility for bit manipulation in the

Data Memory. As the General Purpose Data Memory is

divided into four banks it is necessary to first setup the

Bank Pointer with the correct value before accessing the

General Purpose Data Memory.

Special Purpose Data Memory

This area of Data Memory is where registers, necessary

for the correct operation of the microcontroller, are

stored. Most of the registers are both readable and

writeable but some are protected and are readable only,

the details of which are located under the relevant Spe-

cial Function Register section. Note that for locations

that are unused, any read instruction to these addresses

will return the value �00H�.

2 2 B

2 1 B

2 * B

2 0 B

2 , B

2 / B

2 . B

2 - B

2 � B

2 3 B

2 % B

2 4 B

2 � B

2 � B

2 8 B

2 (B

1 2 B

1 1 B

1 * B

1 0 B

1 , B

1 / B

1 . B

1 - B

1 � B

1 3 B

1 % B

1 4 B

1 � B

1 � B

1 8 B

1 (B

* 2 B

* 1 B

* * B

* 0 B

* , B

* / B

* . B

* - B

* � B

* 3 B

* % B

* 4 B

* � B

* � B

* 8 B

* (B

0 2 B

0 1 B

0 * B

0 0 B

0 , B

0 / B

0 . B

0 - B

0 � B

0 3 B

0 % B

0 4 B

0 � B

0 � B

0 8 B

0 (B

? � � � � �
 � @ � �
 � � � � � � F 2 2 F

� % � 2

	 � 2

� % � 1

	 � 1

4 �

% � �

� � "

� 4 " �

� 4 " B

� � � �

� � % � � �

� 5 � � 2

� 	 � 2 B

� 	 � 2 "

� 	 � 2 �

� 	 � 1 B

� 	 � 1 "

� 	 � 1 �

� %

� % �

� 4

� 4 �

� �

� � �

� �

� � �

� � 	 2

� � 	 1

� � 	 *

� � 	 0

� 5 � � 1

� 4 B �

B % � �

B � �

B � �

B � �

% � � "

% � � B

% � � �

% � � �

� (

� (�

� '

� ' �

� 	 � *

� 	 � * �

	 (� �

� � �

� � � 1

� � � *

� 7 � ! � 7 �

4 � '

� 4 � �

� 4 � �

Special Purpose Data Memory

2 2 B

, 2 B

((B

0 (B

4 � � + � 2

4 � � + � 1
4 � � + � *

4 � � + � 0

�
 � � � � �

� � � � �

� �
 � �

	
 � � � �

4 � � + � 2 G 0

'
 �
 � � � �

� � � � �

� �
 �

	
 � � � �

Data Memory Structure

Note: Most of the Data Memory bits can be directly

manipulated using the �SET [m].i� and �CLR

[m].i� with the exception of a few dedicated bits.

The Data Memory can also be accessed

through the memory pointers MP0 and MP1.

HT46RU26/HT46CU26

Rev. 1.00 15 June 12, 2008

Special Function Registers

To ensure successful operation of the microcontroller,

certain internal registers are implemented in the Data

Memory area. These registers ensure correct operation

of internal functions such as timers, interrupts, etc., as

well as external functions such as I/O data control and

A/D converter operation. The location of these registers

within the Data Memory begins at the address 00H. Any

unused Data Memory locations between these special

function registers and the point where the General Pur-

pose Memory begins is reserved, attempting to read

data from these locations will return a value of 00H.

Indirect Addressing Registers � IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, al-

though having their locations in normal Data Memory

register space, do not actually physically exist as normal

registers. The method of indirect addressing for Data

Memory manipulation uses these Indirect Addressing

Registers and Memory Pointers, in contrast to direct

memory addressing, where the actual memory address

is specified. Actions on the IAR0 and IAR1 registers will

result in no actual read or write operation to these regis-

ters but rather to the memory location specified by their

corresponding Memory Pointer, MP0 or MP1. Acting as

a pair, IAR0 and MP0 can together only access data

from Bank 0, while the IAR1 and MP1 register pair can

access data from any bank. As the Indirect Addressing

Registers are not physically implemented, reading the

Indirect Addressing Registers indirectly will return a re-

sult of 00H and writing to the registers indirectly will re-

sult in no operation.

Memory Pointer � MP0, MP1

Two 8-bit Memory Pointers, known as MP0 and MP1 are

provided. These Memory Pointers are physically imple-

mented in the Data Memory and can be manipulated in

the same way as normal registers providing a conve-

nient way with which to address and track data. When

any operation to the relevant Indirect Addressing Regis-

ters is carried out, the actual address that the

microcontroller is directed to, is the address specified by

the related Memory Pointer. MP0, together with Indirect

Addressing Register, IAR0, are used to access data

from Bank 0 only, while MP1 and IAR1 are used to ac-

cess data from any bank.

The following example shows how to clear a section of

four RAM locations already defined as locations adres1

to adres4.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 �code�
org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp0,a ; setup memory pointer with first RAM address

loop:
clr IAR0 ; clear the data at address defined by MP0
inc mp0 ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to specific Data Memory ad-

dresses.

HT46RU26/HT46CU26

Rev. 1.00 16 June 12, 2008

Bank Pointer

The Program Memory and Data Memory are each di-

vided into four separate banks. To select which bank is

to be accessed a Bank Pointer register is used. Bits 5

and 6 of the Bank Pointer register select the Program

Memory bank while bits 0 and 1 select the Data Memory

bank. The Program and Data Memory are initialised to

Bank 0 after a reset, except for the WDT time-out reset

in the Power Down Mode, in which case, the bank re-

mains unchanged. It should be noted that the Special

Function Data Memory is not affected by the bank selec-

tion, which means that the Special Function Registers

can be accessed from within any Data Memory bank.

Accumulator � ACC

The Accumulator is central to the operation of any

microcontroller and is closely related with operations

carried out by the ALU. The Accumulator is the place

where all intermediate results from the ALU are stored.

Without the Accumulator it would be necessary to write

the result of each calculation or logical operation such

as addition, subtraction, shift, etc., to the Data Memory

resulting in higher programming and timing overheads.

Data transfer operations usually involve the temporary

storage function of the Accumulator; for example, when

transferring data between one user defined register and

another, it is necessary to do this by passing the data

through the Accumulator as no direct transfer between

two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low

byte of the Program Counter is made accessible to pro-

grammers by locating it within the Special Purpose area

of the Data Memory. By manipulating this register, direct

jumps to other program locations are easily imple-

mented. Loading a value directly into this PCL register

will cause a jump to the specified Program Memory lo-

cation, however, as the register is only 8-bit wide, only

jumps within the current Program Memory page are per-

mitted. When such operations are used, note that a

dummy cycle will be inserted.

Look-up Table Registers � TBLP, TBHP, TBLH

These three special function registers are used to con-

trol operation of the look-up table which is stored in the

Program Memory. TBLP and TBHP are the table low

and high byte pointers that are used to indicate the full

address where the table data is located. Their values

must be setup before any table read commands are ex-

ecuted. Their values can be changed, for example using

the �INC� or �DEC� instructions, allowing for easy table

data pointing and reading. TBLH is the location where

the high order byte of the table data is stored after a ta-

ble read data instruction has been executed. Note that

the lower order table data byte is transferred to a user

defined location.

Status Register � STATUS

This 8-bit register contains the zero flag (Z), carry flag

(C), auxiliary carry flag (AC), overflow flag (OV), power

down flag (PDF), and watchdog time-out flag (TO).

These arithmetic/logical operation and system manage-

ment flags are used to record the status and operation of

the microcontroller.

With the exception of the TO and PDF flags, bits in the

status register can be altered by instructions like most

other registers. Any data written into the status register

will not change the TO or PDF flag. In addition, opera-

tions related to the status register may give different re-

sults due to the different instruction operations. The TO

flag can be affected only by a system power-up, a WDT

time-out or by executing the �CLR WDT� or �HALT� in-

struction. The PDF flag is affected only by executing the

�HALT� or �CLR WDT� instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of

the latest operations.

� C is set if an operation results in a carry during an

addition operation or if a borrow does not take place

� � � � � � � � � �

� - � 2

4 � 2

4 � 1 � � � � 4 � 2 � � � � � �
 � � 	
 � � � �
� � � 2 � � � � � � � � 2 � � � � � � � � � � 4 � � + � 2
� � � 2 � � � � � � � � 1 � � � � � � � � � � 4 � � + � 1
� � � 1 � � � � � � � � 2 � � � � � � � � � � 4 � � + � *
� � � 1 � � � � � � � � 1 � � � � � � � � � � 4 � � + � 0

5 �
 � � �
 � @ � � � �
 � �
 � �
 �

 �
 � � F 2 F

4 � . � � � � 4 � / � � � � � �
 � � 	
 � � � �
� � � 2 � � � � � � � � 2 � � � � � � � � � � 4 � � + � 2
� � � 2 � � � � � � � � 1 � � � � � � � � � � 4 � � + � 1
� � � 1 � � � � � � � � 2 � � � � � � � � � � 4 � � + � *
� � � 1 � � � � � � � � 1 � � � � � � � � � � 4 � � + � 0

5 �
 � � �
 � @ � � � �
 � �
 � �
 �

 �
 � � F 2 F

4 � 14 � /4 � .

Bank Pointer Register

HT46RU26/HT46CU26

Rev. 1.00 17 June 12, 2008

during a subtraction operation; otherwise C is

cleared. C is also affected by a rotate through carry

instruction.

� AC is set if an operation results in a carry out of the

low nibbles in addition, or no borrow from the high

nibble into the low nibble in subtraction; otherwise

AC is cleared.

� Z is set if the result of an arithmetic or logical opera-

tion is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the

highest-order bit but not a carry out of the high-

est-order bit, or vice versa; otherwise OV is cleared.

� PDF is cleared by a system power-up or executing

the �CLR WDT� instruction. PDF is set by executing

the �HALT� instruction.

� TO is cleared by a system power-up or executing

the �CLR WDT� or �HALT� instruction. TO is set by

a WDT time-out.

In addition, on entering an interrupt sequence or execut-

ing a subroutine call, the status register will not be

pushed onto the stack automatically. If the contents of

the status registers are important and if the subroutine

can corrupt the status register, precautions must be

taken to correctly save it.

Real Time Clock Control Register � RTCC

The RTCC register controls two internal functions one of

which is the Real Time Clock (RTC) interrupt, whose

function is to provide an internal interrupt signal at regu-

lar fixed intervals. The driving clock for the RTC interrupt

comes from the internal clock source, known as fS,

which is then further divided to give longer time values,

which in turn generates the interrupt signal. The value of

this division ratio is determined by the value pro-

grammed into bits 2~0, known as RT2~RT0, of the

RTCC register. By writing a value directly into these

RTCC register bits, time-out values from 28/fS to 215/fS

can be generated. The RTCC register also controls the

quick start up function of the RTC oscillator. This oscilla-

tor, which has a fixed frequency of 32768Hz, can be

made to start up at a quicker rate by setting bit 4, known

as the QOSC bit to �0�. This bit will be set to a �0� value

when the device is powered on, however, as some extra

power is consumed, the QOSC bit should be set to �1�
after about 2 seconds to reduce power consumption.

Interrupt Control Register � INTC0, INTC1

These 8-bit registers control the operation of both exter-

nal and internal timer interrupts. By setting various bits

within this register using standard bit manipulation in-

structions, the enable/disable function of each interrupt

can be independently controlled. A master interrupt bit

within this register, the EMI bit, acts like a global en-

able/disable and is used to set all of the interrupt enable

bits on or off. This bit is cleared when an interrupt routine

is entered to disable further interrupt and is set by execut-

ing the �RETI� instruction.

� � � � (� $ H % � � � � � � � � � � � � � � � �

� � � � ! � � � � " 	 # � � � " �
 $ � � � � � � � � % & � �
� � � � � � D � � �
% � < � � � � � � � � � � � � � D � � �
H
 � � � D � � �
� &
 � D � � # � D � � �

� ' � � � � (� � � � � � � � � � % & � �
� � #
 � � � � # � � D � � �
� �
 � � � � � �
 � �
 � � �
 � D � � �
5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� - � 2

Status Register

� � � � � �

 � � �
 � �
 � � � �

� - � 2

I � � � � � * � � 1 � � 2

� � *
2
2
2
2
1
1
1
1

� � 1
2
2
1
1
2
2
1
1

� � 2
2
1
2
1
2
1
2
1

�
 � � � �
* � ! D �
* 3 ! D �
* 1 2 ! D �
* 1 1 ! D �
* 1 * ! D �
* 1 0 ! D �
* 1 , ! D �
* 1 / ! D �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� � � � � � � � � � �
 � � � I � � � + � �
 � �

1 ? � � � � � � �

2 ? �
 � � � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F �

� � � & � � � � � �
 & � " � �
 � � � � � & � � � � � � � �

RTCC Register

HT46RU26/HT46CU26

Rev. 1.00 18 June 12, 2008

Timer/Event Counter Registers

The device contains a single 8-bit and two 16-bit

Timer/Event Counters. Each Timer/Event Counter has

an associated register or register pair where the timer�s
8 or 16-bit value is located. Timer/Event Counter 2 is

8-bits wide whose register is TMR2. Timer/Event Coun-

ter 0 and 1 are 16-bits wide and have register pairs

TMR0L/TMR0H and TMR1H/TMR1H. Three control

registers, known as TMR0C, TMR1C and TMR2C, con-

tains the setup information for the Timer/Event Coun-

ters, and determine in what mode the Timer/Event

Counter is to be used as well as containing the timer

on/off control function.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O

registers and their associated control registers play a

prominent role. All I/O ports have a designated register

correspondingly labeled as PA, PB, PC, PD, PF and PG.

These labeled I/O registers are mapped to specific ad-

dresses within the Data Memory as shown in the Data

Memory table, which are used to transfer the appropri-

ate output or input data on that port. With each I/O port

there is an associated control register labeled PAC,

PBC, PCC, PDC, PFC and PGC, also mapped to spe-

cific addresses with the Data Memory. The control regis-

ter specifies which pins of that port are set as inputs and

which are set as outputs. To setup a pin as an input, the

corresponding bit of the control register must be set

high, for an output it must be set low. During program ini-

tialisation, it is important to first setup the control regis-

ters to specify which pins are outputs and which are

inputs before reading data from or writing data to the I/O

ports. One flexible feature of these registers is the ability

to directly program single bits using the �SET [m].i� and

�CLR [m].i� instructions. The ability to change I/O pins

from output to input and vice versa by manipulating spe-

cific bits of the I/O control registers during normal pro-

gram operation is a useful feature of these devices.

Pulse Width Modulator Registers �

PWM0, PWM1, PWM2, PWM3

Each PWM has its own related independent control reg-

ister. The 8-bit contents of these registers, defines the

duty cycle value for the modulation cycle of the corre-

sponding Pulse Width Modulator.

A/D Converter Registers �

ADRL, ADRH, ADCR, ACSR

The device contains an 8-channel 12-bit A/D converter.

The correct operation of the A/D requires the use of two

data registers, a control register and a clock source reg-

ister. These are the register locations where the digital

value is placed after the completion of an analog to digi-

tal conversion cycle. The channel selection and configu-

ration of the A/D converter is setup via the control

register ADCR while the A/D clock frequency is defined

by the clock source register, ACSR.

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on

their I/O ports. With the input or output designation of ev-

ery pin fully under user program control, pull-high op-

tions for all ports and wake-up options on certain pins,

the user is provided with an I/O structure to meet the

needs of a wide range of application possibilities.

The microcontroller provides 48 bidirectional input/out-

put lines labeled with port names PA, PB, PC, PD, PF

and PG. These I/O ports are mapped to the RAM Data

Memory with specific addresses as shown in the Special

Purpose Data Memory table. All of these I/O ports can

be used for input and output operations. For input oper-

ation, these ports are non-latching, which means the in-

puts must be ready at the T2 rising edge of instruction

�MOV A,[m]�, where m denotes the port address. For

output operation, all the data is latched and remains un-

changed until the output latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for

their switch inputs usually requiring the use of an exter-

nal resistor. To eliminate the need for these external re-

sistors, all I/O pins, when configured as an input have

the capability of being connected to an internal pull-high

resistor. These pull-high resistors are selectable via

configuration options and are implemented using a

weak PMOS transistor.

Port A Wake-up

The instruction set includes a HALT instruction which if

executed forces the microcontroller to enter a

Power-down Mode and preserve power, a feature that is

important for battery and other low-power applications.

Various methods exist to wake-up the microcontroller,

one of which is to change the logic condition on one of the

Port A pins from high to low. After a HALT instruction

forces the microcontroller into the Power-down Mode, a

high to low transition on any of the configuration option

selected wake-up pins on Port A will wake up the device.

This function is especially suitable for applications that

can be woken up via external switches. Note that each

pin on Port A can be selected individually using configu-

ration options to have this wake-up feature.

I/O Port Control Registers

Each I/O port has its own control register PAC, PBC,

PCC, PDC, PFC and PGC, to control the input/output

configuration. With this control register, each CMOS

output or input with or without pull-high resistor struc-

tures can be reconfigured dynamically under software

control. Each pin of the I/O ports is directly mapped to a

bit in its associated port control register. For the I/O pin

HT46RU26/HT46CU26

Rev. 1.00 19 June 12, 2008

to function as an input, the corresponding bit of the con-

trol register must be written as a �1�. This will then allow

the logic state of the input pin to be directly read by in-

structions. When the corresponding bit of the control

register is written as a �0�, the I/O pin will be setup as a

CMOS output. If the pin is currently setup as an output,

instructions can still be used to read the output register.

However, it should be noted that the program will in fact

only read the status of the output data latch and not the

actual logic status of the output pin.

Pin-shared Functions

The flexibility of the device is greatly enhanced by the

use of pins that have more than one function. Limited

numbers of pins can force serious design constraints on

designers but by supplying pins with multi-functions,

many of these difficulties can be overcome. For some

pins, the chosen function of the multi-function I/O pins is

set by configuration options while for others the function

is set by application program control.

� External Interrupt Input

The external interrupt pin, INT, is pin-shared with the

I/O pin, PA5.To be used as an external interrupt pin

the external interrupt enable bit in the INTC0 register

must be enabled. The corresponding bit of the port

control register, PAC.5, must also setup the pin as an

input for correct external interrupt operation. Any

pull-high configuration options selected for this pin will

remain valid if the pin is used as an external interrupt.

If the PAC port control register has setup the pin as an

output, then the pin will function as a normal logic out-

put, even if the external interrupt enable bit in the

INTC0 register is enabled.

� PFD Output

The device contains a Programmable Frequency Di-

vider, PFD, function whose single output is pin-shared

with PA3. The output function of this pin is chosen via

a configuration option and remains fixed after the de-

vice is programmed. Note that the corresponding bit of

the port control register, PAC.3, must setup the pin as

an output to enable the PFD output. If the PAC port

control register has setup the pin as an input, then the

$ � �

	
�
7

� � +
 � � � �
 � � �� � �

 � � � � +
 � �

�
 � � � � �
 � � �
 � � �

 �

� � �
 � � � � 4 �

� � � � � B � � �
�
 � � �

� �
 � � 4 � �

� � �

 � � � �
 � � � � �
 � � �

 �

� � � � �
 �

�
 � � � � � �
 � � � � �
 � � �

 �

� � �

 � � �
 � � �
 � � �

 �

� �
 � � 4 �

� ! � � � � �

�
 � +
� � � � � � � I

� 6
�

I

� I

� 6
�

I

� % � � � � �

Non-pin-shared Function Input/Output Ports

$ � �

	
�
7�
 � � � � �
 � � �
 � � �

 �

� � �
 � � � � 4 �

� � � � � B � � �
�
 � � �

� �
 � � 4 � �

� � �

 � � � �
 � � � � �
 � � �

 �

� � � � �
 �

�
 � � � � � �
 � � � � �
 � � �

 �

� � �

 � � �
 � � �
 � � �

 �

� �
 � � 4 �

� � � 5 � � D � � � � % / � � � � �

� % / ! � 5 �

� � +
 � � � �
 � � �
� � �

 � � � � +
 � �

�
 � +
� � � � � � � I

� 6
�

I

� I

� 6
�

I

PA5 Input/Output Port

HT46RU26/HT46CU26

Rev. 1.00 20 June 12, 2008

$ � �

	
�
7

�
 � � � � �
 � � �
 � � �

 �

� � �
 � � � � 4 �

� � � � � B � � �
�
 � � �

� �
 � � 4 � �

� � �

 � � � �
 � � � � �
 � � �

 �

� � � � �
 �

�
 � � � � � �
 � � � � �
 � � �

 �

� � �

 � � �
 � � �
 � � �

 �

� �
 � � 4 �

� 4 2 ! % 5 2 G � 4 - ! % 5 -

% � � * G % � � 2

� � � % ! � � � � � &
 �

 �

� � � *
� � � 1
� � � 2

�
 � +
� � � � � �

% � � � � �
� � �

�
 �
 �
 � �

� I

� 6
�

I

� I

� 6
�

I

PB Input/Output Ports

$ � �

	
�
7

	
�
7

8 5 : � (� � � �
� � 	 2 G � � 	 0 ;

� � +
 � � � �
 � � �

� 5 � � D � � � � % / � � � � �

� � �

 � � � � +
 � �
: � % � � � � � ;

�
 � � � � �
 � � �
 � � �

 �

� I

� 6

�

� I

� 6 I

�

� � �
 � � � � 4 �

� �
 � � 4 � �

� � �

 � � � �
 � � � � �
 � � �

 �

� � � � �
 �

�
 � � � � � �
 � � � � �
 � � �

 �

� � �

 � � �
 � � �
 � � �

 �

� �
 � � 4 �

� % 2 G � % * @ � � % 0 ! � (�
� % , @ � � % / ! � 5 �
� % . ! � � % @ � � % - ! � � "
� � * G � � /
� � . ! � � � 0 @ � � � - ! � � � ,
� � 2 ! � � 	 2 G � � 0 ! � � 	 0
� � , G � � -
� (2 G � (-
� ' 2 G � ' -

I

� � � � � � � � � � � � � � � � � A � % 0 @ � � (� C � � �

� � � A � � 2 @ � � 	 2 C

� � � A � � 1 @ � � 	 1 C

� � � A � � * @ � � 	 * C

� � � A � � 0 @ � � 	 0 C

� � � � � � � � �
�
 � � �

Input/Output Ports

pin will function as a normal logic input with the usual

pull-high option, even if the PFD configuration option

has been selected.

� PWM Outputs

The device contains four Pulse Width Modulator

outputs PWM0, PWM1, PWM2 and PWM3, shared

with pins PD0, PD1, PD2 and PD3. The PWM output

functions are chosen via configuration options and re-

main fixed after the device is programmed. Note that

the corresponding bit or bits of the port control regis-

ter, PDC, must setup the pin as an output to enable

the PWM output. If the PDC port control register has

setup the pin as an input, then the pin will function as a

normal logic input with the usual pull-high option, even

if the PWM configuration option has been selected.

� A/D Inputs

The device has 8 A/D converter inputs. All of these an-

alog inputs are pin-shared with I/O pins on Port B. If

these pins are to be used as A/D inputs and not as

normal I/O pins then the corresponding bits in the A/D

Converter Control Register, ADCR, must be properly

set. There are no configuration options associated

with the A/D function. If used as I/O pins, then full

pull-high resistor configuration options remain, how-

ever if used as A/D inputs then any pull-high resistor

options associated with these pins will be automati-

cally disconnected.

HT46RU26/HT46CU26

Rev. 1.00 21 June 12, 2008

$ � �

	
�
7

	
�
7�
 � � � � �
 � � �
 � � �

 �

� I

� 6
�

� I

� 6 I
�

� � �
 � � � � 4 �

� �
 � � 4 � �

� � �

 � � � �
 � � � � �
 � � �

 �

� � � � �
 �

�
 � � � � � �
 � � � � �
 � � �

 �

� � �

 � � �
 � � �
 � � �

 �

� �
 � � 4 �

� � 2 ! � 7

I

(� � � � � % � � � � 7

� % � � 8 5 � J � � 7 8 5

� � � � � � � � �
�
 � � �

PC0/TX Input/Output Ports

$ � �

	
�
7

�
 � � � � �
 � � �
 � � �

 �

� I

� 6
�

� I

� 6 I
�

� � �
 � � � � 4 �

� �
 � � 4 � �

� � �

 � � � �
 � � � � �
 � � �

 �

� � � � �
 �

�
 � � � � � �
 � � � � �
 � � �

 �

� � �

 � � �
 � � �
 � � �

 �

� �
 � � 4 �

� � 1 ! � 7

I

� � � � % � � � � 7

� � � � � � � � �
�
 � � �

PC1/RX Input/Output Ports

I/O Pin Structures

The accompanying diagrams illustrate the I/O pin inter-

nal structures. As the exact logical construction of the

I/O pin may differ from these drawings, they are supplied

as a guide only to assist with the functional understand-

ing of the I/O pins.

Programming Considerations

Within the user program, one of the first things to con-

sider is port initialization. After a reset, all of the I/O data

and port control registers will be set high. This means

that all I/O pins will default to an input state, the level of

which depends on the other connected circuitry and

whether pull-high options have been selected. If the port

control registers, PAC, PBC, PCC, PDC, PFC and PGC,

are then programmed to setup some pins as outputs,

these output pins will have an initial high output value

unless the associated port data registers, PA, PB, PC,

PD, PF and PG, are first programmed. Selecting which

pins are inputs and which are outputs can be achieved

byte-wide by loading the correct values into the appro-

priate port control register or by programming individual

bits in the port control register using the �SET [m].i� and

�CLR [m].i� instructions. Note that when using these bit

control instructions, a read-modify-write operation takes

place. The microcontroller must first read in the data on

the entire port, modify it to the required new bit values

and then rewrite this data back to the output ports.

� 1 � * � 0 � , � 1 � * � 0 � ,

� � �

 �
 � � � � �
 �
 � � � D � � � � � � �

� � �

 � � � � � � +

� � �
 � � �
 �

Read/Write Timing

HT46RU26/HT46CU26

Rev. 1.00 22 June 12, 2008

Port A has the additional capability of providing wake-up

functions. When the device is in the Power Down Mode,

various methods are available to wake the device up.

One of these is a high to low transition of any of the Port

A pins. Single or multiple pins on Port A can be setup to

have this function.

The smaller package types will have some internal chip

pins which are not connected to external pins. If these pins

are setup as inputs they may oscillate and increase power

consumption, especially notable if the device is in the

Power Down Mode. It is therefore recommended that

these pins should be setup as outputs, or if setup as in-

puts, then they should be connected to pull-high resistors.

Timer/Event Counters

The provision of timers form an important part of any

microcontroller giving the designer a means of carrying

out time related functions. The device contains two

16-bit and one 8-bit count-up Timer/Event Counters.

With three operating modes, the timers can be config-

ured to operate as a general timer, external event coun-

ter or as a pulse width measurement device. The

provision of an internal prescaler on some of the timer

clock circuitry provides additional timer range.

Each Timer/Event Counter has an associated register or

register pair where its 8 or 16-bit value is located.

Timer/Event Counter 2 is 8-bits wide whose register is

TMR2. Timer/Event Counter 0 and 1 are 16-bits wide

and have register pairs TMR0L/TMR0H and

TMR1H/TMR1H. Three control registers, known as

TMR0C, TMR1C and TMR2C, contains the setup infor-

mation for the Timer/Event Counters, and determine in

what mode the Timer/Event Counter is to be used as

well as containing the timer on/off control function.

� 	 � 1 �

� 1 8

� � �
 � ! 8 &
 �
 � � � � �

 �
	 � �
 � � � �
 � � �

1 . � 4 �
 � � � �
 � ! 8 &
 �
 � � � � �

 �
� �
 � � � � � �
 � � �

 �

� �
 � � 4 � �

�
 � � � �

� &
 � D � � #

 � � � �

 � � �

" � # � 4 �

4 � D D
 �

� 1 	 1 � 1 	 2

� 1 � 5

B � � � � 4 �

 " � # � 4 �

1 . � 4 �
 � � � �
 � ! 8 &
 �
 � � � � �

 �

� (�� � � *�

� � D � > � ! ,

16-bit Timer/Event Counter 1 Structure

� 	 � 2 �

� 2 8

� � �
 � ! 8 &
 �
 � � � � �

 �
	 � �
 � � � �
 � � �

1 . � 4 �

� �
 � � � � � �
 � � �

 �

� �
 � � 4 � �

�
 � � � �

� &
 � D � � #

 � � � �

 � � �

" � # � 4 �

4 � D D
 �

� 2 	 1 � 2 	 2

� 2 � 5

B � � � � 4 �

 " � # � 4 �

1 . � 4 �
 � � � �
 � ! 8 &
 �
 � � � � �

 �

� (�� � � *�

- � �
 � �
 � � �
 � � � �
 �

� 2 � � � * G � 2 � � � 2
: 1 ! 1 G 1 ! 1 * � ;

� � D � > �

16-bit Timer/Event Counter 0 Structure

� � � 	 � *

� * 8

� � �
 � ! 8 &
 �
 � � � � �

 �
	 � �
 � � � �
 � � �

� * � 5

� �
 � � � � � �
 � � �

 �

� � �
 � ! 8 &
 �

� � � �

 �

� �
 � � 4 � �

�
 � � � �

� &
 � D � � #

 � � � �

 � � �

- � �
 � �
 � � �
 � � � �
 �

� * � � � * G � * � � � 2
: 1 ! 1 G 1 ! 1 * � ;

� � 4 �
 � � � �
 � ! 8 &
 �
 � � � � �

 �

� * 	 1 � * 	 2

� � D � > �

8-bit Timer/Event Counter 2 Structure

HT46RU26/HT46CU26

Rev. 1.00 23 June 12, 2008

Configuring the Timer/Event Counter Input Clock

Source

The Timer/Event Counter clock source can originate

from either the system clock or from an external clock

source. The system clock input source is used when the

Timer/Event Counter is in the timer mode or in the pulse

width measurement mode.

An external clock source is used when the Timer/Event

Counter is in the event counting mode, the clock source

being provided on the external timer pin TMR0, TMR1 or

TMR2. Depending upon the condition of the T0E, T1E or

T2E bit, each high to low, or low to high transition on the

external timer pin will increment the Timer/Event Coun-

ter by one.

Timer Register � TMR0L/TMR0H, TMR1L/TMR1H,

TMR2

The timer registers are special function registers located

in the Special Purpose Data Memory and is the place

where the actual Timer/Event Counter value is stored.

For Timer/Event Counter 0 and 1, which are 16-bits

wide, a pair of 8-bit registers is required to store the

16-bit value. These register pairs are known as

TMR0L/TMR0H and TMR1L/TMR1H. For Timer/Event

Counter 2, which is an 8-bit timer, a register known as

TMR2 is provided.

The value in the timer registers increases by one each

time an internal clock pulse is received or an external

transition occurs on the external timer pin. The timer will

count from the initial value loaded by the preload register

to the full count value of FFH for the 8-bit Timer/Event

Counter or FFFFH for the 16-bit Timer/Event Counters, at

which point the timer overflows and an internal interrupt

signal generated. The timer value will then be reset with

the initial preload register value and continue counting.

For a maximum full range count of 00H to FFH or

FFFFH, the preload registers must first be cleared to all

zeros. It should be noted that after power-on the preload

register will be in an unknown condition. Note that if the

Timer/Event Counter is not running and data is written to

its preload registers, this data will be immediately written

into the actual counter. However, if the counter is en-

abled and counting, any new data written into the

preload registers during this period will remain in the

preload registers and will only be written into the actual

counter the next time an overflow occurs.

For the 16-bit Timer/Event Counters which hve both low

byte and high byte timer registers, accessing these reg-

isters is carried out in a specific way. It must be noted

when using instructions to preload data into the low byte

timer registers, namely TMR0L or TMR1L, the data will

only be placed in a low byte buffer and not directly into

the low byte timer register. The actual transfer of the

data into the low byte timer register is only carried out

when a write to its associated high byte timer register,

namely TMR0H or TMR1H, is executed. On the other

hand, using instructions to preload data into the high

byte timer register will result in the data being directly

written to the high byte timer register. At the same time

the data in the low byte buffer will be transferred into its

associated low byte timer register. For this reason, the

low byte timer register should be written first when

preloading data into the 16-bit timer registers. It must

also be noted that to read the contents of the low byte

timer register, a read to the high byte timer register must

be executed first to latch the contents of the low byte

timer register into its associated low byte buffer. After

this has been done, the low byte timer register can be

read in the normal way. Note that reading the low byte

timer register will result in reading the previously latched

contents of the low byte buffer and not the actual con-

tents of the low byte timer register.

Timer Control Register � TMR0C, TMR1C, TMR2C

The flexible features of the Holtek microcontroller

Timer/Event Counters enable them to operate in three

different modes, the options of which are determined by

the contents of the Timer Control Registers TMR0C,

TMR1C and TMR2C. It is the Timer Control Register to-

gether with its corresponding timer register that control

the full operation of the Timer/Event Counter. Before the

Timer/Event Counter can be used, it is essential that the

Timer Control Register is fully programmed with the

right data to ensure its correct operation, a process that

is normally carried out during program initialisation.

To choose which of the three modes the timer is to oper-

ate in, the timer mode, the event counting mode or the

pulse width measurement mode, bits 7 and 6 of the

Timer Control Register, which are known as the bit pair

T0M0/T0M1, T1M0/T1M1 and T2M0/T2M1 must be set

to the required logic levels. The Timer/Event Counter

on/off bit, which is bit 4 of the Timer Control Register and

known as T0ON, T1ON or T2ON, provides the basic

on/off control of the Timer/Event Counter. Setting the bit

high allows the Timer/Event Counter to run, clearing the

bit stops it running. Bits 0~2 of the TMR0C and TMR2C

register determine the division ratio of the input clock

prescaler for the respective Timer/Event Counter. The

prescaler bit settings have no effect if an external clock

source is used. If the Timer/Event Counter is in the

event count or pulse width measurement mode, the ac-

tive transition edge level type is selected by the logic

level of bit 3 of the Timer Control Register which is

known as T0E, T1E or T2E.

Configuring the Timer Mode

In this mode, the Timer/Event Counter can be utilised to

measure fixed time intervals, providing an internal inter-

rupt signal each time the Timer/Event Counter over-

flows. To operate in this mode, the Operating Mode

Select bi t pair, T0M1/T0M0, T1M1/T1M0 or

HT46RU26/HT46CU26

Rev. 1.00 24 June 12, 2008

� (�)
 � � � � � � � � �

� -

8 &
 �
 � � � � �

 � � � �
 � &
 �
 � �
 � �
 �
 �

1 ? � � � � �
 � � � � D � � � � � � �
 � �

2 ? � � � � �
 � � � � � � � � � � �
 � �
 �

� � � �
 � � � �
 � � 	
 � � � �
 �
 �
 � � � �
 � &
 �
 � �
 � �
 �
 �

1 ? � �
 � �
 � � � � �
 � � � � � � � � � � � � � �
 � �
 @ � �
 � � � � � D � � � � � � �
 � �

2 ? � �
 � �
 � � � � �
 � � � � � � � D � � � � � � �
 � �
 @ � �
 � � � � � � � � � � � �
 � �

� � �
 � ! 8 &
 �
 � � � � �

 � � � � � �
 � � � �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

�
 � �
 � � � � � � �
 � �
 �
 �

� 2 	 1 � � � � � 2 	 2
� � � � 2 � � � � � � � � � � � 2 � � � � � � � � � � � � � � � � �
 � � & � � � � � �

� � � � 2 � � � � � � � � � � � 1 � � � � � � � � � � �
 &
 �
 � � � � �

 � � � � �

� � � � 1 � � � � � � � � � � � 2 � � � � � � � � � � �
 � �
 � � � � �

� � � � 1 � � � � � � � � � � � 1 � � � � � � � � � � � � � �
 � # � �
 � � �
 � � � �
 �
 �
 � � � �

� 2 8� 2 � 5� 2 	 2� 2 	 1

� � �
 � � �
 � � � �
 � � � �

 � �
 �
 �

� 2 � � � *
� 2
� 2
� 2
� 2
� 1
� 1
� 1
� 1

� 2

� 2 � � � * � 2 � � � 1 � 2 � � � 2

� � � 2 � � � 1
� � 2
� � 2
� � 1
� � 1
� � 2
� � 2
� � 1
� � 1

� � � � � � � 2 � � � 2
� � � � � � 2
� � � � � � 1
� � � � � � 2
� � � � � � 1
� � � � � � 2
� � � � � � 1
� � � � � � 2
� � � � � � 1

� � �
 � � � �

� � � � � 1 ? 1
� � � � � 1 ? *
� � � � � 1 ? ,
� � � � � 1 ? �
� � � � � 1 ? 1 .
� � � � � 1 ? 0 *
� � � � � 1 ? . ,
� � � � � 1 ? 1 * �

Timer/Event Counter 0 Control Register

� -

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

8 &
 �
 � � � � �

 � � � �
 � &
 �
 � �
 � �
 �
 �

1 ? � � � � �
 � � � � D � � � � � � �
 � �

2 ? � � � � �
 � � � � � � � � � � �
 � �
 �

� � � �
 � � � �
 � � 	
 � � � �
 �
 �
 � � � �
 � &
 �
 � �
 � �
 �
 �

1 ? � �
 � �
 � � � � �
 � � � � � � � � � � � � � �
 � �
 @ � �
 � � � � � D � � � � � � �
 � �

2 ? � �
 � �
 � � � � �
 � � � � � � � D � � � � � � �
 � �
 @ � �
 � � � � � � � � � � � �
 � �

� � �
 � ! 8 &
 �
 � � � � �

 � � � � � �
 � � � �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

�
 � �
 � � � � � � �
 � �
 �
 �

� 1 	 1 � � � � � 1 	 2
� � � � 2 � � � � � � � � � � � 2 � � � � � � � � � � � � � � � � �
 � � & � � � � � �

� � � � 2 � � � � � � � � � � � 1 � � � � � � � � � � �
 &
 �
 � � � � �

 � � � � �

� � � � 1 � � � � � � � � � � � 2 � � � � � � � � � � �
 � �
 � � � � �

� � � � 1 � � � � � � � � � � � 1 � � � � � � � � � � � � � �
 � # � �
 � � �
 � � � �
 �
 �
 � � � �

� 1 8� 1 � 5� 1 	 2� 1 	 1

� 2

� (� *
 � � � � � � � �

Timer/Event Counter 1 Control Register

� � � �
 �
 �

� � �
 � � � � �
 � � � �
 �

� � �
 � � � � � � + � � �
� �
 � � � �
 � � � �
 �

� � �
 � � = � 1 � � �
 � � = � * � � �
 � � = � 5 � � �
 � � = � 5 � = � 1

Timer Mode Timing Chart

HT46RU26/HT46CU26

Rev. 1.00 25 June 12, 2008

� � �
 � = *

8 <

 � � � � � 8 &
 �

� � � �
 �
 �

� � �
 � � � � � �

 � � � �
 � = 0� � �
 � = 1

Event Counter Mode Timing Chart

T2M1/T2M0, in the Timer Control Register must be set

to the correct value as shown.

Control Register Operating Mode

Select Bits for the Timer Mode

Bit7 Bit6

1 0

In this mode the internal clock, fSYS or fSYS/4 is used as

the internal clock for the Timer/Event Counters. After the

other bits in the Timer Control Register have been

setup, the enable bit T0ON, T1ON or T2ON, which is bit

4 of the Timer Control Register, can be set high to en-

able the Timer/Event Counter to run. Each time an inter-

nal clock cycle occurs, the Timer/Event Counter

increments by one. When it is full and overflows, an in-

terrupt signal is generated and the Timer/Event Counter

will reload the value already loaded into the preload reg-

ister and continue counting. The interrupt can be dis-

abled by ensuring that the Timer/Event Counter

Interrupt Enable bit in the Interrupt Control Register,

INTC, is reset to zero.

Configuring the Event Counter Mode

In this mode, a number of externally changing logic

events, occurring on the external timer pin, can be re-

corded by the Timer/Event Counter. the Operating Mode

Select bi t pair, T0M1/T0M0, T1M1/T1M0 or

T2M1/T2M0, in the Timer Control Register must be set

to the correct value as shown.

Control Register Operating Mode

Select Bits for the Event Counter Mode

Bit7 Bit6

0 1

In this mode, the external timer pin, TMR0, TMR1 or

TMR2 is used as the Timer/Event Counter clock source,

however it is not divided by the internal prescaler. After

the other bits in the Timer Control Register have been

setup, the enable bit T0ON, T1ON or T2ON, which is bit

4 of the Timer Control Register, can be set high to en-

able the Timer/Event Counter to run. If the Active Edge

Select bit T0E, T1E or T2E, which is bit 3 of the Timer

Control Register, is low, the Timer/Event Counter will in-

crement each time the external timer pin receives a low

to high transition. If the Active Edge Select bit is high,

the counter will increment each time the external timer

pin receives a high to low transition. When it is full and

overflows, an interrupt signal is generated and the

Timer/Event Counter will reload the value already

loaded into the preload register and continue counting.

The interrupt can be disabled by ensuring that the

Timer/Event Counter Interrupt Enable bit in the Interrupt

Control Register, is reset to zero.

� (� �
 � � � � � � � � �

� -

� * 8� * � 5� * 	 2� * 	 1

� 2

� * � � � * � * � � � 1 � * � � � 2

8 &
 �
 � � � � �

 � � � �
 � &
 �
 � �
 � �
 �
 �

1 ? � � � � �
 � � � � D � � � � � � �
 � �

2 ? � � � � �
 � � � � � � � � � � �
 � �
 �

� � � �
 � � � �
 � � 	
 � � � �
 �
 �
 � � � �
 � &
 �
 � �
 � �
 �
 �

1 ? � �
 � �
 � � � � �
 � � � � � � � � � � � � � �
 � �
 @ � �
 � � � � � D � � � � � � �
 � �

2 ? � �
 � �
 � � � � �
 � � � � � � � D � � � � � � �
 � �
 @ � �
 � � � � � � � � � � � �
 � �

� � �
 � ! 8 &
 �
 � � � � �

 � � � � � �
 � � � �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

�
 � �
 � � � � � � �
 � �
 �
 �

� * 	 1 � � � � � * 	 2
� � � � 2 � � � � � � � � � � � 2 � � � � � � � � � � � � � � � � �
 � � & � � � � � �

� � � � 2 � � � � � � � � � � � 1 � � � � � � � � � � �
 &
 �
 � � � � �

 � � � � �

� � � � 1 � � � � � � � � � � � 2 � � � � � � � � � � �
 � �
 � � � � �

� � � � 1 � � � � � � � � � � � 1 � � � � � � � � � � � � � �
 � # � �
 � � �
 � � � �
 �
 �
 � � � �

� � �
 � � �
 � � � �
 � � � �

 � �
 �
 �

� * � � � *
� 2
� 2
� 2
� 2
� 1
� 1
� 1
� 1

� � � * � � � 1
� � 2
� � 2
� � 1
� � 1
� � 2
� � 2
� � 1
� � 1

� � � � � � � * � � � 2
� � � � � � 2
� � � � � � 1
� � � � � � 2
� � � � � � 1
� � � � � � 2
� � � � � � 1
� � � � � � 2
� � � � � � 1

� � �
 � � � �

� � � � � 1 ? 1
� � � � � 1 ? *
� � � � � 1 ? ,
� � � � � 1 ? �
� � � � � 1 ? 1 .
� � � � � 1 ? 0 *
� � � � � 1 ? . ,
� � � � � 1 ? 1 * �

Timer/Event Counter 2 Control Register

HT46RU26/HT46CU26

Rev. 1.00 26 June 12, 2008

It should be noted that in the event counting mode, even

if the microcontroller is in the Power Down Mode, the

Timer/Event Counter will continue to record externally

changing logic events on the timer input pin. As a result

when the timer overflows it will generate a timer interrupt

and corresponding wake-up source.

Configuring the Pulse Width Measurement Mode

In this mode, the Timer/Event Counter can be utilised to

measure the width of external pulses applied to the ex-

ternal timer pin. To operate in this mode, the Operating

Mode Select bit pair, T0M1/T0M0 or T1M1/T1M0, in the

Timer Control Register must be set to the correct value

as shown.

Control Register Operating Mode

Select Bits for the Pulse Width

Measurement Mode

Bit7 Bit6

1 1

In this mode the internal clock, fSYS or fSYS/4 is used as

the internal clock for the Timer/Event Counters. After the

other bits in the Timer Control Register have been

setup, the enable bit T0ON, T1ON or T2ON, which is bit

4 of the Timer Control Register, can be set high to en-

able the Timer/Event Counter, however it will not actu-

ally start counting until an active edge is received on the

external timer pin.

If the Active Edge Select bit T0E, T1E or T2E, which is

bit 3 of the Timer Control Register, is low, once a high to

low transition has been received on the external timer

pin, TMR0, TMR1 or TMR2, the Timer/Event Counter

will start counting until the external timer pin returns to

its original high level. At this point the enable bit will be

automatically reset to zero and the Timer/Event Counter

will stop counting. If the Active Edge Select bit is high,

the Timer/Event Counter will begin counting once a low

to high transition has been received on the external

timer pin and stop counting when the external timer pin

returns to its original low level. As before, the enable bit

will be automatically reset to zero and the Timer/Event

Counter will stop counting. It is important to note that in

the Pulse Width Measurement Mode, the enable bit is

automatically reset to zero when the external control

signal on the external timer pin returns to its original

level, whereas in the other two modes the enable bit can

only be reset to zero under program control.

The residual value in the Timer/Event Counter, which

can now be read by the program, therefore represents

the length of the pulse received on the external timer

pin. As the enable bit has now been reset, any further

transitions on the external timer pin will be ignored. Not

until the enable bit is again set high by the program can

the timer begin further pulse width measurements. In

this way, single shot pulse measurements can be easily

made.

It should be noted that in this mode the Timer/Event

Counter is controlled by logical transitions on the exter-

nal timer pin and not by the logic level. When the

Timer/Event Counter is full and overflows, an interrupt

signal is generated and the Timer/Event Counter will re-

load the value already loaded into the preload register

and continue counting. The interrupt can be disabled by

ensuring that the Timer/Event Counter Interrupt Enable

bit in the Interrupt Control Register, is reset to zero.

Programmable Frequency Divider � PFD

The PFD output is pin-shared with the I/O pin PA3. The

PFD function is selected via configuration option, how-

ever, if not selected, the pin can operate as a normal I/O

pin. The timer overflow signal is the clock source for the

PFD circuit. The output frequency is controlled by load-

ing the required values into the timer prescaler registers

to give the required division ratio. The counter will begin

to count-up from this preload register value until full, at

which point an overflow signal is generated, causing the

PFD output to change state. The counter will then be au-

tomatically reloaded with the preload register value and

continue counting-up.

For the PFD output to function, it is essential that the

corresponding bit of the Port A control register PAC bit 3

is setup as an output. If setup as an input the PFD output

will not function, however, the pin can still be used as a

normal input pin. The PFD output will only be activated if

bit PA3 is set to �1�. This output data bit is used as the

on/off control bit for the PFD output. Note that the PFD

output will be low if the PA3 output data bit is cleared to

�0�.

= 1 = * = 0 = ,� � �
 �

8 <

 � � � � � � 	 � 2 ! � 	 � 1 ! � 	 � *
� � � � � � �

� � 5 � : # �
 � � � 8 K 2 ;

� �
 � � � �
 � � � �
 �

� � � �
 �
 �

� � �
 � � � � � �

 �

� �
 � � � �
 � � � �
 �
 � � � � � � � �
 � � �
 �
 &
 � � � D � � � � � � �
 � �
 � � D � � 1 9

Pulse Width Measure Mode Timing Chart

HT46RU26/HT46CU26

Rev. 1.00 27 June 12, 2008

Using this method of frequency generation, and if a

crystal oscillator is used for the system clock, very pre-

cise values of frequency can be generated.

Prescaler

Timer/Event Counter 0 and 2 each possess a prescaler

which divides the input clock source to give the

Timer/Event counter a higher range. Bits 0~2 of their as-

sociated timer control register, defines the division ratio

of the internal clock source. Note that the prescaler has

no effect when the Timer/Event Counter is in the Event

Counter Mode.

I/O Interfacing

The Timer/Event Counter, when configured to run in the

event counter or pulse width measurement mode, re-

quire the use of the external pins for correct operation.

As these pins are shared pins they must be configured

correctly to ensure they are setup for use as a

Timer/Event Counter inputs and not as normal I/O pins.

This is implemented by ensuring that the mode select

bits in the Timer/Event Counter control register, select

either the event counter or pulse width measurement

mode. Additionally the Port Control Register bits must

be set high to ensure that the pins are setup as inputs.

Any pull-high resistor configuration option on these pins

will remain valid even if the pins are used as

Timer/Event Counter inputs.

Programming Considerations

When configured to run in the timer mode, the internal

system clock is used as the timer clock source and is

therefore synchronized with the overall operation of the

microcontroller. In this mode when the appropriate timer

register is full, the microcontroller will generate an inter-

nal interrupt signal directing the program flow to the re-

spective internal interrupt vector. For the pulse width

measurement mode, the internal system clock is also

used as the timer clock source but the timer will only run

when the correct logic condition appears on the external

timer input pin. As this is an external event and not syn-

chronised with the internal t imer clock, the

microcontroller will only see this external event when the

next timer clock pulse arrives. As a result, there may be

small differences in measured values requiring pro-

grammers to take this into account during programming.

The same applies if the timer is configured to be in the

event counting mode, which again is an external event

and not synchronized with the internal system or timer

clock.

When the Timer/Event Counter is read, or if data is writ-

ten to the preload register, the clock is inhibited to avoid

errors, however as this may result in a counting error,

this should be taken into account by the programmer.

Care must be taken to ensure that the timers are prop-

erly initialised before using them for the first time. The

associated timer enable bits in the interrupt control reg-

ister must be properly set otherwise the internal interrupt

associated with the timer will remain inactive. The edge

select, timer mode and clock source control bits in timer

control register must also be correctly set to ensure the

timer is properly configured for the required application.

It is also important to ensure that an initial value is first

loaded into the timer registers before the timer is

switched on; this is because after power-on the initial

values of the timer registers are unknown. After the

timer has been initialised the timer can be turned on and

off by controlling the enable bit in the timer control regis-

ter. Note that setting the timer enable bit high to turn the

timer on, should only be executed after the timer mode

bits have been properly setup. Setting the timer enable

bit high together with a mode bit modification, may lead

to improper timer operation if executed as a single timer

control register byte write instruction.

When the Timer/Event counter overflows, its corre-

sponding interrupt request flag in the interrupt control

register will be set. If the timer interrupt is enabled this

will in turn generate an interrupt signal. However irre-

spective of whether the interrupts are enabled or not, a

Timer/Event counter overflow will also generate a

wake-up signal if the device is in a Power-down condi-

tion. This situation may occur if the Timer/Event Counter

is in the Event Counting Mode and if the external signal

continues to change state. In such a case, the

Timer/Event Counter will continue to count these exter-

nal events and if an overflow occurs the device will be

woken up from its Power-down condition. To prevent

such a wake-up from occurring, the timer interrupt re-

quest flag should first be set high before issuing the

HALT instruction to enter the Power Down Mode.

� � �
 � � � &
 � D � � #

� (� � � � � � +

� % 0 � � �
 �

� (� � � �
 �
 � �
 � � % 0

PFD Output Control

HT46RU26/HT46CU26

Rev. 1.00 28 June 12, 2008

Pulse Width Modulator

The device contains four Pulse Width Modulation,

PWM, outputs. Useful for such applications such as mo-

tor speed control, the PWM function provides outputs

with a fixed frequency but with a duty cycle that can be

varied by setting particular values into the correspond-

ing PWM register.

For devices with one PWM output, a single register, lo-

cated in the Data Memory is assigned to the Pulse Width

Modulator and is known as the PWM register. It is in

these registers, that the 8-bit value, which represents

the overall duty cycle of one modulation cycle of the out-

put waveform, should be placed. To increase the PWM

modulation frequency, each modulation cycle is modu-

lated into four/two individual modulation sub-sections,

known as the 6+2/7+1 mode. Note that it is only neces-

sary to write the required modulation value into the cor-

responding PWM register as the subdivision of the

waveform into its sub-modulation cycles is implemented

automatically within the microcontroller hardware. For

all devices, the PWM clock source is the system clock

fSYS.

This method of dividing the original modulation cycle

into a further 2/4 sub-cycles enables the generation of

higher PWM frequencies, which allow a wider range of

applications to be served. As long as the periods of the

generated PWM pulses are less than the time constants

of the load, the PWM output will be suitable as such long

time constant loads will average out the pulses of the

PWM output. The difference between what is known as

the PWM cycle frequency and the PWM modulation fre-

quency as following table.

PWM

Modulation

Frequency

PWM

Cycle

Freq.

PWM

Cycle

Duty

fSYS/64 for (6+2) bits mode

fSYS/128 for (7+1) bits mode
fSYS/256 [PWM]/256

6+2 PWM Mode

Each full PWM cycle, as it is controlled by an 8-bit PWM

register, has 256 clock periods. However, in the 6+2

PWM Mode, each PWM cycle is subdivided into four in-

dividual sub-cycles known as modulation cycle 0~mod-

ulation cycle 3, denoted as �i� in the table. Each one of

these four sub-cycles contains 64 clock cycles. In this

mode, a modulation frequency increase by a factor of

four is achieved. The 8-bit PWM, PWM0 or PWM1 regis-

ter value, which represents the overall duty cycle of the

PWM waveform, is divided into two groups. The first

group which consists of bit2~bit7 is denoted here as the

DC value. The second group which consists of bit0~bit1

is known as the AC value. In the 6+2 PWM mode, the

duty cycle value of each of the four modulation sub-cy-

cles is shown in the following table.

Parameter AC (0~3)
DC

(Duty Cycle)

Modulation cycle i

(i=0~3)

i<AC
DC 1

64

+

i
AC
DC

64

6+2 Mode Modulation Cycle Values

D � > � ! *

� � 	

A � � 	 C � K 1 2 2

A � � 	 C � K 1 2 1

� � 	

A � � 	 C � K 1 2 *

� � 	

A � � 	 C � K 1 2 0

� � 	

� � 	 � � � � �
 � ? � * / . ! D � > �

* / ! . ,

* . ! . ,

* . ! . ,

* . ! . ,

* / ! . , * / ! . , * / ! . ,

* / ! . ,

* / ! . ,

* / ! . ,

* / ! . ,

* . ! . ,

* . ! . ,

* / ! . ,

* / ! . ,

* . ! . , * / ! . ,

* . ! . ,

* . ! . ,

* . ! . ,

	 � � � � �
 � � � � � � � �
 � 2

� � 	 � � � � � � �
 � � � �
 � � � � � ? � . , ! D � > �

	 � � � � �
 � � � � � � � �
 � 1 	 � � � � �
 � � � � � � � �
 � * 	 � � � � �
 � � � � � � � �
 � 0 	 � � � � �
 � � � � � � � �
 � 2

6+2 PWM Mode

� + (� � � � � � � � � � � � � � � , � � � (� - �

� - � 2

% � � � & � � �

� � � & � � �

PWM Registers for 6+2 Mode

HT46RU26/HT46CU26

Rev. 1.00 29 June 12, 2008

The following diagram illustrates the waveforms associ-

ated with the 6+2 mode of PWM operation. It is impor-

tant to note how the single PWM cycle is subdivided into

4 individual modulation cycles, numbered from 0~3 and

how the AC value is related to the PWM value.

7+1 PWM Mode

Each full PWM cycle, as it is controlled by an 8-bit PWM

register, has 256 clock periods. However, in the 7+1

PWM mode, each PWM cycle is subdivided into two indi-

vidual sub-cycles known as modulation cycle 0 ~ modula-

tion cycle 1, denoted as �i� in the table. Each one of these

two sub-cycles contains 128 clock cycles. In this mode, a

modulation frequency increase of two is achieved. The

8-bit PWM register value, which represents the overall

duty cycle of the PWM waveform, is divided into two

groups. The first group which consists of bit1~bit7 is de-

noted here as the DC value. The second group which

consists of bit0 is known as the AC value. In the 7+1

PWM mode, the duty cycle value of each of the two mod-

ulation sub-cycles is shown in the following table.

Parameter AC (0~1) DC (Duty Cycle)

Modulation cycle i

(i=0~1)

i�AC
DC+1

128

i
AC
DC

128

7+1 Mode Modulation Cycle Values

The following diagram illustrates the waveforms associ-

ated with the 7+1 mode of PWM operation. It is impor-

tant to note how the single PWM cycle is subdivided into

2 individual modulation cycles, numbered 0 and 1 and

how the AC value is related to the PWM value.

PWM Output Control

On all devices, the PWM outputs are pin-shared with

pins PD0~PD3. To operate as PWM outputs and not as

I/O pins, the correct PWM configuration options must be

selected. A �0� must also be written to the correspond-

ing bits in the I/O port control register PDC to ensure that

the required PWM output pin is setup as an output. After

these two initial steps have been carried out, and of

course after the required PWM value has been written

into the PWM register, writing a �1� to the corresponding

bit in the PD output data register will enable the PWM

data to appear on the pin. Writing a �0� to the corre-

sponding bit in the PD output data register will disable

the PWM output function and force the output low. In this

way, the Port D data output register can be used as an

on/off control for the PWM function. Note that if the con-

figuration options have selected the PWM function, but

a �1� has been written to its corresponding bit in the

PDC control register to configure the pin as an input,

then the pin can still function as a normal input line, with

pull-high resistor options.

� + (� � � � � � � � � � � � � � . , * � � (� - �

� - � 2

% � � � & � � �

� � � & � � �

PWM Registers for 7+1 Mode

D � > � ! *

� � 	

A � � 	 C � K 1 2 2

A � � 	 C � K 1 2 1

� � 	

A � � 	 C � K 1 2 *

� � 	

A � � 	 C � K 1 2 0

� � 	

� � 	 � � � � � � �
 � � � �
 � � � � � ? � 1 * � ! D � > �

/ 2 ! 1 * �

/ 1 ! 1 * �

/ 1 ! 1 * �

/ * ! 1 * �

/ 2 ! 1 * �

/ 2 ! 1 * �

/ 1 ! 1 * �

/ 1 ! 1 * �

/ 2 ! 1 * �

/ 1 ! 1 * �

/ 1 ! 1 * �

/ * ! 1 * �

	 � � � � �
 � � � � � � � �
 � 2

� � 	 � � � � �
 � ? � * / . ! D � > �

	 � � � � �
 � � � � � � � �
 � 1 	 � � � � �
 � � � � � � � �
 � 2

7+1 PWM Mode

HT46RU26/HT46CU26

Rev. 1.00 30 June 12, 2008

% � � � � � � � �

D � > � ! *

� 5 % � � � � �
 � � �

 �

% � �

$ � �

� 4 2 ! % 5 2

� 4 1 ! % 5 1

� 4 - ! % 5 -

% ! � � �
 D
 �
 � �
 � & � �
 � �

� � � 2 G � � � * % � � � 2 G % � � � * � � % � � 8 � � 4
% � � �
�
 � � �

 �

� � � � � � � D � � � � �
 � � �
4 �
 �

� � � � �
 � � �
 �
 �

4 �
 �

�
 � �
 � 4 �

� � � � + � � � & � �

� �
 � �

8 � � � � D
� � � &
 � � � � � � 4 �

% � � "

% � � B
% ! � � � �
 �
�
 � � �

 � �

A/D Converter Structure

PWM Programming Example

The following sample program shows how the PWM outputs are setup and controlled. Before use the corresponding

PWM output configuration options must first be selected.

mov a,64h ; setup PWM value of 100 decimal which is 64H
mov pwm0,a
clr pdc.0 ; setup pin PD0 as an output
set pd.0 ; PD.0=1; enable the PWM output
: :
: :

clr pd.0 ; disable the PWM output � PD0 will remain low

Analog to Digital Converter

The need to interface to real world analog signals is a

common requirement for many electronic systems.

However, to properly process these signals by a

microcontroller, they must first be converted into digital

signals by A/D converters. By integrating the A/D con-

version electronic circuitry into the microcontroller, the

need for external components is reduced significantly

with the corresponding follow-on benefits of lower costs

and reduced component space requirements.

A/D Overview

Each of the devices contains a 8-channel analog to digi-

tal converter which can directly interface to external an-

alog signals, such as that from sensors or other control

signals and convert these signals directly into 12-bit dig-

ital value.

The following diagram shows the overall internal struc-

ture of the A/D converter, together with its associated

registers.

A/D Converter Data Registers � ADRL, ADRH

After the conversion process takes place, these regis-

ters can be directly read by the microcontroller to obtain

the digitised conversion value. For devices which use

two A/D Converter Data Registers, note that only the

high byte register ADRH utilises its full 8-bit contents.

The low byte register utilises only 4 bit of its 8-bit con-

tents as it contains only the lowest bit of the 9-bit con-

verted value.

A/D Converter Control Register � ADCR

To control the function and operation of the A/D con-

verter, a control register known as ADCR is provided.

This 8-bit register defines functions such as the selec-

tion of which analog channel is connected to the internal

A/D converter, which pins are used as analog inputs and

which are used as normal I/Os as well as controlling the

start function and monitoring the A/D converter end of

conversion status.

One section of this register contains the bits

ACS2~ACS0 which define the channel number. As each

of the devices contains only one actual analog to digital

converter circuit, each of the individual 4 analog inputs

must be routed to the converter. It is the function of the

ACS2~ACS0 bits in the ADCR register to determine

which analog channel is actually connected to the inter-

nal A/D converter. Note that the ACS2 bit must always

be assigned a zero value.

The ADCR control register also contains the

PCR2~PCR0 bits which determine which pins on Port B

are used as analog inputs for the A/D converter and

which pins are to be used as normal I/O pins. Note that if

HT46RU26/HT46CU26

Rev. 1.00 31 June 12, 2008

the PCR2~PCR0 bits are all set to zero, then all the Port

B pins will be setup as normal I/Os and the internal A/D

converter circuitry will be powered off to reduce the

power consumption.

The START bit in the ADCR register is used to start and

reset the A/D converter. When the microcontroller sets

this bit from low to high and then low again, an analog to

digital conversion cycle will be initiated. When the

START bit is brought from low to high but not low again,

the EOCB bit in the ADCR register will be set to a �1�
and the analog to digital converter will be reset. It is the

START bit that is used to control the overall on/off opera-

tion of the internal analog to digital converter.

The EOCB bit in the ADCR register is used to indicate

when the analog to digital conversion process is com-

plete. This bit will be automatically set to �0� by the

microcontroller after a conversion cycle has ended. In

addition, the corresponding A/D interrupt request flag

will be set in the interrupt control register, and if the inter-

rupts are enabled, an appropriate internal interrupt sig-

nal will be generated. This A/D internal interrupt signal

will direct the program flow to the associated A/D inter-

nal interrupt address for processing. If the A/D internal

interrupt is disabled, the microcontroller can be used to

poll the EOCB bit in the ADCR register to check whether

it has been cleared as an alternative method of detect-

ing the end of an A/D conversion cycle.

A/D Converter Clock Source Register � ACSR

The clock source for the A/D converter, which originates

from the system clock fSYS, is first divided by a division

ratio, the value of which is determined by the ADCS1

and ADCS0 bits in the ACSR register.

Although the A/D clock source is determined by the sys-

tem clock fSYS, and by bits ADCS1 and ADCS0, there are

some limitations on the maximum A/D clock source speed

that can be selected.

� /
 � � � � � � � � �

�
 �
 �
 � % ! � � � � � � �
 �

� - � 2

� � % � � � � � * � � � 1 � � � 2 % � � * % � � 1 % � � 2

% � � 1
2
2
1
1
2
2
1
1

% � � *
2
2
2
2
1
1
1
1

% � � 2
2
1
2
1
2
1
2
1

? � % 5 2
? � % 5 1
? � % 5 *
? � % 5 0
? � % 5 ,
? � % 5 /
? � % 5 . �
? � % 5 -

� � �
 � 4 � % ! � � � � � � �
 � � � � � D � � � � �
 � � � �

� � � *
2
2
2
2
1
1
1
1

� � � 1
2
2
1
1
2
2
2
2

� � � 2
2
1
2
1
2
1
2
1

? � � � � �
 � 4 � % ! � � � � � � �
 � � � � � � � � � � D D
? � � � 4 2 �
 � � � �
 � � � � � % 5 2
? � � � 4 2 G � 4 1 �
 � � � �
 � � � � � % 5 2 G % 5 1
? � � � 4 2 G � 4 * �
 � � � �
 � � � � � % 5 2 G % 5 * �
? � � � 4 2 G � 4 0 �
 � � � �
 � � � � � % 5 2 G % 5 0
? � � � 4 2 G � 4 , �
 � � � �
 � � � � � % 5 2 G % 5 ,
? � � � 4 2 G � 4 / �
 � � � �
 � � � � � % 5 2 G % 5 /
? � � � 4 2 G � 4 - �
 � � � �
 � � � � � % 5 2 G % 5 -

8 � � � � D � % ! � � � � � &
 � � � � � � D � � �
1 ? � � �
 �
 � � � � D � % ! � � � � � &
 � � � � � � � � % ! � � � � � &
 � � � � � � # � �
 � � � � � � � � � � � � � �
 � �
2 ? �
 � � � � D � % ! � � � � � &
 � � � � � � � � % ! � � � � � &
 � � � � � �
 � �
 �

�
 � �
 �
 �
 � % ! � � � � � &
 � � � � �

2 � � � 1 � � � 2 � ? � �
 � �

2 � � � 1 � ? � �
 �

 � % ! � � � � � &
 �

 � � � � � � �

 � 8 � � 4 �
 � � F 1 F

8 � � 4

A/D Converter Control Register

Register Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADRL D3 D2 D1 D0 � � � �

ADRH D11 D10 D9 D8 D7 D6 D5 D4

A/D Data Register

HT46RU26/HT46CU26

Rev. 1.00 32 June 12, 2008

2 2 2 4

2 2 2 4

2 1 1 4

2 1 2 4

� � % � �

8 � � 4

� � � * G
� � � 2

% � � * G
% � � 2

� � #
 � � � �
�
 �

8 � � � � D � % ! �
� � � &
 � � � � �1 ? � �
 D � �
 � � 4 � � � � D � � � � �
 � � �

* ? � �
 �
 �
 � � � � � � � � � � � � �
 �

�
 � �
 � � D � % ! �
� � � &
 � � � � �

�
 �

 � % ! �
� � � &
 �

 �

2 2 2 4

�
 � �
 � � D � % ! �
� � � &
 � � � � �

�
 �

 � % ! �
� � � &
 �

 �

2 2 2 4

1 9 � � 4 � � �
 � �

 � � � � � � ! � �
* 9 � % ! � � � � � &
 �

 � � � � � � #
 �
 � � � D D
� � � �
 � � �
 � � �
 � � #
 � � � � � � � �
 � � �

1 2 2 4

2 2 1 4

�
 � �
 � � D � % ! �
� � � &
 � � � � �

�
 �

 � % ! �
� � � &
 �

 �

� � � L
 � � � �

8 � � � � D � % ! �
� � � &
 � � � � �

8 � � � � D � % ! �
� � � &
 � � � � �

� � % � � � � �
 � �

 � � � � � � # �
 � � � � � �
 �
 � �

 � � � � �
 � � �
 � � � � � � � �
 � � � D

 � �
 �
 � � � � 2 G � � � * � � �
 � � � � � � �
 � �
 �

% ! � � � � � � + � � � �
 � �
 � D � > � ! * @ � D � > � ! � � � � � D � > � ! 0 *5 �

 ? �

% ! � � � � � � � � � �
 � �
 % ! � � � � � � � � � �
 � �
% ! � � � � � � � � � �
 � �

� � 0 *
 % � � � 0 *
 % � � � 0 *
 % �

 % � �

% ! � � � � � &
 � � � � � �
 � �
 % ! � � � � � &
 � � � � � �
 � �
 % ! � � � � � &
 � � � � � �
 � �

 % � �
 % � �

A/D Conversion Timing

�
 � � � � � � � � � �

�
 �
 �
 � % ! � � � � � &
 �

 � � � � � � + � � � � � �

� - � 2

� 8 � � % � � � 1 % � � � 2

% � � � 1
2
2
1
1

% � � � 2
2
1
2
1

? � � � �

 � � � � � � + ! *
? � � � �

 � � � � � � + ! �
? � � � �

 � � � � � � + ! 0 *
? � � � �
 D � �
 �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

(� � �

 �
 � � � �
 � � �
 � � � � �

A/D Converter Clock Source Register

fSYS

A/D Clock Period (tAD)

ADCS1, ADCS0=00

(fSYS/2)

ADCS1, ADCS0=01

(fSYS/8)

ADCS1, ADCS0=10

(fSYS/32)

ADCS1, ADCS0=11

1MHz 2�s 8�s 32�s Undefined

2MHz 1�s 4�s 16�s Undefined

4MHz 500ns* 2�s 8�s Undefined

8MHz 250ns* 1�s 4�s Undefined

A/D Clock Period Examples

A/D Input Pins

All of the A/D analog input pins are pin-shared with the

I/O pins on Port B. Bits PCR2~PCR0 in the ADCR regis-

ter, not configuration options, determine whether the in-

put pins are setup as normal Port B input/output pins or

whether they are setup as analog inputs. In this way, pins

can be changed under program control to change their

function from normal I/O operation to analog inputs and

vice versa. Pull-high resistors, which are setup through

configuration options, apply to the input pins only when

they are used as normal I/O pins, if setup as A/D inputs

the pull-high resistors will be automatically disconnected.

Note that it is not necessary to first setup the A/D pin as

an input in the PBC port control register to enable the A/D

input, when the PCR2~PCR0 bits enable an A/D input,

the status of the port control register will be overridden.

The VDD power supply pin is used as the A/D converter

reference voltage, and as such analog inputs must not be

allowed to exceed this value. Appropriate measures

should also be taken to ensure that the VDD pin remains

as stable and noise free as possible.

Initialising the A/D Converter

The internal A/D converter must be in a special way.

Each time the Port B A/D channel selection bits are modi-

fied by the program, the A/D converter must be

re-initialised. If the A/D converter is not initialised after the

channel selection bits are changed, the EOCB flag may

have an undefined value, which may produce a false end

of conversion signal. To initialise the A/D converter after

the channel selection bits have changed, then, within a

time frame of one to ten instruction cycles, the START bit

HT46RU26/HT46CU26

Rev. 1.00 33 June 12, 2008

in the ADCR register must first be set high and then im-

mediately cleared to zero. This will ensure that the EOCB

flag is correctly set to a high condition.

Summary of A/D Conversion Steps

The following summarizes the individual steps that

should be executed in order to implement an A/D con-

version process.

� Step 1

Select the required A/D conversion clock by correctly

programming bits ADCS1 and ADCS0 in the ACSR

register.

� Step 2

Select which channel is to be connected to the internal

A/D converter by correctly programming the

ACS2~ACS0 bits which are also contained in the

ADCR register.

� Step 3

Select which pins on Port B are to be used as A/D in-

puts and configure them as A/D input pins by correctly

programming the PCR2~PCR0 bits in the ADCR reg-

ister. Note that this step can be combined with Step 2

into a single ADCR register programming operation.

� Step 4

If the interrupts are to be used, the interrupt control

registers must be correctly configured to ensure the

A/D converter interrupt function is active. The master

interrupt control bit, EMI, in the INTC interrupt control

register must be set to �1� and the A/D converter inter-

rupt bit, EADI, in the INTC register must also be set to

�1�.

� Step 5

The analog to digital conversion process can now be

initialised by setting the START bit in the ADCR regis-

ter from �0� to �1� and then to �0� again. Note that this

bit should have been originally set to �0�.

� Step 6

To check when the analog to digital conversion pro-

cess is complete, the EOCB bit in the ADCR register

can be polled. The conversion process is complete

when this bit goes low. When this occurs the A/D data

registers ADRL and ADRH can be read to obtain the

conversion value. As an alternative method if the in-

terrupts are enabled and the stack is not full, the pro-

gram can wait for an A/D interrupt to occur.

Note: When checking for the end of the conversion

process, if the method of polling the EOCB bit in

the ADCR register is used, the interrupt enable

step above can be omitted.

The following timing diagram shows graphically the vari-

ous stages involved in an analog to digital conversion

process and its associated timing.

The setting up and operation of the A/D converter func-

tion is fully under the control of the application program as

there are no configuration options associated with the

A/D converter. After an A/D conversion process has been

initiated by the application program, the microcontroller

internal hardware will begin to carry out the conversion,

during which time the program can continue with other

functions.

Programming Considerations

When programming, special attention must be given to

the A/D channel selection bits in the ADCR register. If

these bits are all cleared to zero no external pins will be

selected for use as A/D input pins allowing the pins to be

used as normal I/O pins. When this happens the power

supplied to the internal A/D circuitry will be reduced re-

sulting in a reduction of supply current. This ability to re-

duce power by turning off the internal A/D function by

clearing the A/D channel selection bits may be an impor-

tant consideration in battery powered applications.

Another important programming consideration is that

when the A/D channel selection bits change value the

A/D converter must be re-initialised. This is achieved by

pulsing the START bit in the ADCR register immediately

after the channel selection bits have changed state. The

exception to this is where the channel selection bits are

all cleared, in which case the A/D converter is not re-

quired to be re-initialised.

A/D Programming Example

The following two programming examples illustrate how

to setup and implement an A/D conversion. In the first

example, the method of polling the EOCB bit in the

ADCR register is used to detect when the conversion

cycle is complete, whereas in the second example, the

A/D interrupt is used to determine when the conversion

is complete.

HT46RU26/HT46CU26

Rev. 1.00 34 June 12, 2008

Example: using an EOCB polling method to detect the end of conversion

clr EADI ; disable ADC interrupt
mov a,00000001B
mov ACSR,a ; setup the ACSR register to select fSYS/8 as the A/D clock
mov a,00100000B ; setup ADCR register to configure Port as A/D inputs
mov ADCR,a ; and select AN0 to be connected to the A/D converter

:
: ; As the Port B channel bits have changed the following START

; signal (0-1-0) must be issued within 10 instruction cycles
:

Start_conversion:
clr START
set START ; reset A/D
clr START ; start A/D

Polling_EOC:
sz EOCB ; poll the ADCR register EOCB bit to detect end

; of A/D conversion
jmp polling_EOC ; continue polling
mov a,ADRL ; read conversion result value from the ADRL register
mov adrl_buffer,a ; save result to user defined memory
mov a,ADRH ; read conversion result value from the ADRH register
Mov adrh_buffer,a ; save result to user defined memory

:
:

jmp start_conversion ; start next A/D conversion

A/D Transfer Function

As the device contain an 12-bit A/D converter, their

full-scale converted digitized value is equal to FFFH.

Since the full-scale analog input value is equal to the

voltage, this gives a single bit analog input value of

VDD/4096. The following graphs show the ideal transfer

function between the analog input value and the digit-

ised output value for the A/D converters.

Note that to reduce the quantisation error, a 0.5 LSB off-

set is added to the A/D Converter input. Except for the

digitised zero value, the subsequent digitised values will

change at a point 0.5 LSB below where they would

change without the offset, and the last full scale digitised

value will change at a point 1.5 LSB below the VDD level.

� (8 B

: � � � � � � � � � � � ;

� ((B

� (� B

2 0 B

2 * B

2 1 B

2 9 / � " � 4

2 1 * 0 , 2 3 0 , 2 3 , , 2 3 / , 2 3 .

% � � � � � � � � �
 � $ � �
 � �

1 9 / � " � 4

$ � �

, 2 3 .

% ! � � � � � &
 � � � � �
�
 � � �

Ideal A/D Transfer Function

HT46RU26/HT46CU26

Rev. 1.00 35 June 12, 2008

I
2
C Bus Serial Interface

The I2C bus is a bidirectional 2-wire communication in-

terface originally developed by Philips Semiconductors.

The possibility of transmitting and receiving data on only

2 lines offers many new application possibilities for

microcontroller based applications and for this reason,

an I2C bus is implemented in this device. The I2C bus

function is selectable via a configuration option.

There are two lines associated with the I2C bus, the first

is known as SDA and is the Serial Data line, the second

is known as SCL line and is the Serial Clock line. As

many devices may be connected together on the same

bus, their outputs are both open drain types. For this

reason it is necessary that external pull-high resistors

are connected to these outputs. Note that no chip select

line exists, as each device on the I2C bus is identified by

a unique address, which will be transmitted and re-

ceived on the I2C bus.

When two devices communicate with each other on the

bidirectional I2C bus, one is known as the master device

and one as the slave device. Both master and slave can

transmit and receive data, however, it is the master de-

vice that has overall control of the bus. For this device,

which only operates in slave mode, there are two meth-

ods of transferring data on the I2C bus, the slave trans-

mit mode and the slave receive mode. Four registers

exist to control the I2C bus and its associated data trans-

fer, HADR, HCR, HSR and HDR. Communication on the

I2C bus requires four steps, a START signal, a slave ad-

dress transmission, a data transmission and finally a

STOP signal.

I
2
C Bus Slave Address Register � HADR

The HADR register is the location where the slave ad-

dress of the microcontroller is stored. Bits 1~7 of the

HADR register define the microcontroller slave address.

Bit 0 is not implemented. When a master device, which

is connected to the I2C bus, sends out an address,

which matches the slave address in the HADR register,

the microcontroller slave device will be selected.

I2C Bus Input/Output Data Register � HDR

The HDR register is the I2C bus input/output data regis-

ter. Before the microcontroller writes data to the I2C bus,

the actual data to be transmitted must be placed in the

HDR register. After the data is received from the I2C bus,

the microcontroller can read it from the HDR register. Any

transmission of data to the I2C bus or reception of data

from the I2C bus must be made via the HDR register.

I2C Bus Control Register � HCR

The I2C bus control register HCR contains three bits. Bit

7, known as the HEN bit, determines if the I2C bus func-

tion is enabled or disabled, this bit must be set if the I2C

bus requires data transfer. Bit 4, known as the HTX bit,

determines whether the device is in the transmit mode

or receive mode, and must be set high if the device is to

be setup as a transmitter. Bit 3, known as the TXAK bit,

is the transmit acknowledge bit. After the receipt of 8 bits

of data, this bit will be transmitted to the I2C bus on the

9th clock. To continue receiving more data, this bit has

to be reset to �0� before more data is received.

� * � � � �
 � � �
 � � �

 �
: B � � ;

� � � &
 � % � � �
 � � � �
 � � �

 �
: B % � � ;

� � � D
 � �
 � � �

 �

B � 7
� � �
 �
 � � � � � � �
 � � �

	
�
7

% � � �
 � � � 	 �
 � �
: B % % � ; � * � � � �

 � � �

� � "

� � %
� �
 � � � � � : � � � " � 4 ;

� �
 � � � �
 � : (� � � � 	 � 4 ;

� � � � � � �
 ! �
 �
 � &

� � �
 � � � � � � �

B � (@ � � � � �
 � � �
 � � � � � �

B 4 4 @ � �

 �
 � �
 � �
 � � � � �
 �

� �
 � � 4 � �

% � � �
 � �
� � � � � �
 � �

� 7 % 6 @ � 8 � � � �
 ! � � � � � �
 � % � + � � # �
 � �

� � � @ � �
 � � ! # � �

 � � � � &

I
2
C Bus Serial Interface Block Diagram

� � / � � � � � � � � �

� - � 2

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� � � &
 � � � � �
 � �

I
2
C Bus Slave Address Register

HT46RU26/HT46CU26

Rev. 1.00 36 June 12, 2008

I
2
C Bus Status Register � HSR

The I2C bus register HSR is an 8-bit status register in

which five bits are utilised. Bit 7, known as HCF, is set to

�0� when a data byte is being transferred, after comple-

tion of the data transfer the bit will be set to �1�. The

HAAS bit, which is bit 6, will be set to �1� if the transmit-

ted address and the slave address of the device match

and if the I2C interrupt request flag is set to �1�. If the in-

terrupts are enabled and the stack is not full, a subrou-

tine call to 14H will occur. Writing data to the I2C bus will

clear the HAAS bit. Also, if the transmitted address on

the bus and the slave address of the device do not

match, then the HAAS bit will be reset to �0�.

Bit 5, known as HBB, will be set to �1� if the I2C bus is

busy, which will occur when a START signal is detected.

The HBB bit will be cleared to �0� if the bus is free which

will occur when a STOP signal is detected. Bit 2, which

is the SRW or Slave Read/Write bit, determines whether

the master device wishes to transmit or receive data

from the I2C bus. When the transmitted address and

slave address match, that is when the HAAS bit is set to

�1�, the device will check the SRW bit to determine

whether it should be in transmit mode or receive mode.

If the SRW bit is equal to �1� the master is requesting to

read data from the bus, so the device should be in trans-

mit mode. When the SRW bit is equal to �0�, the master

will write data to the bus, therefore the device should be

in receive mode to read this data.

Bit 0, is the Receive Acknowledge bit and known as

RXAK. When the RXAK bit has been reset to �0� it

means that a correct acknowledge signal has been re-

ceived at the 9th clock, after 8 bits of data have been

transmitted. When in the transmit mode, the transmitter

checks the RXAK bit to determine if the receiver wishes

to receive the next byte. The transmitter will therefore

continue sending out data until the RXAK bit is set to

�1�. When this occurs, the transmitter will release the

SDA line to allow the master to send a STOP signal to

release the bus.

I2C Bus Communication

Communication on the I2C bus requires four separate

steps, a START signal, a slave device address trans-

mission, a data transmission and finally a STOP signal.

When a START signal is placed on the I2C bus, all de-

vices on the bus will receive this signal and be notified of

�
 � � � � � � � � �

� - � 2

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� � � � � � �
 � � � + � � # �
 � �
 � D � � �
1 ? � � � � L
 � � � + � � # �
 � �

2 ? � � � + � � # �
 � �

� � � � � � �
 ! �
 �
 � &
 � � � �

1 ? �
 � � � � � �
 � � � �

2 ? � �
 �
 � &
 � � � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� * � � 4 � � � D � � �
 � � �
1 ? �
 � � � �

2 ? � � � � � � �

B 8 5 � 7 % 6B � 7

I
2
C Bus Control Register

� � � � � � � � � � �

� - � 2

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

�
 �
 � &
 � � � + � � # �
 � �
 � D � � �
1 ? � � �
 � � � + � � # �
 � �
 �
2 ? � � � + � � # �
 � �
 �

	 � �

 � � � �
 � � �
 � � ! # � �

 � �
) �
 �
 � D � � �
1 ? � �
) �
 �
 � � �
 � � �
 � �
2 ? � �
) �
 �
 � � �
 � � # � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� * � � 4 � � � � � � � � D � � �
1 ? � � � � �
2 ? � � �
 � � � � �

B � (B 4 4B % % � � � � � 7 % 6

� � � � � � � � � � � �
 � � � � �
 � �
 � � D � � �
1 ? � � �
 � �
 �
2 ? � � �
 � � �
 � �
 �

� �
 � �
 � � � � D
 � � D � � �
1 ? �
 � � � � D
 � � � � � �

2 ? �
 � � � � D
 � � � �
 � � � � �

I
2
C Bus Status Register

HT46RU26/HT46CU26

Rev. 1.00 37 June 12, 2008

the imminent arrival of data on the bus. The first seven

bits of the data will be the slave address with the first bit

being the MSB. If the address of the microcontroller

matches that of the transmitted address, the HAAS bit in

the HSR register will be set and an I2C interrupt will be

generated. After entering the interrupt service routine,

the microcontroller slave device must first check the

condition of the HAAS bit to determine whether the inter-

rupt source originates from an address match or from

the completion of an 8-bit data transfer. During a data

transfer, note that after the 7-bit slave address has been

transmitted, the following bit, which is the 8th bit, is the

read/write bit whose value will be placed in the SRW bit.

This bit will be checked by the microcontroller to deter-

mine whether to go into transmit or receive mode. Be-

fore any transfer of data to or from the I2C bus, the

microcontroller must initialise the bus, the following are

steps to achieve this:

� Step 1

Write the slave address of the microcontroller to the

I
2
C bus address register HADR.

� Step 2

Set the HEN bit in the I
2
C bus control register to �1� to

enable the I
2
C bus.

� Step 3

Set the EHI bit of the interrupt control register to

enable the I
2
C bus interrupt.

� Start Signal

The START signal can only be generated by the mas-

ter device connected to the I
2
C bus and not by the

microcontroller, which is only a slave device. This

START signal will be detected by all devices con-

nected to the I
2
C bus. When detected, this indicates

that the I
2
C bus is busy and therefore the HBB bit will

be set. A START condition occurs when a high to low

transition on the SDA line takes place when the SCL

line remains high.

� Slave Address

The transmission of a START signal by the master will

be detected by all devices on the I
2
C bus. To deter-

mine which slave device the master wishes to com-

municate with, the address of the slave device will be

sent out immediately following the START signal. All

slave devices, after receiving this 7-bit address data,

will compare it with their own 7-bit slave address. If the

address sent out by the master matches the internal

address of the microcontroller slave device, then an

internal I
2
C bus interrupt signal will be generated. The

next bit following the address, which is the 8th bit, de-

fines the read/write status and will be saved to the

SRW bit of the HSR register. The device will then

transmit an acknowledge bit, which is a low level, as

the 9th bit. The microcontroller slave device will also

set the status flag HAAS when the addresses match.

As an I
2
C bus interrupt can come from two sources,

when the program enters the interrupt subroutine, the

HAAS bit should be examined to see whether the in-

terrupt source has come from a matching slave ad-

dress or from the completion of a data byte transfer.

When a slave address is matched, the device must be

placed in either the transmit mode and then write data

to the HDR register, or in the receive mode where it

must implement a dummy read from the HDR register

to release the SCL line.

� SRW Bit

The SRW bit in the HSR register defines whether the

microcontroller slave device wishes to read data from

the I
2
C bus or write data to the I

2
C bus. The

microcontroller should examine this bit to determine if

it is to be a transmitter or a receiver. If the SRW bit is

set to �1� then this indicates that the master wishes to

read data from the I
2
C bus, therefore the

microcontroller slave device must be setup to send

data to the I
2
C bus as a transmitter. If the SRW bit is

�0� then this indicates that the master wishes to send

data to the I
2
C bus, therefore the microcontroller slave

device must be setup to read data from the I
2
C bus as

a receiver.

� � % � � � � � � � � �
D � � � � 	 � �

 �

�
 � � � � � � &
 � � � � �
 � �
� � � � � ! � � � �
 � D � � � � 	 � �

 �

% � + � � # �
 � �

D � � � � � � � &

�
 � � � � �
 � � � �

D � � � � 	 � �

 �

% � + � � # �
 � �

D � � � � � � � &

� � � � � � � � � � �
D � � � � 	 � �

 �

HT46RU26/HT46CU26

Rev. 1.00 38 June 12, 2008

� Acknowledge Bit

After the master has transmitted a calling address,

any slave device on the I
2
C bus, whose own internal

address matches the calling address, must generate

an acknowledge signal. This acknowledge signal will

inform the master that a slave device has accepted its

calling address. If no acknowledge signal is received

by the master then a STOP signal must be transmitted

by the master to end the communication. When the

HAAS bit is high, the addresses have matched and

the microcontroller slave device must check the SRW

bit to determine if it is to be a transmitter or a receiver.

If the SRW bit is high, the microcontroller slave device

should be setup to be a transmitter so the HTX bit in

the HCR register should be set to �1�, if the SRW bit is

low then the microcontroller slave device should be

setup as a receiver and the HTX bit in the HCR regis-

ter should be set to �0�.

� Data Byte

The transmitted data is 8-bits wide and is transmitted

after the slave device has acknowledged receipt of its

slave address. The order of serial bit transmission is

the MSB first and the LSB last. After receipt of 8-bits of

data, the receiver must transmit an acknowledge sig-

nal, level �0�, before it can receive the next data byte.

If the transmitter does not receive an acknowledge bit

signal from the receiver, then it will release the SDA

line and the master will send out a STOP signal to re-

lease control of the I
2
C bus. The corresponding data

will be stored in the HDR register. If setup as a trans-

mitter, the microcontroller slave device must first write

the data to be transmitted into the HDR register. If

setup as a receiver, the microcontroller slave device

must read the transmitted data from the HDR register.

� Receive Acknowledge Bit

When the receiver wishes to continue to receive the

next data byte, it must generate an acknowledge bit,

known as TXAK, on the 9th clock. The microcontroller

slave device, which is setup as a transmitter will check

the RXAK bit in the HSR register to determine if it is to

send another data byte, if not then it will release the

SDA line and await the receipt of a STOP signal from

the master.

� �
 �

1 2 1 � � � � � � �2 2 1 � � � � � � � 22

1 2 2 1 2 1 21 1

� K �
 � �
 � : 1 � � �
 ;

� % K � � � &
 � % � � �
 � � � : - � � �
 � ;

� � K � � � � � �
 � : 1 � � �
 ;

	 K � � � &
 � �
 & � �
 � �
 � � � � � + � � # �
 � �
 � � �
 � : 1 � � �
 ;

� K � �
 � � : � � � �
 � ;

% K % � 6 � : � 7 % 6 � � �
 � D � � �
 � � � � � �

 � @ � � 7 % 6 � � �
 � D � � � �
 �
 � &
 � � 1 � � �
 ;

� K �
 � � : 1 � � �
 ;

� � "

�
 � �

� � %

� � � % � 6

% � 6 �
 �

� � "

� � %

� � % � � 	 � % � % � � % � � 	 � % � % �

� � � &
 � % � � �
 � �

I
2
C Communication Timing Diagram

� � "

� � %

�
 � �
 � � �
 � � � �
 �
� �
 � � �

� � � �
 �
� � � � � � #
� � � � �

�
 � � � �

Data Timing Diagram

HT46RU26/HT46CU26

Rev. 1.00 39 June 12, 2008

�
 � �

� � � � �

 � � � � &

� � % � � �
 � � �
 � � B % � �

� 8 � � B 8 5

� � � � * � � 4 � �
� �

 � � �
 K M

�

8 � � � �
� � � � � �

� � � � 8 � � 8 B �
� � �
 � D � � � � �

 � � �

' �
 � � 	 � � � � � � � � � � �

� " � � 8 B � �
� � � � � B � (�
 � � �
 � � �
 �

�
 � �
 � � � � �
 � � � * � � 4 � � � � � � �

' �
 � � 	 � � � � � � � � � � �

I
2
C Bus Initialization Flow Chart

�
 � �

B % % � K 1
M

B � 7 K 1
� � � � M

� � � K 1
� � � � � M

>
 �5 �

>
 � 5 �

� 7 % 6 K 1
M

>
 �

5 �

5 �

�
 � � � D � � � � B � �

� 8 � �

>
 �

� � � � � � �
 � �
D � � � � B � �

� 8 � �

� 8 � �

� � �

 �
 � � B � �

� 8 � � B � 7

� � �

 �
 � � B � �
� � � � � � �
 � �
(� � � � B � �

� " � � B � 7
� " � � � 7 % 6

� 8 � � � 8 � �

� " � � B � 7
� " � � � 7 % 6

I
2
C Bus ISR Flow Chart

HT46RU26/HT46CU26

Rev. 1.00 40 June 12, 2008

� - � . � / � , � 0 � * � 1 � 2

� 4 � � � : �
 �
 � &
 � � � �
 � � �
 � � �

 � ;

	
�
7

� � � � 4 � D D
 �

	
�
7

	 " �

� �
 � � 4 � �

	
�
7

	 � �

 � � � � � � � � &

� � �

� � �

� �

 � � � � � 4 � � � � � �

 � � � � � +

� � 6

� � � � + � � � � � � �
 �

� *� 1� 2

� 4 8 5

� �

 � � � � � 4 � � � � (� � �

� 4 8 5

� � �

 � � 4 � �

� � � " � (� � �

� � (
� � � @ � �
 � �

� 4 8 5

8 5

% 5 �

� � �

 � � 4 � �

� � �

 � � 4 � � � 8 � � � �
 ! � � � � � �

� � �8 5

	 � �

 � � � � � � � � &

� � 8 5
� 4 8 5

� � � @ � �
 � �

� � � @ � �
 � �

SPI Block Diagram

SPI Serial Interface

The device includes a single SPI Serial Interface. The

SPI interface is a full duplex serial data link, originally

designed by Motorola, which allows multiple devices

connected to the same SPI bus to communicate with

each other. The devices communicate using a mas-

ter/slave technique where only the single master device

can initiate a data transfer. A simple four line signal bus

is used for all communication and these pins are shared

with normal I/O pins. The SPI function is selected via a

configuration option.

SPI Interface Communication

Four lines are used for SPI communication known as

SDI - Serial Data Input, SDO - Serial Data Output, SCK -

Serial Clock and SCS - Slave Select. Note that the con-

dition of the Slave Select line is conditioned by the

CSEN bit in the SBCR control register. If the CSEN bit is

high then the SCS line is active while if the bit is low then

the SCS line will be in a floating condition. The following

timing diagram depicts the basic timing protocol of the

SPI bus.

SPI Registers

There are two registers associated with the SPI Inter-

face. These are the SBCR register which is the control

register and the SBDR which is the data register. The

SBCR register is used to setup the required setup pa-

rameters for the SPI bus and also used to store associ-

ated operating flags, while the SBDR register is used for

data storage.

After Power on, the contents of the SBDR register will

be in an unknown condition while the SBCR register will

default to the condition below:

CKS M1 M0 SBEN MLS CSEN WCOL TRF

0 1 1 0 0 0 0 0

Note that data written to the SBDR register will only be

written to the TXRX buffer, whereas data read from the

SBDR register will actual be read from the register.

SPI Bus Enable/Disable

To enable the SPI bus, CSEN = 1, SCS=0, then wait for

data to be written to the SBDR (TXRX bufffer) register.

For the Master Mode, after data has been written to the

SBDR (TXRX buffer) register, then transmission or re-

ception will start automatically. When all the data has

been transferred the TRF bit should be set. For the

Slave Mode, when clock pulses are received on SCK,

data in the TXRX buffer will be shifted out or data on SDI

will be shifted in.

To Disable the SPI bus SCK, SDI, SDO, SCS should be

in a floating condition.

HT46RU26/HT46CU26

Rev. 1.00 41 June 12, 2008

SPI Operation

All communication is carried out using the 4-line inter-

face for both Master or Slave Mode. The timing diagram

shows the basic operation of the bus.

The CSEN bit in the SBCR register controls the overall

function of the SPI interface. Setting this bit high, will en-

able the SPI interface by allowing the SCS line to be ac-

tive, which can then be used to control the SPI interface.

If the CSEN bit is low, the SPI interface will be disabled

and the SCS line will be in a floating condition and can

therefore not be used for control of the SPI interface.

The SBEN bit in the SBCR register must also be high

which will place the SDI line in a floating condition and

the SDO line high. If in Master Mode the SCK line will be

either high or low depending upon the clock polarity con-

figuration option. If in Slave Mode the SCK line will be in

a floating condition. If SBEN is low then the bus will be

disabled and SCS, SDI, SDO and SCK will all be in a

floating condition.

In the Master Mode the Master will always generate the

clock signal. The clock and data transmission will be ini-

tiated after data has been written to the SBDR register.

In the Slave Mode, the clock signal will be received from

an external master device for both data transmission or

reception. The following sequences show the order to

be followed for data transfer in both Master and Slave

Mode:

� Master Mode:

� Step 1

Select the clock source using the CKS bit in the

SBCR control register

� Step 2

Setup the M0 and M1 bits in the SBCR control regis-

ter to select the Master Mode and the required Baud

rate. Values of 00, 01 or 10 can be selected.

� �
 � � � � � � � � �

� - � 2

� 6 � 	 1 	 2 � 4 8 5 	 " � � � 8 5 � � � " � � (

� � � � � � �

 ! �
 �
 � &
 � (� � �
2 ? � 5 �
 � � � � �

1 ? � � � � � � � � � � � � � ! �
 �

 � � � � � � � �

� � �

 � � � � � � � � � � � 4 �

2 ? � � � � � � � � � � � D �

1 ? � � � � � � � � � � � �

 �

 �

�
 �
 �
 � � � � � � � � � � � 8 � � � �
 ! � � � � � �
 � 4 �

2 ? � � � � � D � � �
 � � �
1 ? � 8 � � � �

	 � 4 ! " � 4 � (� � �
 � 4 �

2 ? � " � 4 � � � � D
 � D � � �

1 ? � 	 � 4 � � � � D
 � D � � �

�
 � � � � � 4 � � � 8 � � � �
 ! � � � � � �
 � 4 �

2 ? � � � � � � �

1 ? � 8 � � � �

� � � � �

 � �
 �
 � � � � � � � 8 5 � � �

	 � �

 � ! � � � &
 ! 4 � � � � � �

 � 4 �
 �

	 � �

 � @ � � � � � � � �

 ? � D � � �
	 � �

 � @ � � � � � � � �

 ? � D � � � ! ,
	 � �

 � @ � � � � � � � �

 ? � D � � � ! 1 .
� � � &
 � � � �

	 1
2
2
1
1

	 2
2
1
2
1

� � � � + � � � � � �
 � �
 �
 �
 � 4 �

2 ? � D � � � K D � > � ! ,
1 ? � D � � � K D � > �

SPI Interface Control Register

Note: The TRF flag will also generate an SPI interrupt signal, for more information refer to the Interrupt section.

� � 6

� � �

� � �

� � � � 1 ! � .

� - ! � 2 � . ! � 1 � / ! � * � , ! � 0 � 0 ! � , � * ! � / � 1 ! � . � 2 ! � -

� - ! � 2 � . ! � 1 � / ! � * � , ! � 0 � 0 ! � , � * ! � / � 2 ! � -

� 4 8 5 K � � � 8 5 K � 1

� 4 8 5 K � 1 @ � � � 8 5 K � 2 � : � D � � � � � � � � �
 � ;

� � 6

� �

 �
 � � � 4 � � � : � � �

 � ;

SPI Bus Timing

HT46RU26/HT46CU26

Rev. 1.00 42 June 12, 2008

� Step 3

Setup the CSEN bit and setup the MLS bit to

choose if the data is MSB or LSB first, this must be

same as the Slave device.

� Step 4

Setup the SBEN bit in the SBCR control register to

enable the SPI interface.

� Step 5

For write operations: write the data to the SBDR

register, which will actually place the data into the

TXRX buffer. Then use the SCK and SCS lines to

output the data.

Goto to step 6.For read operations: the data trans-

ferred in on the SDI line will be stored in the TXRX

buffer until all the data has been received at which

point it will be latched into the SBDR register.

� Step 6

Check the WCOL bit, if set high then a collision error

has occurred so return to step5.

If equal to zero then go to the following step.

� Step 7

Check the TRF bit or wait for an SBI serial bus

interrupt.

� Step 8

Read data from the SBDR register.

� Step 9

Clear TRF.

� Step10

Goto step 5.

� Slave Mode:

� Step 1

The CKS bit has a don�t care value in the slave

mode.

� Step 2

Setup the M0 and M1 bits to 00 to select the Slave

Mode. The CKS bit is don�t care.

� Step 3

Setup the CSEN bit and setup the MLS bit to

choose if the data is MSB or LSB first, this must be

same as the Master device.

� Step 4

Setup the SBEN bit in the SBCR control register to

enable the SPI interface.

� Step 5

For write operations: write data to the SBCR regis-

ter, which will actually place the data into the TXRX

register, then wait for the master clock and SCS sig-

nal. After this goto step 6.

For read operations: the data transferred in on the

SDI line will be stored in the TXRX buffer until all the

data has been received at which point it will be

latched into the SBDR register.

� Step 6

Check the WCOL bit, if set high then a collision error

has occurred so return to step5.

If equal to zero then go to the following step.

� Step 7

Check the TRF bit or wait for an SBI serial bus

interrupt.

� Step 8

Read data from the SBDR register.

� Step 9

Clear TRF

� Step10

Goto step 5

SPI Configuration Options

Several configuration options exist for the SPI Interface

function which must be setup during device program-

ming. One option is to enable the operation of the

WCOL, write collision bit, in the SBCR register. Another

option exists to select the clock polarity of the SCK line.

A configuration option also exists to disable or enable

the operation of the CSEN bit in the SBCR register. If the

configuration option disables the CSEN bit then this bit

cannot be used to affect overall control of the SPI Inter-

face.

Error Detection

The WCOL bit in the SBCR register is provided to indi-

cate errors during data transfer. The bit is set by the Se-

rial Interface but must be cleared by the application

program. This bit indicates a data collision has occurred

which happens if a write to the SBDR register takes

place during a data transfer operation and will prevent

the write operation from continuing. The bit will be set

high by the Serial Interface but has to be cleared by the

user application program. The overall function of the

WCOL bit can be disabled or enabled by a configuration

option.

Programming Considerations

When the device is placed into the Power Down Mode

note that data reception and transmission will continue.

The TRF bit is used to generate an interrupt when the

data has been transferred or received.

HT46RU26/HT46CU26

Rev. 1.00 43 June 12, 2008

UART Bus Serial Interface

The device contain an integrated full-duplex asynchron-

ous serial communications UART interface that enables

communication with external devices that contain a se-

rial interface. The UART function has many features and

can transmit and receive data serially by transferring a

frame of data with eight or nine data bits per transmis-

sion as well as being able to detect errors when the data

is overwritten or incorrectly framed. The UART function

possesses its own internal interrupt which can be used

to indicate when a reception occurs or when a transmis-

sion terminates.

� UART features

The integrated UART function contains the following

features:

� Full-duplex, asynchronous communication

� 8 or 9 bits character length

� Even, odd or no parity options

� One or two stop bits

� Baud rate generator with 8-bit prescaler

� Parity, framing, noise and overrun error detection

� Support for interrupt on address detect

(last character bit=1)

� Separately enabled transmitter and receiver

� 2-byte Deep Fifo Receive Data Buffer

� Transmit and receive interrupts

� Interrupts can be initialized by the following

conditions:

� Transmitter Empty

� Transmitter Idle

� Receiver Full

� Receiver Overrun

� Address Mode Detect

� UART external pin interfacing

To communicate with an external serial interface, the

internal UART has two external pins known as TX and

RX. The TX pin is the UART transmitter pin, which can

be used as a general purpose I/O pin if the pin is not

configured as a UART transmitter, which occurs when

the TXEN bit in the UCR2 control register is equal to

zero. Similarly, the RX pin is the UART receiver pin,

which can also be used as a general purpose I/O pin,

if the pin is not configured as a receiver, which occurs

if the RXEN bit in the UCR2 register is equal to zero.

Along with the UARTEN bit, the TXEN and RXEN bits,

if set, will automatically setup these I/O pins to their re-

spective TX output and RX input conditions and dis-

able any pull-high resistor option which may exist on

the RX pin.

� UART data transfer scheme

The block diagram shows the overall data transfer

structure arrangement for the UART. The actual data

to be transmitted from the MCU is first transferred to

the TXR register by the application program. The data

will then be transferred to the Transmit Shift Register

from where it will be shifted out, LSB first, onto the TX

pin at a rate controlled by the Baud Rate Generator.

Only the TXR register is mapped onto the MCU Data

Memory, the Transmit Shift Register is not mapped

and is therefore inaccessible to the application pro-

gram.

Data to be received by the UART is accepted on the

external RX pin, from where it is shifted in, LSB first, to

the Receiver Shift Register at a rate controlled by the

Baud Rate Generator. When the shift register is full,

the data will then be transferred from the shift register

to the internal RXR register, where it is buffered and

can be manipulated by the application program. Only

the RXR register is mapped onto the MCU Data Mem-

ory, the Receiver Shift Register is not mapped and is

therefore inaccessible to the application program.

It should be noted that the actual register for data

transmission and reception, although referred to in the

text, and in application programs, as separate TXR

and RXR registers, only exists as a single shared reg-

ister in the Data Memory. This shared register known

as the TXR/RXR register is used for both data trans-

mission and data reception.

� UART status and control registers

There are five control registers associated with the

UART function. The USR, UCR1 and UCR2 registers

control the overall function of the UART, while the

BRG register controls the Baud rate. The actual data

to be transmitted and received on the serial interface

is managed through the TXR/RXR data registers.

� 7 � � �
 � � �

 � � 7 � � �
 � � �

 �

	 � 4 " � 4

� � � � � � �

 � � � � � � D
 � � �
 � � �

 �

� 7 � � � � 	 � 4 " � 4

�
 �
 � &
 � � � � � � D
 � � �
 � � �

 �

� 7 � � � �

4 � � � � � �

'
 �
 � �
 � �

� " 6 � " 6

4 � D D
 �

	 � � � � �
 � � 4 � �

UART Data Transfer Scheme

HT46RU26/HT46CU26

Rev. 1.00 44 June 12, 2008

� USR register

The USR register is the status register for the UART,

which can be read by the program to determine the

present status of the UART. All flags within the USR

register are read only.

Further explanation on each of the flags is given below:

� TXIF

The TXIF flag is the transmit data register empty

flag. When this read only flag is �0� it indicates that

the character is not transferred to the transmit shift

registers. When the flag is �1� it indicates that the

transmit shift register has received a character from

the TXR data register. The TXIF flag is cleared by

reading the UART status register (USR) with TXIF

set and then writing to the TXR data register. Note

that when the TXEN bit is set, the TXIF flag bit will

also be set since the transmit buffer is not yet full.

� TIDLE

The TIDLE flag is known as the transmission com-

plete flag. When this read only flag is �0� it indicates

that a transmission is in progress. This flag will be

set to �1� when the TXIF flag is �1� and when there

is no transmit data, or break character being trans-

mitted. When TIDLE is �1� the TX pin becomes idle.

The TIDLE flag is cleared by reading the USR regis-

ter with TIDLE set and then writing to the TXR regis-

ter. The flag is not generated when a data character,

or a break is queued and ready to be sent.

� RXIF

The RXIF flag is the receive register status flag.

When this read only flag is �0� it indicates that the

RXR read data register is empty. When the flag is

�1� it indicates that the RXR read data register con-

tains new data. When the contents of the shift regis-

ter are transferred to the RXR register, an interrupt

is generated if RIE=1 in the UCR2 register. If one or

more errors are detected in the received word, the

appropriate receive-related flags NF, FERR, and/or

PERR are set within the same clock cycle. The

RXIF flag is cleared when the USR register is read

with RXIF set, followed by a read from the RXR reg-

ister, and if the RXR register has no data available.

� RIDLE

The RIDLE flag is the receiver status flag. When

this read only flag is �0� it indicates that the receiver

is between the initial detection of the start bit and

the completion of the stop bit. When the flag is �1� it

indicates that the receiver is idle. Between the com-

pletion of the stop bit and the detection of the next

start bit, the RIDLE bit is �1� indicating that the

UART is idle.

� OERR

The OERR flag is the overrun error flag, which indi-

cates when the receiver buffer has overflowed.

When this read only flag is �0� there is no overrun er-

ror. When the flag is �1� an overrun error occurs

which will inhibit further transfers to the RXR receive

data register. The flag is cleared by a software se-

quence, which is a read to the status register USR

followed by an access to the RXR data register.

� FERR

The FERR flag is the framing error flag. When this

read only flag is �0� it indicates no framing error.

When the flag is �1� it indicates that a framing error

has been detected for the current character. The

flag can also be cleared by a software sequence

which will involve a read to the USR status register

followed by an access to the RXR data register.

� NF

The NF flag is the noise flag. When this read only

flag is �0� it indicates a no noise condition. When

the flag is �1� it indicates that the UART has de-

tected noise on the receiver input. The NF flag is set

during the same cycle as the RXIF flag but will not

be set in the case of an overrun. The NF flag can be

cleared by a software sequence which will involve a

read to the USR status register, followed by an ac-

cess to the RXR data register.

� � � � � � � � � � �

� -

� � � " 8� 8 � �5 (� 8 � �

� 2

� 7 � (� � � " 8 � 7 � (

� � � � � � �
 � � �
 � � �
 � � �

 � �
 �
 �
1 ? � � � � � � �

 � �
 � � � � D
 � �
 � �
 � �
 � � � � � �
 � � � � D
 � �
 � � �

 � � � � �
2 ? � � � � � � �

 � � � �
 �
 � � � � D
 � �
 � �
 � �
 � � � � � �
 � � � � D
 � �
 � � �

 �

� � � � � � � � � � � � � � � �

1 ? � � � �
 � � � � � � � � � � � � � � � � � � �
 � �
2 ? �
 � � � � � � � � � � � � � � � � � � �
 � �

�
 �
 � &
 � � 7 � � �
 � � �

 � � �
 �
 � �
1 ? � � 7 � � �
 � � �

 � � � � � � � & � � � � � �
 � � �
 �
2 ? � � 7 � � �
 � � �

 � � � � �
 �
 �

�
 �
 � &
 � � �
 �
 � �
1 ? � �
 �
 � &
 � � � � � � � �

2 ? � � �
 � � �
 � � � � �
 �
 � &
 �

� &
 � � � � �
 � � � �
1 ? � � &
 � � � � �
 � � � � � �

 �

 �
2 ? � � � � � &
 � � � � �
 � � � � � �

 �

 �

(� � � � � � �
 � � � � � D � � �
1 ? � D � � � � � � �
 � � � � � �

 �

 �
2 ? � � � � D � � � � � � �
 � � � �

5 � � �
 � D � � �
1 ? � � � � �
 � �

 �

 �
2 ? � � � � � � � �
 � �

 �

 �

� � � �
 � �
 � � � � � D � � �
1 ? � � � �
 � �
 � � � � � �

 �

 �
2 ? � � � � � � �
 � �
 � � � � � �

 �

 �

(8 � �

HT46RU26/HT46CU26

Rev. 1.00 45 June 12, 2008

� PERR

The PERR flag is the parity error flag. When this

read only flag is �0� it indicates that a parity error

has not been detected. When the flag is �1� it indi-

cates that the parity of the received word is incor-

rect. This error flag is applicable only if Parity mode

(odd or even) is selected. The flag can also be

cleared by a software sequence which involves a

read to the USR status register, followed by an ac-

cess to the RXR data register.

� UCR1 register

The UCR1 register together with the UCR2 register

are the two UART control registers that are used to set

the various options for the UART function, such as

overall on/off control, parity control, data transfer bit

length etc.

Further explanation on each of the bits is given below:

� TX8

This bit is only used if 9-bit data transfers are used,

in which case this bit location will store the 9th bit of

the transmitted data, known as TX8. The BNO bit is

used to determine whether data transfers are in

8-bit or 9-bit format.

� RX8

This bit is only used if 9-bit data transfers are used,

in which case this bit location will store the 9th bit of

the received data, known as RX8. The BNO bit is

used to determine whether data transfers are in

8-bit or 9-bit format.

� TXBRK

The TXBRK bit is the Transmit Break Character bit.

When this bit is �0� there are no break characters

and the TX pin operates normally. When the bit is

�1� there are transmit break characters and the

transmitter will send logic zeros. When equal to �1�
after the buffered data has been transmitted, the

transmitter output is held low for a minimum of a

13-bit length and until the TXBRK bit is reset.

� STOPS

This bit determines if one or two stop bits are to be

used. When this bit is equal to �1� two stop bits are

used, if the bit is equal to �0� then only one stop bit

is used.

� PRT

This is the parity type selection bit. When this bit is

equal to �1� odd parity will be selected, if the bit is

equal to �0� then even parity will be selected.

� PREN

This is parity enable bit. When this bit is equal to �1�
the parity function will be enabled, if the bit is equal

to �0� then the parity function will be disabled.

� BNO

This bit is used to select the data length format,

which can have a choice of either 8-bits or 9-bits. If

this bit is equal to �1� then a 9-bit data length will be

selected, if the bit is equal to �0� then an 8-bit data

length will be selected. If 9-bit data length is se-

lected then bits RX8 and TX8 will be used to store

the 9th bit of the received and transmitted data re-

spectively.

� UARTEN

The UARTEN bit is the UART enable bit. When the

bit is �0� the UART will be disabled and the RX and

TX pins will function as General Purpose I/O pins.

When the bit is �1� the UART will be enabled and

the TX and RX pins will function as defined by the

TXEN and RXEN control bits. When the UART is

disabled it will empty the buffer so any character re-

maining in the buffer will be discarded. In addition,

the baud rate counter value will be reset. When the

UART is disabled, all error and status flags will be

reset. The TXEN, RXEN, TXBRK, RXIF, OERR,

FERR, PERR, and NF bits will be cleared, while the

TIDLE, TXIF and RIDLE bits will be set. Other con-

trol bits in UCR1, UCR2, and BRG registers will re-

main unaffected. If the UART is active and the

UARTEN bit is cleared, all pending transmissions

and receptions will be terminated and the module

will be reset as defined above. When the UART is

re-enabled it will restart in the same configuration.

�
 � * � � � � � � � �

� -

� � � � �� � �4 5 �� % � � 8 5

� 2

� 7 4 � 6 � 7 � � 7 �

� � � � � � �
 � � �
 � � � �
 � � � : # � �

 � � � � � ;

�
 �
 � &
 � � �
 � � � �
 � � � : �
 � � � � � � � ;

� � � � � � �
 � � �
 � + � � � � � � �

 �
1 ? �
 � � � � � �
 � � �
 � + � � � � � � �

 � �
2 ? � � � � � �
 � + � � � � � � �

 � �

�
 D � �
 � �
 �
 � � � � �
 � � � D � �
 � � � �
 �
1 ? �
 # � � �
 � � � �
 �
2 ? � � �
 � �
 � � � �

� � � �
 � �
 �
 � � �

1 ? � � � � � � � �
 � � D � � � � � �
 � � �
 �
 � �
 � �
2 ? �
 &
 � � � � �
 � � D � � � � � �
 � � �
 �
 � �
 � �

� � � �
 � �
 � � � �
 � � �

1 ? � � � �
 � � D � � �
 � � � �
 � � � �
 �
2 ? � � � �
 � � D � � �
 � � � � � � � � � �
 �

5 � � �
 � � � D � � �
 � �
 � � � � D
 � � � �
 �
1 ? � 3 � � �
 � � �
 � �
 � � � � D
 �
2 ? � � � � �
 � � �
 � �
 � � � � D
 �

� % � � �
 � � � �
 � � �

1 ? �
 � � � �
 � � % � � @ � � 7 � J � � 7 � � � � � � � � � % � � � � � �
2 ? � � � � � � �
 � � % � � @ � � 7 � J � � 7 � � � � � � � � � ! � � � �
 � � � �

� � 8 5

HT46RU26/HT46CU26

Rev. 1.00 46 June 12, 2008

� UCR2 register

The UCR2 register is the second of the two UART

control registers and serves several purposes. One of

its main functions is to control the basic enable/dis-

able operation of the UART Transmitter and Receiver

as well as enabling the various UART interrupt

sources. The register also serves to control the baud

rate speed, receiver wake-up enable and the address

detect enable.

Further explanation on each of the bits is given below:

� TEIE

This bit enables or disables the transmitter empty

interrupt. If this bit is equal to �1� when the transmit-

ter empty TXIF flag is set, due to a transmitter

empty condition, the UART interrupt request flag

will be set. If this bit is equal to �0� the UART inter-

rupt request flag will not be influenced by the condi-

tion of the TXIF flag.

� TIIE

This bit enables or disables the transmitter idle in-

terrupt. If this bit is equal to �1� when the transmitter

idle TIDLE flag is set, the UART interrupt request

flag will be set. If this bit is equal to �0� the UART in-

terrupt request flag will not be influenced by the

condition of the TIDLE flag.

� RIE

This bit enables or disables the receiver interrupt. If

this bit is equal to �1� when the receiver overrun

OERR flag or receive data available RXIF flag is

set, the UART interrupt request flag will be set. If

this bit is equal to �0� the UART interrupt will not be

influenced by the condition of the OERR or RXIF

flags.

� WAKE

This bit enables or disables the receiver wake-up

function. If this bit is equal to �1� and if the MCU is in

the Power Down Mode, a low going edge on the RX

input pin will wake-up the device. If this bit is equal

to �0� and if the MCU is in the Power Down Mode,

any edge transitions on the RX pin will not wake-up

the device.

� ADDEN

The ADDEN bit is the address detect mode bit.

When this bit is �1� the address detect mode is en-

abled. When this occurs, if the 8th bit, which corre-

sponds to RX7 if BNO=0, or the 9th bit, which

corresponds to RX8 if BNO=1, has a value of �1�
then the received word will be identified as an ad-

dress, rather than data. If the corresponding inter-

rupt is enabled, an interrupt request will be

generated each time the received word has the ad-

dress bit set, which is the 8 or 9 bit depending on the

value of BNO. If the address bit is �0� an interrupt

will not be generated, and the received data will be

discarded.

� BRGH

The BRGH bit selects the high or low speed mode

of the Baud Rate Generator. This bit, together with

the value placed in the BRG register, controls the

Baud Rate of the UART. If this bit is equal to �1� the

high speed mode is selected. If the bit is equal to �0�
the low speed mode is selected.

� RXEN

The RXEN bit is the Receiver Enable Bit. When this

bit is equal to �0� the receiver will be disabled with

any pending data receptions being aborted. In addi-

tion the buffer will be reset. In this situation the RX

pin can be used as a general purpose I/O pin. If the

RXEN bit is equal to �1� the receiver will be enabled

and if the UARTEN bit is equal to �1� the RX pin will

be controlled by the UART. Clearing the RXEN bit

during a transmission will cause the data reception

to be aborted and will reset the receiver. If this oc-

curs, the RX pin can be used as a general purpose

I/O pin.

�
 � � � � � � � � � �

� -

� % 6 8% � � 8 5� 7 8 5� 7 8 5

� 2

� � 8 � � � 8 � 8 � 8

� � � � � � �

 � �
 �
 � � � �

 � � �
 �
 � � � �

1 ? � � 7 � (� � �

 � � �
 � �
) �
 �
 �
 � � � �

2 ? � � 7 � (� � �

 � � �
 � �
) �
 �
 � � � � � � �

� � � � � � �

 � � � � �
 � � �

 � � �
 �
 � � � �

1 ? � � � � " 8 � � �

 � � �
 � �
) �
 �
 �
 � � � �

2 ? � � � � " 8 � � �

 � � �
 � �
) �
 �
 � � � � � � �

�
 �
 � &
 � � � �

 � � �
 �
 � � � �

1 ? � � 7 � (� � �

 � � �
 � �
) �
 �
 �
 � � � �

2 ? � � 7 � (� � �

 � � �
 � �
) �
 �
 � � � � � � �

�
 D � �
 � �
 �
 � � 7 � # � +
 � � �
 � � � �

1 ? � � 7 � # � +
 � � �
 � � � �
 � : D � � � � � � �
 � �
 ;
2 ? � � 7 � # � +
 � � � � � � � � �

% � � �
 � � � �

 �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

B � � � � � � � � � � �

 � �
 �
 �
 � � �

1 ? � � � � � � �

 �
2 ? � � � # � �

 �

�
 �
 � &
 � �
 � � � �
 � � �

1 ? � �
 �
 � &
 � �
 � � � �

2 ? � �
 �
 � &
 � � � � � � � �

� � � � � � �

 � �
 � � � �
 � � �

1 ? �
 � � � � � �

 � �
 � � � �

2 ? �
 � � � � � �

 � � � � � � � �

4 � ' B

HT46RU26/HT46CU26

Rev. 1.00 47 June 12, 2008

� TXEN

The TXEN bit is the Transmitter Enable Bit. When

this bit is equal to �0� the transmitter will be disabled

with any pending transmissions being aborted. In

addition the buffer will be reset. In this situation the

TX pin can be used as a general purpose I/O pin. If

the TXEN bit is equal to �1� the transmitter will be

enabled and if the UARTEN bit is equal to �1� the

TX pin will be controlled by the UART. Clearing the

TXEN bit during a transmission will cause the trans-

mission to be aborted and will reset the transmitter.

If this occurs, the TX pin can be used as a general

purpose I/O pin.

� Baud rate generator

To setup the speed of the serial data communication,

the UART function contains its own dedicated baud

rate generator. The baud rate is controlled by its own

internal free running 8-bit timer, the period of which is

determined by two factors. The first of these is the

value placed in the BRG register and the second is the

value of the BRGH bit within the UCR2 control regis-

ter. The BRGH bit decides, if the baud rate generator

is to be used in a high speed mode or low speed

mode, which in turn determines the formula that is

used to calculate the baud rate. The value in the BRG

register determines the division factor, N, which is

used in the following baud rate calculation formula.

Note that N is the decimal value placed in the BRG

register and has a range of between 0 and 255.

UCR2 BRGH Bit 0 1

Baud Rate
f

[64 (N+1)]

SYS f

[16 (N+1)]

SYS

By programming the BRGH bit which allows selection

of the related formula and programming the required

value in the BRG register, the required baud rate can

be setup. Note that because the actual baud rate is

determined using a discrete value, N, placed in the

BRG register, there will be an error associated be-

tween the actual and requested value. The following

example shows how the BRG register value N and the

error value can be calculated.

Calculating the Register and Error Values

For a clock frequency of 8MHz, and with BRGH set to

�0� determine the BRG register value N, the actual

baud rate and the error value for a desired baud rate

of 9600.

From the above table the desired baud rate BR

�
f

[64 (N+1)]

SYS

Re-arranging this equation gives N �
f

(BRx64)

SYS � 1

Giving a value for N �
8000000

9600 64()x

� 1 � 12.0208

To obtain the closest value, a decimal value of 12

should be placed into the BRG register. This gives an

actual or calculated baud rate value of

BR �
8000000

[64(12+1)]
� 9615

Therefore the error is equal to = 0.16%

The following tables show actual values of baud rate and error values for the two values of BRGH.

Baud

Rate

K/BPS

Baud Rates for BRGH=0

fSYS=8MHz fSYS=7.159MHz fSYS=4MHz fSYS=3.579545MHz

BRG Kbaud Error BRG Kbaud Error BRG Kbaud Error BRG Kbaud Error

0.3 � � � � � � 207 0.300 0.00 185 0.300 0.00

1.2 103 1.202 0.16 92 1.203 0.23 51 1.202 0.16 46 1.19 -0.83

2.4 51 2.404 0.16 46 2.38 -0.83 25 2.404 0.16 22 2.432 1.32

4.8 25 4.807 0.16 22 4.863 1.32 12 4.808 0.16 11 4.661 -2.9

9.6 12 9.615 0.16 11 9.322 -2.9 6 8.929 -6.99 5 9.321 -2.9

19.2 6 17.857 -6.99 5 18.64 -2.9 2 20.83 8.51 2 18.643 -2.9

38.4 2 41.667 8.51 2 37.29 -2.9 1 � � 1 � �

57.6 1 62.5 8.51 1 55.93 -2.9 0 62.5 8.51 0 55.93 -2.9

115.2 0 125 8.51 0 111.86 -2.9 � � � � � �

Baud Rates and Error Values for BRGH � 0

HT46RU26/HT46CU26

Rev. 1.00 48 June 12, 2008

Baud

Rate

K/BPS

Baud Rates for BRGH=1

fSYS=8MHz fSYS=7.159MHz fSYS=4MHz fSYS=3.579545MHz

BRG Kbaud Error BRG Kbaud Error BRG Kbaud Error BRG Kbaud Error

0.3 � � � � � � � � � � � �

1.2 � � � � � � 207 1.202 0.16 185 1.203 0.23

2.4 207 2.404 0.16 185 2.405 0.23 103 2.404 0.16 92 2.406 0.23

4.8 103 4.808 0.16 92 4.811 0.23 51 4.808 0.16 46 4.76 -0.83

9.6 51 9.615 0.16 46 9.520 -0.832 25 9.615 0.16 22 9.727 1.32

19.2 25 19.231 0.16 22 19.454 1.32 12 19.231 0.16 11 18.643 -2.9

38.4 12 38.462 0.16 11 37.287 -2.9 6 35.714 -6.99 5 37.286 -2.9

57.6 8 55.556 -3.55 7 55.93 -2.9 3 62.5 8.51 3 55.930 -2.9

115.2 3 125 8.51 3 111.86 -2.9 1 125 8.51 1 111.86 -2.9

250 1 250 0 � � � 0 250 0 � � �

Baud Rates and Error Values for BRGH � 1

� Setting up and controlling the UART

� Introduction

For data transfer, the UART function utilizes a

non-return-to-zero, more commonly known as

NRZ, format. This is composed of one start bit, eight

or nine data bits, and one or two stop bits. Parity is

supported by the UART hardware, and can be

setup to be even, odd or no parity. For the most

common data format, 8 data bits along with no par-

ity and one stop bit, denoted as 8, N, 1, is used as

the default setting, which is the setting at power-on.

The number of data bits and stop bits, along with the

parity, are setup by programming the corresponding

BNO, PRT, PREN, and STOPS bits in the UCR1

register. The baud rate used to transmit and receive

data is setup using the internal 8-bit baud rate gen-

erator, while the data is transmitted and received

LSB first. Although the UART�s transmitter and re-

ceiver are functionally independent, they both use

the same data format and baud rate. In all cases

stop bits will be used for data transmission.

� Enabling/disabling the UART

The basic on/off function of the internal UART func-

tion is controlled using the UARTEN bit in the UCR1

register. As the UART transmit and receive pins, TX

and RX respectively, are pin-shared with normal I/O

pins, one of the basic functions of the UARTEN con-

trol bit is to control the UART function of these two

pins. If the UARTEN, TXEN and RXEN bits are set,

then these two I/O pins will be setup as a TX output

pin and an RX input pin respectively, in effect dis-

abling the normal I/O pin function. If no data is being

transmitted on the TX pin then it will default to a

logic high value.

Clearing the UARTEN bit will disable the TX and RX

pins and allow these two pins to be used as normal

I/O pins. When the UART function is disabled the

buffer will be reset to an empty condition, at the

same time discarding any remaining residual data.

Disabling the UART will also reset the error and sta-

tus flags with bits TXEN, RXEN, TXBRK, RXIF,

OERR, FERR, PERR and NF being cleared while

bits TIDLE, TXIF and RIDLE will be set. The re-

maining control bits in the UCR1, UCR2 and BRG

registers will remain unaffected. If the UARTEN bit

in the UCR1 register is cleared while the UART is

active, then all pending transmissions and recep-

tions will be immediately suspended and the UART

will be reset to a condition as defined above. If the

UART is then subsequently re-enabled, it will restart

again in the same configuration.

� Data, parity and stop bit selection

The format of the data to be transferred, is com-

posed of various factors such as data bit length,

parity on/off, parity type, address bits and the num-

ber of stop bits. These factors are determined by

the setup of various bits within the UCR1 register.

The BNO bit controls the number of data bits which

can be set to either 8 or 9, the PRT bit controls the

choice of odd or even parity, the PREN bit controls

the parity on/off function and the STOPS bit decides

whether one or two stop bits are to be used. The fol-

lowing table shows various formats for data trans-

mission. The address bit identifies the frame as an

address character. The number of stop bits, which

can be either one or two, is independent of the data

length.

HT46RU26/HT46CU26

Rev. 1.00 49 June 12, 2008

Start

Bit

Data

Bits

Address

Bits

Parity

Bits

Stop

Bit

Example of 8-bit Data Formats

1 8 0 0 1

1 7 0 1 1

1 7 11 0 1

Example of 9-bit Data Formats

1 9 0 0 1

1 8 0 1 1

1 8 11 0 1

Transmitter Receiver Data Format

The following diagram shows the transmit and receive

waveforms for both 8-bit and 9-bit data formats.

� UART transmitter

Data word lengths of either 8 or 9 bits, can be selected

by programming the BNO bit in the UCR1 register.

When BNO bit is set, the word length will be set to 9

bits. In this case the 9th bit, which is the MSB, needs

to be stored in the TX8 bit in the UCR1 register. At the

transmitter core lies the Transmitter Shift Register,

more commonly known as the TSR, whose data is ob-

tained from the transmit data register, which is known

as the TXR register. The data to be transmitted is

loaded into this TXR register by the application pro-

gram. The TSR register is not written to with new data

until the stop bit from the previous transmission has

been sent out. As soon as this stop bit has been trans-

mitted, the TSR can then be loaded with new data

from the TXR register, if it is available. It should be

noted that the TSR register, unlike many other regis-

ters, is not directly mapped into the Data Memory area

and as such is not available to the application program

for direct read/write operations. An actual transmis-

sion of data will normally be enabled when the TXEN

bit is set, but the data will not be transmitted until the

TXR register has been loaded with data and the baud

rate generator has defined a shift clock source. How-

ever, the transmission can also be initiated by first

loading data into the TXR register, after which the

TXEN bit can be set. When a transmission of data be-

gins, the TSR is normally empty, in which case a

transfer to the TXR register will result in an immediate

transfer to the TSR. If during a transmission the TXEN

bit is cleared, the transmission will immediately cease

and the transmitter will be reset. The TX output pin will

then return to having a normal general purpose I/O pin

function.

� Transmitting data

When the UART is transmitting data, the data is

shifted on the TX pin from the shift register, with the

least significant bit first. In the transmit mode, the

TXR register forms a buffer between the internal

bus and the transmitter shift register. It should be

noted that if 9-bit data format has been selected,

then the MSB will be taken from the TX8 bit in the

UCR1 register. The steps to initiate a data transfer

can be summarized as follows:

� Make the correct selection of the BNO, PRT,

PREN and STOPS bits to define the required

word length, parity type and number of stop bits.

� Setup the BRG register to select the desired baud

rate.

� Set the TXEN bit to ensure that the TX pin is used

as a UART transmitter pin and not as an I/O pin.

� Access the USR register and write the data that is

to be transmitted into the TXR register. Note that

this step will clear the TXIF bit.

� This sequence of events can now be repeated to

send additional data.

It should be noted that when TXIF=0, data will be in-

hibited from being written to the TXR register. Clear-

ing the TXIF flag is always achieved using the

following software sequence:

1. A USR register access

2. A TXR register write execution

The read-only TXIF flag is set by the UART hard-

ware and if set indicates that the TXR register is

empty and that other data can now be written into

the TXR register without overwriting the previous

data. If the TEIE bit is set then the TXIF flag will gen-

erate an interrupt.

During a data transmission, a write instruction to the

TXR register will place the data into the TXR regis-

ter, which will be copied to the shift register at the

end of the present transmission. When there is no

data transmission in progress, a write instruction to

the TXR register will place the data directly into the

shift register, resulting in the commencement of

data transmission, and the TXIF bit being immedi-

ately set. When a frame transmission is complete,

which happens after stop bits are sent or after the

break frame, the TIDLE bit will be set. To clear the

TIDLE bit the following software sequence is used:

1. A USR register access

2. A TXR register write execution

Note that both the TXIF and TIDLE bits are cleared

by the same software sequence.

�
 � �
 � 4 �
 4 �
 � 2 4 �
 � 1 4 �
 � * 4 �
 � 0 4 �
 � , 4 �
 � / 4 �
 � . 4 �
 � - �
 � � 4 �

5
 <

�
 � �

4 �

� � � �
 � � 4 �

� � � � � � / � � � � % � � � � �

�
 � �
 � 4 �
 4 �
 � 2 4 �
 � 1 4 �
 � * 4 �
 � 0 4 �
 � , 4 �
 � / 4 �
 � . 4 �
 � - �
 � � 4 �

5
 <

�
 � �

4 �

� � � �
 � � 4 �

0 � � � � � / � � � � % � � � � �

4 �
 � �

HT46RU26/HT46CU26

Rev. 1.00 50 June 12, 2008

� Transmit break

If the TXBRK bit is set then break characters will be

sent on the next transmission. Break character

transmission consists of a start bit, followed by 13�
N �0� bits and stop bits, where N=1, 2, etc. If a break

character is to be transmitted then the TXBRK bit

must be first set by the application program, then

cleared to generate the stop bits. Transmitting a

break character will not generate a transmit inter-

rupt. Note that a break condition length is at least 13

bits long. If the TXBRK bit is continually kept at a

logic high level then the transmitter circuitry will

transmit continuous break characters. After the ap-

plication program has cleared the TXBRK bit, the

transmitter will finish transmitting the last break

character and subsequently send out one or two

stop bits. The automatic logic highs at the end of the

last break character will ensure that the start bit of

the next frame is recognized.

� UART receiver

� Introduction

The UART is capable of receiving word lengths of ei-

ther 8 or 9 bits. If the BNO bit is set, the word length

will be set to 9 bits with the MSB being stored in the

RX8 bit of the UCR1 register. At the receiver core lies

the Receive Serial Shift Register, commonly known

as the RSR. The data which is received on the RX

external input pin, is sent to the data recovery block.

The data recovery block operating speed is 16 times

that of the baud rate, while the main receive serial

shifter operates at the baud rate. After the RX pin is

sampled for the stop bit, the received data in RSR is

transferred to the receive data register, if the register

is empty. The data which is received on the external

RX input pin is sampled three times by a majority de-

tect circuit to determine the logic level that has been

placed onto the RX pin. It should be noted that the

RSR register, unlike many other registers, is not di-

rectly mapped into the Data Memory area and as

such is not available to the application program for

direct read/write operations.

� Receiving data

When the UART receiver is receiving data, the data

is serially shifted in on the external RX input pin,

LSB first. In the read mode, the RXR register forms

a buffer between the internal bus and the receiver

shift register. The RXR register is a two byte deep

FIFO data buffer, where two bytes can be held in the

FIFO while a third byte can continue to be received.

Note that the application program must ensure that

the data is read from RXR before the third byte has

been completely shifted in, otherwise this third byte

will be discarded and an overrun error OERR will be

subsequently indicated. The steps to initiate a data

transfer can be summarized as follows:

� Make the correct selection of BNO, PRT, PREN

and STOPS bits to define the word length, parity

type and number of stop bits.

� Setup the BRG register to select the desired baud

rate.

� Set the RXEN bit to ensure that the RX pin is used

as a UART receiver pin and not as an I/O pin.

At this point the receiver will be enabled which will

begin to look for a start bit.

When a character is received the following se-

quence of events will occur:

� The RXIF bit in the USR register will be set when

RXR register has data available, at least one

more character can be read.

� When the contents of the shift register have been

transferred to the RXR register, then if the RIE bit

is set, an interrupt will be generated.

� If during reception, a frame error, noise error, par-

ity error, or an overrun error has been detected,

then the error flags can be set.

The RXIF bit can be cleared using the following

software sequence:

1. A USR register access

2. An RXR register read execution

� Receive break

Any break character received by the UART will be

managed as a framing error. The receiver will count

and expect a certain number of bit times as speci-

fied by the values programmed into the BNO and

STOPS bits. If the break is much longer than 13 bit

times, the reception will be considered as complete

after the number of bit times specified by BNO and

STOPS. The RXIF bit is set, FERR is set, zeros are

loaded into the receive data register, interrupts are

generated if appropriate and the RIDLE bit is set. If

a long break signal has been detected and the re-

ceiver has received a start bit, the data bits and the

invalid stop bit, which sets the FERR flag, the re-

ceiver must wait for a valid stop bit before looking

for the next start bit. The receiver will not make the

assumption that the break condition on the line is

the next start bit. A break is regarded as a character

that contains only zeros with the FERR flag set. The

break character will be loaded into the buffer and no

further data will be received until stop bits are re-

ceived. It should be noted that the RIDLE read only

flag will go high when the stop bits have not yet

been received. The reception of a break character

on the UART registers will result in the following:

� The framing error flag, FERR, will be set.

� The receive data register, RXR, will be cleared.

� The OERR, NF, PERR, RIDLE or RXIF flags will

possibly be set.

� Idle status

When the receiver is reading data, which means it

will be in between the detection of a start bit and the

reading of a stop bit, the receiver status flag in the

USR register, otherwise known as the RIDLE flag,

will have a zero value. In between the reception of a

stop bit and the detection of the next start bit, the

RIDLE flag will have a high value, which indicates

the receiver is in an idle condition.

HT46RU26/HT46CU26

Rev. 1.00 51 June 12, 2008

� Receiver interrupt

The read only receive interrupt flag RXIF in the USR

register is set by an edge generated by the receiver.

An interrupt is generated if RIE=1, when a word is

transferred from the Receive Shift Register, RSR, to

the Receive Data Register, RXR. An overrun error

can also generate an interrupt if RIE=1.

� Managing receiver errors

Several types of reception errors can occur within the

UART module, the following section describes the

various types and how they are managed by the

UART.

� Overrun Error - OERR flag

The RXR register is composed of a two byte deep

FIFO data buffer, where two bytes can be held in the

FIFO register, while a third byte can continue to be

received. Before this third byte has been entirely

shifted in, the data should be read from the RXR

register. If this is not done, the overrun error flag

OERR will be consequently indicated.

In the event of an overrun error occurring, the fol-

lowing will happen:

� The OERR flag in the USR register will be set.

� The RXR contents will not be lost.

� The shift register will be overwritten.

� An interrupt will be generated if the RIE bit is set.

The OERR flag can be cleared by an access to the

USR register followed by a read to the RXR register.

� Noise Error - NF Flag

Over-sampling is used for data recovery to identify

valid incoming data and noise. If noise is detected

within a frame the following will occur:

� The read only noise flag, NF, in the USR register

will be set on the rising edge of the RXIF bit.

� Data will be transferred from the Shift register to

the RXR register.

� No interrupt will be generated. However this bit

rises at the same time as the RXIF bit which itself

generates an interrupt.

Note that the NF flag is reset by a USR register read

operation followed by an RXR register read

operation.

� Framing Error - FERR Flag

The read only framing error flag, FERR, in the USR

register, is set if a zero is detected instead of stop

bits. If two stop bits are selected, both stop bits must

be high, otherwise the FERR flag will be set. The

FERR flag is buffered along with the received data

and is cleared on any reset.

� Parity Error - PERR Flag

The read only parity error flag, PERR, in the USR

register, is set if the parity of the received word is in-

correct. This error flag is only applicable if the parity

is enabled, PREN = 1, and if the parity type, odd or

even is selected. The read only PERR flag is buf-

fered along with the received data bytes. It is

cleared on any reset. It should be noted that the

FERR and PERR flags are buffered along with the

corresponding word and should be read before

reading the data word.

� UART interrupt scheme

The UART internal function possesses its own inter-

nal interrupt and independent interrupt vector. Several

individual UART conditions can generate an internal

UART interrupt. These conditions are, a transmitter

data register empty, transmitter idle, receiver data

available, receiver overrun, address detect and an RX

pin wake-up. When any of these conditions are cre-

ated, if the UART interrupt is enabled and the stack is

not full, the program will jump to the UART interrupt

vector where it can be serviced before returning to the

main program. Four of these conditions, have a corre-

sponding USR register flag, which will generate a

UART interrupt if its associated interrupt enable flag in

� � � � �
 � � �

 �

� � � � � � �

 � � 8 �
 �
(� � � � � 7 � (

� � � � � � �

 � � � � �

(� � � � � � � " 8

�
 �
 � &
 � � � �
 �
% & � � � � � �
 � � 7 � (

�
 �
 � &
 � � � &
 � � � �
(� � � � � 8 � �

� 7 - � � D � 4 5 � K 2
� 7 � � � D � 4 5 � K 1

% � � 8 5
2

1 2

1

� 7 � � � �
� � +
 � �

� % 6 8 2

1

� � � * � �
 � � �

 �

� 8 � 8

� � � 8

� � 8

� % � � � � �

 � � �

�
) �
 �
 � (� � �

� � (

8 � � �

� 5 � � 1
�
 � � �

 �

8 	 �

� 5 � � 2
�
 � � �

 �

� � � * � �
 � � �

 �

2

1

2

1

2

1

� �

UART Interrupt Scheme

HT46RU26/HT46CU26

Rev. 1.00 52 June 12, 2008

the UCR2 register is set. The two transmitter interrupt

conditions have their own corresponding enable bits,

while the two receiver interrupt conditions have a

shared enable bit. These enable bits can be used to

mask out individual UART interrupt sources.

The address detect condition, which is also a UART

interrupt source, does not have an associated flag,

but will generate a UART interrupt when an address

detect condition occurs if its function is enabled by

setting the ADDEN bit in the UCR2 register. An RX pin

wake-up, which is also a UART interrupt source, does

not have an associated flag, but will generate a UART

interrupt if the microcontroller is woken up by a low go-

ing edge on the RX pin, if the WAKE and RIE bits in

the UCR2 register are set. Note that in the event of an

RX wake-up interrupt occurring, there will be a delay

of 1024 system clock cycles before the system re-

sumes normal operation.

Note that the USR register flags are read only and

cannot be cleared or set by the application program,

neither will they be cleared when the program jumps

to the corresponding interrupt servicing routine, as is

the case for some of the other interrupts. The flags will

be cleared automatically when certain actions are

taken by the UART, the details of which are given in

the UART register section. The overall UART interrupt

can be disabled or enabled by the EURI bit in the

INTC1 interrupt control register to prevent a UART in-

terrupt from occurring.

� Address detect mode

Setting the Address Detect Mode bit, ADDEN, in the

UCR2 register, enables this special mode. If this bit is

enabled then an additional qualifier will be placed on

the generation of a Receiver Data Available interrupt,

which is requested by the RXIF flag. If the ADDEN bit

is enabled, then when data is available, an interrupt

will only be generated, if the highest received bit has a

high value. Note that the EURI and EMI interrupt en-

able bits must also be enabled for correct interrupt

generation. This highest address bit is the 9th bit if

BNO=1 or the 8th bit if BNO=0. If this bit is high, then

the received word will be defined as an address rather

than data. A Data Available interrupt will be generated

every time the last bit of the received word is set. If the

ADDEN bit is not enabled, then a Receiver Data Avail-

able interrupt will be generated each time the RXIF

flag is set, irrespective of the data last bit status. The

address detect mode and parity enable are mutually

exclusive functions. Therefore if the address detect

mode is enabled, then to ensure correct operation, the

parity function should be disabled by resetting the par-

ity enable bit to zero.

ADDEN
Bit 9 if BNO=1,

Bit 8 if BNO=0

UART Interrupt

Generated

0
0 �

1 �

1
0 X

1 �

ADDEN Bit Function

� UART operation in power down mode

When the MCU is in the Power Down Mode the UART

will cease to function. When the device enters the

Power Down Mode, all clock sources to the module

are shutdown. If the MCU enters the Power Down

Mode while a transmission is still in progress, then the

transmission will be terminated and the external TX

transmit pin will be forced to a logic high level. In a

similar way, if the MCU enters the Power Down Mode

while receiving data, then the reception of data will

likewise be terminated. When the MCU enters the

Power Down Mode, note that the USR, UCR1, UCR2,

transmit and receive registers, as well as the BRG

register will not be affected.

The UART function contains a receiver RX pin

wake-up function, which is enabled or disabled by the

WAKE bit in the UCR2 register. If this bit, along with

the UART enable bit, UARTEN, the receiver enable

bit, RXEN and the receiver interrupt bit, RIE, are all

set before the MCU enters the Power Down Mode,

then a falling edge on the RX pin will wake-up the

MCU from the Power Down Mode. Note that as it

takes 1024 system clock cycles after a wake-up, be-

fore normal microcontroller operation resumes, any

data received during this time on the RX pin will be ig-

nored.

For a UART wake-up interrupt to occur, in addition to

the bits for the wake-up being set, the global interrupt

enable bit, EMI, and the UART interrupt enable bit,

EURI must also be set. If these two bits are not set

then only a wake up event will occur and no interrupt

will be generated. Note also that as it takes 1024 sys-

tem clock cycles after a wake-up before normal

microcontroller resumes, the UART interrupt will not

be generated until after this time has elapsed.

HT46RU26/HT46CU26

Rev. 1.00 53 June 12, 2008

Interrupts

Interrupts are an important part of any microcontroller

system. When an external event or an internal function

such as a Timer/Event Counter, UART, I2C, SPI Bus,

Time-base, real-time clock or an A/D converter requires

microcontroller attention, their corresponding interrupt

will enforce a temporary suspension of the main pro-

gram allowing the microcontroller to direct attention to

their respective needs. The external interrupt is con-

trolled by the action of the external INT pin.

Interrupt Registers

Overall interrupt control, which means interrupt enabling

and request flag setting, is controlled by the INTC0,

INTC1 and MFIC registers, which are located in the

Data Memory. By controlling the appropriate enable bits

in these registers each individual interrupt can be en-

abled or disabled. Also when an interrupt occurs, the

corresponding request flag will be set by the

microcontroller. The global enable flag if cleared to zero

will disable all interrupts.

Interrupt Operation

A Timer/Event Counter overflow, an end of A/D conver-

sion, the external interrupt line being pulled low, a

UART, SPI, I2C Bus or multi-function interrupt will all

generate an interrupt request by setting their corre-

sponding request flag, if their appropriate interrupt en-

able bit is set. When this happens, the Program

Counter, which stores the address of the next instruction

to be executed, will be transferred onto the stack. The

Program Counter will then be loaded with a new ad-

dress which will be the value of the corresponding inter-

rupt vector. The microcontroller will then fetch its next

instruction from this interrupt vector. The instruction at

this vector will usually be a JMP statement which will

jump to another section of program which is known as

the interrupt service routine. Here is located the code to

control the appropriate interrupt. The interrupt service

routine must be terminated with a RETI statement,

which retrieves the original Program Counter address

from the stack and allows the microcontroller to continue

with normal execution at the point where the interrupt

occurred.

The various interrupt enable bits, together with their as-

sociated request flags, are shown in the following dia-

gram with their order of priority.

Once an interrupt subroutine is serviced, all the other in-

terrupts will be blocked, as the EMI bit will be cleared au-

tomatically. This will prevent any further interrupt nesting

from occurring. However, if other interrupt requests oc-

cur during this interval, although the interrupt will not be

immediately serviced, the request flag will still be re-

corded. If an interrupt requires immediate servicing

while the program is already in another interrupt service

routine, the EMI bit should be set after entering the rou-

tine, to allow interrupt nesting. If the stack is full, the in-

terrupt request will not be acknowledged, even if the

related interrupt is enabled, until the Stack Pointer is

decremented. If immediate service is desired, the stack

must be prevented from becoming full.

1 2 �
) � � � � � � � �

	 � �

 � � � �

 � � �
 � ' � � � � � � 8 � � � �

1 ? � � � � � � � �
 � � � �

2 ? � � � � � � � � � � � � � �

(� � �

 �
 � � � �
 � � �
 � � � � � 9
	 � �
 � �
 � # � �

 � � � � � F 2 F � �
 �
 � # � �
 � � � �
�
 � � �
 � � � � � � �
 � � �
 � � �
 � �
 � �
 � � �

� - � 2

8 � 2 �
8 8 � @
8 % � �
8 � � �

8 	 �

� � �
 � ! 8 &
 �
 � � � � �

 � � 2 � � �

 � � �
 � 8 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

� � �
 � ! 8 &
 �
 � � � � �

 � � 2 � � �

 � � �
 � �
) �
 �
 � (� � �
1 ? � � �
 � &

2 ? � � � � �
 � &

8 � (@
% � (@
� � (

� � 2 (8 � 1 �� 1 (

8 <

 � � � � � � �

 � � �
 � 8 � � � �
 @ � % ! � � � � � &
 �

 � � � �

 � � �
 @ � � � � � � �

 � � �
 � 8 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

8 <

 � � � � � � �

 � � �
 @ � % ! � � � � � &
 �

 � � � �

 � � �
 @ � � � � � � �

 � � �
 � �
) �
 �
 � (� � �
1 ? � � �
 � &

2 ? � � � � �
 � &

� � �
 � ! 8 &
 �
 � � � � �

 � � 1 � � �

 � � �
 � 8 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

� � �
 � ! 8 &
 �
 � � � � �

 � � 1 � � �

 � � �
 � �
) �
 �
 � (� � �
1 ? � � �
 � &

2 ? � � � � �
 � &

Interrupt Control 0 Register

HT46RU26/HT46CU26

Rev. 1.00 54 June 12, 2008

1 2 �
 * � � � � � � � � �

� % � � � 4 � � � � �

 � � �
 �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

� * � � � � � � � � � � �

 � � �
 �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

	 � �
 � � D � � �
 � � � � � �

 � � �
 �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� % � � � 4 � � � � �

 � � �
 � �
) �
 �
 � D � � �
1 ? � � �
 � &

2 ? � � � � �
 � &

� * � � � � � � � � � � �

 � � �
 � �
) �
 �
 � D � � �
1 ? � � �
 � &

2 ? � � � � �
 � &

	 � �
 � � D � � �
 � � � � � �

 � � �
 � �
) �
 �
 � D � � �
1 ? � � �
 � &

2 ? � � � � �
 � &

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� - � 2

8 	 (�
8 B � @
8 � � �

8 � � �� � (
B � (@
� � (

	 ((

Interrupt Control 1 Register

(% 1
 � � � � � � � � �

� � �
 � ! 8 &
 �
 � � � � �

 � � * � � �

 � � �
 �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

� � �
 � 4 � �
 � � �

 � � �
 �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

�
 � � � � � �
 � � � � � + � � �

 � � �
 �
 � � � �

1 ? �
 � � � �

2 ? � � � � � � �

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� � �
 � ! 8 &
 �
 � � � � �

 � � * � � �

 � � �
 � �
) �
 �
 � D � � �
1 ? � � �
 � &

2 ? � � � � �
 � &

� � �
 � 4 � �
 � � �

 � � �
 � �
) �
 �
 � D � � �
1 ? � � �
 � &

2 ? � � � � �
 � &

�
 � � � � � �
 � � � � � + � � �

 � � �
 � �
) �
 �
 � D � � �
1 ? � � �
 � &

2 ? � � � � �
 � &

5 �
 � � � �
 �
 �

 � @ � �
 � � � � � � F 2 F

� - � 2

8 � � � 8 � 4 � 8 � * �� * (� 4 (� � (

Multifunction Interrupt Control Register

HT46RU26/HT46CU26

Rev. 1.00 55 June 12, 2008

% �
 � � �
 � � � � � � � � �
 � �
 � � � � � � � � � � � � �
 < �

D � � � � 4 (@ � � � (� � � � � � * (

	 � � � � � � � � � �
 � �
 � � � � � � � D
 # � �

% �
 � � �
 � � � � � � � � � � � � �
 � � � � � � � �
� � � � �
 � 8 � � � �
 � � 	 � � � � � � �

� � � � � �
 �

B � � �

� �

 � � �

� � � � � � �

8 8 �
8 % � �
8 � � �

� � �
 � ! 8 &
 �
 � � � � �

 � � 2
� �

 � � �
 � �
) �
 �
 � (� � � � � 2 (

8 � 2 �

� � �
 � ! 8 &
 �
 � � � � �

 � � 1
� �

 � � �
 � �
) �
 �
 � (� � � � � 1 (

8 � 1 �

� % � � � 4 � �
� �

 � � �
 � �
) �
 �
 � (� � � � � � (

8 � � �

8 <

 � � � � � � �

 � � �

�
) �
 �
 � (� � � � 8 � (

% ! � � � � � &
 �

 � � � �

 � � �

�
) �
 �
 � (� � � � % � (

� � � � � �

 � � �

�
) �
 �
 � (� � � � � � (

	 � �
 � � D � � �
 � � �
� �

 � � �
 � �
) �
 �
 � (� � � � 	 ((

8 	 (�

8 	 �

" � #

� � �
 � ! 8 &
 �
 � � � � �

 � � *
� �

 � � �
 � �
) �
 �
 � (� � � � � * (

8 � 4 �

�
 � � � � � �
 � � � � � +
� �

 � � �
 � �
) �
 �
 � (� � � � � � (

8 � � �

� � �
 � 4 � �

� �

 � � �
 � �
) �
 �
 � (� � � � � 4 (

8 � * �

� * �
� �

 � � �
 � �
) �
 �
 � (� � � � B � (

� � �
� �

 � � �
 � �
) �
 �
 � (� � � � � � (

8 B �
8 � � �

Interrupt Scheme

HT46RU26/HT46CU26

Rev. 1.00 56 June 12, 2008

Interrupt Priority

Interrupts, occurring in the interval between the rising

edges of two consecutive T2 pulses, will be serviced on

the latter of the two T2 pulses, if the corresponding inter-

rupts are enabled. In case of simultaneous requests, the

following table shows the priority that is applied. These

can be masked by resetting the EMI bit. In the table, for

vector locations 04H and 14H, where more than one in-

terrupt share the same vector, the effective interrupt is

chosen via configuration option.

Interrupt Source Priority Vector

External Interrupt

A/D converter interrupt

SPI Interrupt

1 04H

Timer/Event Counter 0 Overflow 2 08H

Timer/Event Counter 1 Overflow 3 0CH

UART Bus Interrupt 4 10H

I2C Bus Interrupt

SPI Interrupt
5 14H

Multi-function Interrupt:

- Timer/Event Counter 2 Overflow

- Real Time Clock Overflow

- Time Base Overflow

6 18H

In cases where both external and internal interrupts are

enabled and where an external and internal interrupt oc-

curs simultaneously, the external interrupt will always

have priority and will therefore be serviced first. Suitable

masking of the individual interrupts using the interrupt

registers can prevent simultaneous occurrences.

External Interrupt

For an external interrupt to occur, the global interrupt en-

able bit, EMI, and external interrupt enable bit, EEI, must

first be set. An actual external interrupt will take place

when the external interrupt request flag, EIF, is set, a situ-

ation that will occur when a high to low transition appears

on the INT line. The external interrupt pin is pin-shared

with the I/O pin PA5 and can only be configured as an ex-

ternal interrupt pin if the corresponding external interrupt

enable bit in the INTC register has been set. The pin must

also be setup as an input by setting the corresponding

PAC.5 bit in the port control register. When the interrupt is

enabled, the stack is not full and a high to low transition

appears on the external interrupt pin, a subroutine call to

the external interrupt vector at location 04H, will take

place. When the interrupt is serviced, the external inter-

rupt request flag, EIF, will be automatically reset and the

EMI bit will be automatically cleared to disable other inter-

rupts. Note that any pull-high resistor configuration op-

tions on this pin will remain valid even if the pin is used as

an external interrupt input. As this interrupt vector loca-

tion is shared with other interrupts, to be effective it must

be selected via configuration option.

Timer/Event Counter Interrupt

For a Timer/Event Counter generated internal interrupt

to occur, the global interrupt enable bit, EMI, and the

corresponding internal interrupt enable bit must be first

set. For Timer/Event Counter 0 the interrupt enable is bit

2 of the INTC0 register and known as ET0I, for

Timer/Event Counter 1 the interrupt enable is bit 3 of the

INTC0 register and known as ET1I, while for the

Timer/Event Counter 2 the interrupt enable is bit 0 of the

MFIC register and is known as ET2I. An actual

Timer/Event Counter interrupt will be generated when

the Timer/Event Counter interrupt request flag is set,

caused by a timer overflow. For Timer/Event Counter 0

this is bit 5 of the INTC0 register and known as T0F, for

Timer/Event Counter 1 this is bit 6 of the INTC0 register

and is known as T1F, while for Timer/Event Counter 2

this is bit 4 of the MFIC register and is known as T2F. Be-

cause the interrupt vector for Timer/Event Counter 2 is

contained with the Multi-function interrupt, for an inter-

rupt to be generated by Timer/Event Counter 2, the

Multi-function interrupt must also be enabled by setting

the EMFI bit in the INTC1 register. When this is done, a

Timer/Event Counter 2 overflow will also cause the

Multi-function request flag, known as MFF, which is bit 6

of the INTC1 register to be set and in turn generate the

interrupt.

When the master interrupt global enable bit is set, the

stack is not full and the corresponding internal interrupt

enable bit is set, an internal interrupt will be generated

when the corresponding timer overflows. This will create

a subroutine call to location 008H, 00CH and 018H for

Timer/Event Counter 0, 1 and 2 respectively. It should

be noted that the Timer/Event Counter 2 interrupt vector

is included within the Multi-function interrupt as it is

shared with other interrupts. After entering the timer in-

terrupt execution routine, the corresponding interrupt re-

quest flags, T0F or T1F will be reset and the EMI bit will

be cleared to disable other interrupts. For Timer/Event

Counter 2, when its interrupt occurs, the EMI bit will be

cleared to disable other interrupts, however only the

MFF interrupt request flag will be reset. As the T2F flag

will not be automatically reset, it has to be cleared by the

application program.

Time Base Interrupt

For a Time Base interrupt to occur the the global inter-

rupt enable bit, EMI, and the corresponding internal in-

terrupt enable bit, which is bit 1 of the MFIC register,

known as ETBI, must be first set. An actual Time Base

interrupt will be generated when the Time Base interrupt

request flag is set which is bit 5 of the MFIC register and

known as TBF. This will occur when when a time-out sig-

nal is generated from the Time Base. Because the inter-

rupt vector for the Time Base is contained with the

Multi-function interrupt, for an interrupt to be generated

by the Time Base, the Multi-function interrupt must also

HT46RU26/HT46CU26

Rev. 1.00 57 June 12, 2008

be enabled by setting the EMFI bit in the INTC1 register.

When this is done, a Time Base overflow will also cause

the Multi-function request flag, known as MFF, which is

bit 6 of the INTC1 register to be set and in turn generate

the interrupt. When the master interrupt global enable

bit is set, the stack is not full and the corresponding Time

Base interrupt enable bit is set, an internal Time Base in-

terrupt will be generated when a time-out signal is gen-

erated from the Time Base. This will create a subroutine

call to location 018H. It should be noted that the Time

Base interrupt vector is included within the

Multi-function interrupt as it is shared with other inter-

rupts. When a Time Base interrupt occurs, the EMI bit

will be cleared to disable other interrupts, however only

the MFF interrupt request flag will be reset. As the TBF

flag will not be automatically reset, it has to be cleared

by the application program. The purpose of the Time

Base interrupt is to provide an interrupt signal at fixed

time periods. The Time Base interrupt clock source orig-

inates from the internal clock source fS. This fS input

clock first passes through a divider, the division ratio of

which is selected by configuration options to provide

longer Time Base interrupt periods. The Time Base in-

terrupt time-out period ranges from 212/fS~215/fS. The

clock source that generates fS, which in turn controls the

Time Base interrupt period, can originate from three dif-

ferent sources, the RTC oscillator, Watchdog Timer os-

cillator or the System oscillator/4, the choice of which is

determine by the fS clock source configuration option.

Note that if the RTC oscillator is selected as the system

clock, then fS, and correspondingly the Time Base inter-

rupt, will also have the RTC oscillator as its clock

source.

Real Time Clock Interrupt

For a Real Time Clock interrupt to occur the global inter-

rupt enable bit, EMI, and the corresponding internal in-

terrupt enable bit, which is bit 2 of the MFIC register,

known as ERTI, must be first set. An actual Real Time

Clock interrupt will be generated when the Real Time

Clock interrupt request flag is set which is bit 6 of the

MFIC register and known as RTF. When the master in-

terrupt global enable bit is set, the stack is not full and

the corresponding Real Time Clock interrupt enable bit

is set, an internal Real Time Clock interrupt will be gen-

erated when a time-out signal occurs, a subroutine call

to location 018H will be created. Because the interrupt

vector for the Real Time Clock is contained with the

Multi-function interrupt, for an interrupt to be generated

by the Real Time Clock, the Multi-function interrupt must

also be enabled by setting the EMFI bit in the INTC1

register. When this is done, a Real Time Clock overflow

will also cause the Multi-function request flag, known as

MFF, which is bit 6 of the INTC1 register to be set and in

turn generate the interrupt. When a Real Time interrupt

occurs, the EMI bit will be cleared to disable other inter-

rupts, however only the MFF interrupt request flag will

be reset. As the RTF flag will not be automatically reset,

it has to be cleared by the application program. It is im-

portant not to confuse the RTC interrupt with the RTC

oscillator.

Similar in operation to the Time Base interrupt, the pur-

pose of the RTC interrupt is also to provide an interrupt

signal at fixed time periods. The RTC interrupt clock

source originates from the internal clock source fS. This

fS input clock first passes through a divider, the division

ratio of which is selected by programming the appropri-

ate bits in the RTCC register to obtain longer RTC inter-

rupt periods whose value ranges from 28/fS~215/fS. The

clock source that generates fS, which in turn controls the

RTC interrupt period, can originate from three different

sources, the RTC oscillator, Watchdog Timer oscillator

or the System oscillator/4, the choice of which is deter-

mine by the fS clock source configuration option. Note

that if the RTC oscillator is selected as the system clock,

then fS, and correspondingly the RTC interrupt, will also

have the RTC oscillator as its clock source.

Note that the RTC interrupt period is controlled by both

configuration options and an internal register RTCC. A

configuration option selects the source clock for the in-

ternal clock fS, and the RTCC register bits RT2, RT1 and

RT0 select the division ratio. Note that the actual divi-

sion ratio can be programmed from 28 to 215. For details

of the actual RTC interrupt periods, consult the RTCC

register section.

D � � � � � � �

� � � D � � � � �
 � � �

�
 � � �

D � > � ! ,

� � � � � � � � � � �
 � �

� � � � � � � � � � �
 � �

� � � D � � � � �
 � � � � �
 � � �
� � & � �
 � � � � * 1 * G * 1 /

D � � � �
 � 4 � �
 � � �

 � � �

* 1 * ! D � G * 1 / ! D �

Time Base Interrupt

D � � � � � � �

� � � D � � � � �
 � � �

�
 � � �

D � > � ! ,

� � � � � � � � � � �
 � �

� � � � � � � � � � �
 � �

� � & � �
 � � � � * � G * 1 /

: �

 � � � � � � � �
�
 � � �

 � � ;

D � � � � � � �

 � � �

* � ! D � G * 1 / ! D �

� � * G � � 2

RTC Interrupt

HT46RU26/HT46CU26

Rev. 1.00 58 June 12, 2008

Note after a wake-up the system requires 1024 clock cy-

cles to resume normal operation. If the 32768Hz RTC

oscillator is also selected as the system clock source,

then for RTC interrupt applications that are timing sensi-

tive after a wake-up, precautions should be taken when

selecting the 28, 29 and 210 RTC interrupt division. For

these division ratios, after a wake-up, some following

RTC interrupt events will be missed during this 1024

clock cycle period.

A/D Interrupt

For an A/D interrupt to occur, the global interrupt enable

bit, EMI, and the corresponding interrupt enable bit,

EADI, must be first set. An actual A/D interrupt will take

place when the A/D converter request flag, ADF, is set, a

situation that will occur when an A/D conversion process

has completed. When the interrupt is enabled, the stack

is not full and an A/D conversion process finishes exe-

cution, a subroutine call to the A/D interrupt vector at lo-

cation 04H, will take place. When the interrupt is

serviced, the A/D interrupt request flag, ADF, will be au-

tomatically reset and the EMI bit will be automatically

cleared to disable other interrupts. As this interrupt vec-

tor location is shared with other interrupts, to be effec-

tive it must be selected via configuration option.

UART Interrupt

For a UART interrupt to occur, the global interrupt en-

able bit, EMI, and its corresponding UART interrupt en-

able bit, EURI, which is bit 0 of the INTC1 register, must

first be set. An actual UART interrupt will be generated

when the UART interrupt request flag URF is set, which

is bit 4 of the INTC1 register. When the master interrupt

global bit is set, the stack is not full and the correspond-

ing EURI interrupt enable bit is set, a UART internal in-

terrupt will be generated when a UART interrupt request

occurs. This will create a subroutine call to its corre-

sponding vector location 010H. When a UART internal

interrupt occurs, the interrupt request flag URF will be

reset and the EMI bit cleared to disable other interrupts.

There are various UART conditions, which can generate

a UART interrupt, such as transmit data register empty

(TXIF), received data available (RXIF), transmission

idle (TIDLE), overrun error (OERR) as well as address

detected These conditions are reflected by various flags

within the UART status register, known as the USR reg-

ister. Various bits in the UART setup register, UCR2, de-

termine if these flags can generate a UART interrupt

signal. More details on these two registers and how they

influence the operation of the UART interrupt can be

found in the UART section.

I2C Bus interrupt

For an I2C interrupt to occur, the global interrupt enable

bit, EMI, and the corresponding interrupt enable bit EHI,

which is bit 1 of the INTC1 register, must be first set. An

actual I2C interrupt will be generated when the I2C inter-

rupt request flag, which is bit 5 of the INTC1 register,

and known as HIF. When the master interrupt global en-

able bit is set, the stack is not full and the corresponding

I2C interrupt enable bit is set, an internal interrupt will be

generated when a matching I2C slave address is re-

ceived or from the completion of an I2C data byte trans-

fer. This will create a subroutine call to location 14H.

When an I2C interrupt occurs, the interrupt request flag

HIF will be reset and the EMI bit will be cleared to dis-

able other interrupts. As this interrupt vector location is

shared with other interrupts, to be effective it must be

selected via configuration option.

SPI Interrupt

For an SPI interrut to occur, the global interrupt enable

bit, EMI, and the corresponding interrupt enable bit ESII,

which is bit 1 of the INTC0/INTC1 register, must be first

set. An actual SPI interrupt will be generated when the

SPI interrupt request flag, which is bit 4/bit 5 of the

INTC0/ INTC1 register, and known as SIF. When the

master interrupt global enable bit is set, the stack is not

full and the corresponding SPI interrupt enable bit is set,

an internal interrupt will be generated. This will create a

subroutine call to location 04H or 14H. When an SPI in-

terrupt occurs, the interrupt request flag SIF will be reset

and the EMI bit will be cleared to disable other inter-

rupts. As this interrupt vector location is shared with

other interrupts, to be effective it must be selected via

configuration option.

Multi-Function Interrupt

An additional interrupt known as the Multi-function inter-

rupt is provided. Unlike the other interrupts, this interrupt

has no independent source, but rather is formed from

three other existing interrupt sources, namely the Time

Base interrupt, the Real Time Clock interrupt and the

Timer/Event Counter 2 interrupt. The Multi-function in-

terrupt is enabled by setting the EMFI bit, which is bit 2

of the INTC1 register. An actual Multi-function interrupt

will be generated when the Multi-function interrupt re-

quest flag MFF is set, this is bit 6 of the INTC1 register.

When the master interrupt global bit is set, the stack is

not full and the corresponding EMFI interrupt enable bit

is set, a Multi-Function internal interrupt will be gener-

ated when either a Time Base overflow, a Real Time

Clock overflow or a Timer/Event Counter 2 overflow oc-

curs. This will create a subroutine call to its correspond-

ing vector location 018H. When a Multi-function internal

interrupt occurs, the Multi-Function request flag MFF

will be reset and the EMI bit will be cleared to disable

other interrupts. However, it must be noted that the re-

quest flags from the original source of the Multi-function

interrupt, namely the Time-Base, Real Time Clock or

Timer/Event Counter 2, will not be automatically reset

and must be manually reset by the user.

HT46RU26/HT46CU26

Rev. 1.00 59 June 12, 2008

It should also be noted that there is no independent in-

terrupt vectors for the Time Base interrupt, the Real

Time Clock interrupt or the Timer/Event Counter 2 inter-

rupt because all three interrupts use the common

Multi-function interrupt Vector.

Programming Considerations

By disabling the interrupt enable bits, a requested inter-

rupt can be prevented from being serviced, however,

once an interrupt request flag is set, it will remain in this

condition in the INTC register until the corresponding in-

terrupt is serviced or until the request flag is cleared by a

software instruction.

It is recommended that programs do not use the �CALL

subroutine� instruction within the interrupt subroutine.

Interrupts often occur in an unpredictable manner or

need to be serviced immediately in some applications. If

only one stack is left and the interrupt is not well con-

trolled, the original control sequence will be damaged

once a �CALL subroutine� is executed in the interrupt

subroutine.

All of these interrupts have the capability of waking up

the processor when in the Power Down Mode.

Only the Program Counter is pushed onto the stack. If

the contents of the register or status register are altered

by the interrupt service program, which may corrupt the

desired control sequence, then the contents should be

saved in advance.

Reset and Initialisation

A reset function is a fundamental part of any

microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside

parameters. The most important reset condition is after

power is first applied to the microcontroller. In this case,

internal circuitry will ensure that the microcontroller, af-

ter a short delay, will be in a well defined state and ready

to execute the first program instruction. After this

power-on reset, certain important internal registers will

be set to defined states before the program com-

mences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to

begin program execution from the lowest Program

Memory address.

In addition to the power-on reset, situations may arise

where it is necessary to forcefully apply a reset condition

when the microcontroller is running. One example of this

is where after power has been applied and the

microcontroller is already running, the RES line is force-

fully pulled low. In such a case, known as a normal oper-

ation reset, some of the microcontroller registers remain

unchanged allowing the microcontroller to proceed with

normal operation after the reset line is allowed to return

high. Another type of reset is when the Watchdog Timer

overflows and resets the microcontroller. All types of re-

set operations result in different register conditions be-

ing setup.

Another reset exists in the form of a Low Voltage Reset,

LVR, where a full reset, similar to the RES reset is imple-

mented in situations where the power supply voltage

falls below a certain threshold.

Reset Functions

There are five ways in which a microcontroller reset can

occur, through events occurring both internally and ex-

ternally:

� Power-on Reset

The most fundamental and unavoidable reset is the

one that occurs after power is first applied to the

microcontroller. As well as ensuring that the Program

Memory begins execution from the first memory ad-

dress, a power-on reset also ensures that certain

other registers are preset to known conditions. All the

I/O port and port control registers will power up in a

high condition ensuring that all pins will be first set to

inputs.

Although the microcontroller has an internal RC reset

function, if the VDD power supply rise time is not fast

enough or does not stabilise quickly at power-on, the

internal reset function may be incapable of providing

proper reset operation. For this reason it is recom-

mended that an external RC network is connected to

the RES pin, whose additional time delay will ensure

that the RES pin remains low for an extended period

to allow the power supply to stabilise. During this time

delay, normal operation of the microcontroller will be

inhibited. After the RES line reaches a certain voltage

value, the reset delay time tRSTD is invoked to provide

an extra delay time after which the microcontroller will

begin normal operation. The abbreviation SST in the

figures stands for System Start-up Timer.

For most applications a resistor connected between

VDD and the RES pin and a capacitor connected be-

tween VSS and the RES pin will provide a suitable ex-

ternal reset circuit. Any wiring connected to the RES

pin should be kept as short as possible to minimise

any stray noise interference.

� 8 �

$ � �

� � � � � � �
 � � �

� �

 � � � � � �
 �

2 9 3 � $ � �

 � � � �

Power-On Reset Timing Chart

� 8 �

$ � �

$ � �

2 9 1 � (

1 2 2 + �

Basic Reset Circuit

HT46RU26/HT46CU26

Rev. 1.00 60 June 12, 2008

For applications that operate within an environment

where more noise is present the Enhanced Reset Cir-

cuit shown is recommended.

More information regarding external reset circuits is

located in Application Note HA0075E on the Holtek

website.

� RES Pin Reset

This type of reset occurs when the microcontroller is

already running and the RES pin is forcefully pulled

low by external hardware such as an external switch.

In this case as in the case of other reset, the Program

Counter will reset to zero and program execution initi-

ated from this point.

� Low Voltage Reset � LVR

The microcontroller contains a low voltage reset circuit

in order to monitor the supply voltage of the device,

which is selected via a configuration option. If the supply

voltage of the device drops to within a range of

0.9V~VLVR such as might occur when changing the bat-

tery, the LVR will automatically reset the device inter-

nally. The LVR includes the following specifications: For

a valid LVR signal, a low voltage, i.e., a voltage in the

range between 0.9V~VLVR must exist for greater than the

value tLVR specified in the A.C. characteristics. If the low

voltage state does not exceed 1ms, the LVR will ignore it

and will not perform a reset function.

� Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal opera-

tion is the same as a hardware RES pin reset except

that the Watchdog time-out flag TO will be set to �1�.

� Watchdog Time-out Reset during Power Down

The Watchdog time-out Reset during Power Down is

a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Pro-

gram Counter and the Stack Pointer will be cleared to

�0� and the TO flag will be set to �1�. Refer to the A.C.

Characteristics for tSST details.

Reset Initial Conditions

The different types of reset described affect the reset

flags in different ways. These flags, known as PDF and

TO are located in the status register and are controlled

by various microcontroller operations, such as the

Power Down function or Watchdog Timer. The reset

flags are shown in the table:

TO PDF RESET Conditions

0 0 RES reset during power-on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during Power Down

Note: �u� stands for unchanged

� 8 �

� � � � � � �
 � � �

� �

 � � � � � �
 �

2 9 3 � $ � �

2 9 , � $ � �

 � � � �

RES Reset Timing Chart

� 8 �

2 9 1 � (

1 2 2 + �

$ � �

$ � �

2 9 2 1 � (

1 2 + �

Enhanced Reset Circuit

� � � � � � �
 � � �

� � � � � � �
 � � �

� �

 � � � � � �
 �

 � � � �

WDT Time-out Reset during Normal Operation

Timing Chart

� � � � � � �
 � � �

� � � � � � �
 � � �

 � � �

WDT Time-out Reset during Power Down

Timing Chart

" $ �

� � � � � � �
 � � �

� �

 � � � � � �
 �

 � � � �

Low Voltage Reset Timing Chart

HT46RU26/HT46CU26

Rev. 1.00 61 June 12, 2008

The following table indicates the way in which the various components of the microcontroller are affected after a

power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT Clear after reset, WDT begins counting

Timer/Event Counter Timer Counter will be turned off

Prescaler The Timer Counter Prescaler will be cleared

Input/Output Ports I/O ports will be setup as inputs

Stack Pointer Stack Pointer will point to the top of the stack

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable

continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller

is in after a particular reset occurs. The following table describes how each type of reset affects each of the

microcontroller internal registers. Note that where more than one package type exists the table will reflect the situation

for the larger package type.

Register
Reset

(Power On)

RES or LVR

Reset

WDT Time-out

(Normal Operation)

WDT Time-out

(HALT)*

MP0 x u u u u u u u u

MP1 x u u u u u u u u

BP 0 u 0 0 0 u u

ACC x x x x x x x x u

TBLP x x x x x x x x u

TBLH x x x x x x x x u

RTCC � � � 0 � 1 1 1 � � � 0 � 1 1 1 � � � 0 � 1 1 1 � � u u u u u u

STATUS � � 0 0 x x x x � � u u u u u u � � 1 u u u u u � � 1 1 u u u u

INTC0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

TMR0H x u u u u u u u u

TMR0L x u u u u u u u u

TMR0C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u u u u u u u

TMR1H x u u u u u u u u

TMR1L x u u u u u u u u

TMR1C 0 0 � 0 1 � � � 0 0 � 0 1 � � � 0 0 � 0 1 � � � u u � u u � � �

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC 1 u u u u u u u u

PCC 1 u u u u u u u u

PD 1 u u u u u u u u

PDC 1 u u u u u u u u

PWM0 x u u u u u u u u

PWM1 x u u u u u u u u

HT46RU26/HT46CU26

Rev. 1.00 62 June 12, 2008

Register
Reset

(Power On)

RES or LVR

Reset

WDT Time-out

(Normal Operation)

WDT Time-out

(HALT)*

PWM2 x u u u u u u u u

PWM3 x u u u u u u u u

INTC1 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � u u u � u u u

TBHP x x x x x x x x u

HADR x x x x x x x � x x x x x x x � x x x x x x x � u u u u u u u �

HCR 0 � � 0 0 � � � 0 � � 0 0 � � � 0 � � 0 0 � � � u � � u u � � �

HSR 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 1 0 0 � � 0 � 1 u u u u u u u u

HDR x u u u u u u u u

ADRL x x x x � � � � x x x x � � � � x x x x � � � � u u u u � � � �

ADRH x u u u u u u u u

ADCR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

ACSR 1 � � � � � 0 0 1 � � � � � 0 0 1 � � � � � 0 0 u � � � � � u u

PF 1 u u u u u u u u

PFC 1 u u u u u u u u

PG 1 u u u u u u u u

PGC 1 u u u u u u u u

TMR2 x u u u u u u u u

TMR2C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

MFIC � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � u u u � u u u

USR 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 u u u u u u u u

UCR1 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 u u u u u u u u

UCR2 0 u u u u u u u u

TXR/RXR x u u u u u u u u

BRG x u u u u x x x x

SBCR 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 u u u u u u u u

SBDR x u u u u u u u u

�u� stands for unchanged

�x� stands for unknown

��� stands for unimplemented

HT46RU26/HT46CU26

Rev. 1.00 63 June 12, 2008

Oscillator

Various oscillator options offer the user a wide range of

functions according to their various application require-

ments. Two types of system clocks can be selected

while various clock source options for the Watchdog

Timer are provided for maximum flexibility. All oscillator

options are selected through the configuration options.

The two methods of generating the system clock are:

� External crystal/resonator oscillator

� External RC oscillator

One of these two methods must be selected using the

configuration options.

More information regarding the oscillator is located in

Application Note HA0075E on the Holtek website.

External Crystal/Resonator Oscillator

The simple connection of a crystal across OSC1 and

OSC2 will create the necessary phase shift and feed-

back for oscillation, and will normally not require exter-

nal capacitors. However, for some crystals and most

resonator types, to ensure oscillation and accurate fre-

quency generation, it may be necessary to add two

small value external capacitors, C1 and C2. The exact

values of C1 and C2 should be selected in consultation

with the crystal or resonator manufacturer�s specifica-

tion. The external parallel feedback resistor, Rp, is nor-

mally not required but in some cases may be needed to

assist with oscillation start up.

Internal Ca, Cb, Rf Typical Values @ 5V, 25�C

Ca Cb Rf

11~13pF 13~15pF 470k	

Oscillator Internal Component Values

Crystal Oscillator C1 and C2 Values

Crystal Frequency C1 C2 CL

8MHz TBD TBD TBD

4MHz TBD TBD TBD

1MHz TBD TBD TBD

Note: 1. C1 and C2 values are for guidance only.

2. CL is the crystal manufacturer specified

load capacitor value.

Crystal Recommended Capacitor Values

Resonator C1 and C2 Values

Resonator Frequency C1 C2

3.58MHz TBD TBD

1MHz TBD TBD

455kHz TBD TBD

Note: C1 and C2 values are for guidance only.

Resonator Recommended Capacitor Values

External RC Oscillator

Using the external system RC oscillator requires that a

resistor, with a value between 24k	 and 1M	, is con-

nected between OSC1 and ground, and a capacitor is

connected to VDD. The generated system clock divided

by 4 will be provided on OSC2 as an output which can be

used for external synchronization purposes. Note that as

the OSC2 output is an NMOS open-drain type, a pull high

resistor should be connected if it to be used to monitor the

internal frequency. Although this is a cost effective oscil-

lator configuration, the oscillation frequency can vary with

VDD, temperature and process variations and is there-

fore not suitable for applications where timing is critical or

where accurate oscillator frequencies are required.For

the value of the external resistor ROSC refer to the Holtek

website for typical RC Oscillator vs. Temperature and

VDD characteristics graphics. Note that it is the only

microcontroller internal circuitry together with the external

resistor, that determine the frequency of the oscillator.

The external capacitor shown on the diagram does not

influence the frequency of oscillation.

� � � 1

� � � *

� D

� � � � �

 � � � �
� � � � � �
 �

1 � � � � � � &

 " � & & � � � �

 � � " � � �

� 1

� *

� �

� �

�

5 �

 ? 1 9 � � � � � � � � � � � � � � � � �
 � �
) � � �
 � 9
* 9 � % �
 � � � � � � � �
 � � � � # � � � � � 1 ! � � � * � � � � � � � &
 � � � � � � � �
 � �
� � � � � � � � �
 � � �
 � � D � � � � � � � � - (9

Crystal/Resonator Oscillator

� � � 1

� � � *D � > � ! , � 5 	 � � � �
 � � � � � � �

, - 2 (

$ � �

� � � �

RC Oscillator

HT46RU26/HT46CU26

Rev. 1.00 64 June 12, 2008

External RTC Oscillator

When the microcontroller enters the Power Down Mode,

the system clock is switched off to stop microcontroller

activity and to conserve power. However, in many

microcontroller applications it may be necessary to keep

some internal functions such as timers operational even

when the microcontroller is in the Power Down Mode. To

do this, a 32768Hz oscillator, also known as the Real

Time Clock or RTC oscillator, is provided. To implement

this clock, the OSC3 and OSC4 pins should be con-

nected to a 32768Hz crystal. However, for some crys-

tals, to ensure oscillation and accurate frequency

generation, it may be necessary to add two small value

external capacitors, C1 and C2. The exact values of C1

and C2 should be selected in consultation with the crys-

tal or resonator manufacturer�s specification. The exter-

nal parallel feedback resistor, Rp, is normally not

required but in some cases may be needed to assist

with oscillation start up. Using the slower 32768Hz oscil-

lator as the system oscillator will of course use less

power and is known as the Slow Mode.

Internal Ca, Cb, Rf Typical Values @ 5V, 25�C

Ca Cb Rf

TBD TBD TBD

RTC Oscillator Internal Component Values

RTC Oscillator C1 and C2 Values

Crystal Frequency C1 C2 CL

32768Hz TBD TBD TBD

Note: 1. C1 and C2 values are for guidance only.

2. CL is the crystal manufacturer specified

load capacitor value.

32768 Hz Crystal Recommended Capacitor Values

When the system enters the Power Down Mode, the

32768Hz oscillator will keep running and if it is selected

as the Timer and Watchdog Timer source clock, will also

keep these functions operational.

During power up there is a time delay associated with

the RTC oscillator, waiting for it to start up. The QOSC

bit in the RTCC register, is provided to give a quick

start-up function and can be used to minimise this delay.

During a power up condition, this bit will be cleared to 0

which will initiate the RTC oscillator quick start-up func-

tion. However, as there is additional power consumption

associated with this quick start-up function, to reduce

power consumption after start up takes place, it is rec-

ommended that the application program should set the

QOSC bit high about 2 seconds after power on. It should

be noted that, no matter what condition the QOSC bit is

set to, the RTC oscillator will always function normally,

only there is more power consumption associated with

the quick start-up function.

Watchdog Timer Oscillator

The WDT oscillator is a fully self-contained free running

on-chip RC oscillator with a typical period of 65�s at 5V

requiring no external components. When the device en-

ters the Power Down Mode, the system clock will stop

running but the WDT oscillator continues to free-run and

to keep the watchdog active. However, to preserve

power in certain applications the WDT oscillator can be

disabled via a configuration option.

� � � 0

� � � ,

� D

� � � � �

 � � � �
� � � � � �
 �

� 1

� *

� �

� �

�

5 �

 ? 1 9 � � � � � � � � � � � � � � � � �
 � �
) � � �
 � 9
* 9 � % �
 � � � � � � � �
 � � � � # � � � � � 0 ! � � � , � � � � � � � &
 � � � � � � � �
 � �
� � � � � � � � �
 � � �
 � � D � � � � � � � � - (9

0 * - . � B E

Internal RC Oscillator + External RTC Oscillator

HT46RU26/HT46CU26

Rev. 1.00 65 June 12, 2008

Power Down Mode and Wake-up

Power Down Mode

All of the Holtek microcontrollers have the ability to enter

a Power Down Mode, also known as the HALT Mode or

Sleep Mode. When the device enters this mode, the nor-

mal operating current, will be reduced to an extremely

low standby current level. This occurs because when

the device enters the Power Down Mode, the system

oscillator is stopped which reduces the power consump-

tion to extremely low levels, however, as the device

maintains its present internal condition, it can be woken

up at a later stage and continue running, without requir-

ing a full reset. This feature is extremely important in ap-

plication areas where the MCU must have its power

supply constantly maintained to keep the device in a

known condition but where the power supply capacity is

limited such as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power

Down Mode and that is to execute the �HALT� instruc-

tion in the application program. When this instruction is

executed, the following will occur:

� The system oscillator will stop running and the appli-

cation program will stop at the �HALT� instruction.

� The Data Memory contents and registers will maintain

their present condition.

� The WDT will be cleared and resume counting if the

WDT clock source is selected to come from the WDT

oscillator. The WDT will stop if its clock source origi-

nates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will

be set and the Watchdog time-out flag, TO, will be

cleared.

Standby Current Considerations

As the main reason for entering the Power Down Mode

is to keep the current consumption of the MCU to as low

a value as possible, perhaps only in the order of several

micro-amps, there are other considerations which must

also be taken into account by the circuit designer if the

power consumption is to be minimized. Special atten-

tion must be made to the I/O pins on the device. All

high-impedance input pins must be connected to either

a fixed high or low level as any floating input pins could

create internal oscillations and result in increased cur-

rent consumption. This also applies to devices which

have different package types, as there may be

undonbed pins, which must either be setup as outputs

or if setup as inputs must have pull-high resistors

connected. Care must also be taken with the loads,

which are connected to I/O pins, which are setup as out-

puts. These should be placed in a condition in which

minimum current is drawn or connected only to external

circuits that do not draw current, such as other CMOS

inputs. Also note that additional standby current will also

be required if the configuration options have enabled the

Watchdog Timer internal oscillator.

Wake-up

After the system enters the Power Down Mode, it can be

woken up from one of various sources listed as follows:

� An external reset

� An external falling edge on Port A

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the de-

vice will experience a full system reset, however, if the

device is woken up by a WDT overflow, a Watchdog

Timer reset will be initiated. Although both of these

wake-up methods will initiate a reset operation, the ac-

tual source of the wake-up can be determined by exam-

ining the TO and PDF flags. The PDF flag is cleared by a

system power-up or executing the clear Watchdog

Timer instructions and is set when executing the �HALT�
instruction. The TO flag is set if a WDT time-out occurs,

and causes a wake-up that only resets the Program

Counter and Stack Pointer, the other flags remain in

their original status.

Each pin on Port A can be setup via an individual config-

uration option to permit a negative transition on the pin

to wake-up the system. When a Port A pin wake-up oc-

curs, the program will resume execution at the instruc-

tion following the �HALT� instruction.

If the system is woken up by an interrupt, then two possi-

ble situations may occur. The first is where the related

interrupt is disabled or the interrupt is enabled but the

stack is full, in which case the program will resume exe-

cution at the instruction following the �HALT� instruction.

In this situation, the interrupt which woke-up the device

will not be immediately serviced, but will rather be ser-

viced later when the related interrupt is finally enabled or

when a stack level becomes free. The other situation is

where the related interrupt is enabled and the stack is

not full, in which case the regular interrupt response

takes place. If an interrupt request flag is set to �1� be-

fore entering the Power Down Mode, the wake-up func-

tion of the related interrupt will be disabled.

No matter what the source of the wake-up event is, once

a wake-up situation occurs, a time period equal to 1024

system clock periods will be required before normal sys-

tem operation resumes. However, if the wake-up has

originated due to an interrupt, the actual interrupt sub-

routine execution will be delayed by an additional one or

more cycles. If the wake-up results in the execution of

the next instruction following the �HALT� instruction, this

will be executed immediately after the 1024 system

clock period delay has ended.

HT46RU26/HT46CU26

Rev. 1.00 66 June 12, 2008

Watchdog Timer

The Watchdog Timer is provided to prevent program mal-

functions or sequences from jumping to unknown loca-

tions, due to certain uncontrollable external events such

as electrical noise. It operates by providing a device reset

when the WDT counter overflows. The WDT clock is sup-

plied by one of two sources selected by configuration op-

tion: its own self contained dedicated internal WDT

oscillator or fSYS/4. Note that if the WDT configuration op-

tion has been disabled, then any instruction relating to its

operation will result in no operation.

In the A/D Type series of microcontrollers, all Watchdog

Timer options, such as enable/disable, WDT clock

source and clear instruction type all selected through

configuration options. There are no internal registers as-

sociated with the WDT in the A/D Type MCU series. One

of the WDT clock sources is an internal oscillator which

has an approximate period of 65�s at a supply voltage

of 5V. However, it should be noted that this specified in-

ternal clock period can vary with VDD, temperature and

process variations. The other WDT clock source option

is the fSYS/4 clock. Whether the WDT clock source is its

own internal WDT oscillator, RTC oscillator or from

fSYS/4, it is further divided by 16 via an internal 15-bit

counter and a clearable single bit counter to give longer

Watchdog time-outs. As the clear instruction only resets

the last stage of the divider chain, for this reason the ac-

tual division ratio and corresponding Watchdog Timer

time-out can vary by a factor of two. The exact division

ratio depends upon the residual value in the Watchdog

Timer counter before the clear instruction is executed. It

is important to realise that as there are no independent

internal registers or configuration options associated

with the length of the Watchdog Timer time-out, it is

completely dependent upon the frequency of fSYS/4,

RTC oscillator or the internal WDT oscillator.

If the fSYS/4 clock is used as the WDT clock source, it

should be noted that when the system enters the Power

Down Mode, then the instruction clock is stopped and

the WDT will lose its protecting purposes. For systems

that operate in noisy environments, using the internal

WDT oscillator is strongly recommended.

Under normal program operation, a WDT time-out will

initialise a device reset and set the status bit TO. How-

ever, if the system is in the Power Down Mode, when a

WDT time-out occurs, the TO bit in the status register

will be set and only the Program Counter and Stack

Pointer will be reset. Three methods can be adopted to

clear the contents of the WDT. The first is an external

hardware reset, which means a low level on the RES

pin, the second is using the watchdog software instruc-

tions and the third is via a �HALT� instruction.

There are two methods of using software instructions to

clear the Watchdog Timer, one of which must be chosen

by configuration option. The first option is to use the sin-

gle �CLR WDT� instruction while the second is to use the

two commands �CLR WDT1� and �CLR WDT2�. For the

first option, a simple execution of �CLR WDT� will clear

the WDT while for the second option, both �CLR WDT1�

and �CLR WDT2� must both be executed to successfully

clear the WDT. Note that for this second option, if �CLR

WDT1� is used to clear the WDT, successive executions

of this instruction will have no effect, only the execution of

a �CLR WDT2� instruction will clear the WDT. Similarly

after the �CLR WDT2� instruction has been executed,

only a successive �CLR WDT1� instruction can clear the

Watchdog Timer.

Time Base

The internal time base function provides a periodic

time-out signal which in turn generates an interrupt. Its

time-out period ranges from 212/fS to 215/fS the actual

value is chosen via configuration option. When a time

base time-out occurs, the related interrupt request flags,

MFF in INTC1 and TBF in MFIC, are set. If the time base

interrupt enable bits, EMFI and ETBI, are enabled, and the

stack is not full, a subroutine call to location 18H will occur.

Note that as the TBF flag will not be cleared automatically,

it must be cleared manually by the application program.

Real Time Clock � RTC

The real time clock operates in a similar way to the time

base in that it is used to generate a regular interrupt sig-

nal. Its time-out period ranges from fS/28 to fS/215 the ac-

tual value is chosen by programming the RT0~RT2 bits in

the RTCC register. When an RTC time-out occurs, the re-

lated interrupt request flags, MFF in INTC1 and RTF in

MFIC, are set. If the interrupt enable bits, EMFI and ERTI,

are enabled, and the stack is not full, a subroutine call to

location 18H occurs. Note that as the RTF flag will not be

cleared automatically, it must be cleared manually by the

application program.

D � ! *
�D �

� 6

�

� � 6

�

�

� � � � � �
 � �

� � �

 � � � � � � + ! ,

� � � � � � � � 0 * - . � B E

� � � � � � � � 1 * + B E

	 � � + � �
 � � �

� � � � � �
 � � � �
 �� � & � �
 �
� � 	
� � �

�
 � � �

� � �
 � � �
 � �
 �

* � � ! D � � G � * � � ! D �
* � � ! D � � G � * � � ! D � �
* � � ! D � � G � * � � ! D � �
* � � ! D � � G � * � � ! D � �

1 / 1 .

1 , 1 /

1 0 1 ,

1 * 1 0

Watchdog Timer

HT46RU26/HT46CU26

Rev. 1.00 67 June 12, 2008

Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the device during the program-

ming process. During the development process, these options are selected using the HT-IDE software development

tools. As these options are programmed into the device using the hardware programming tools, once they are selected

they cannot be changed later as the application software has no control over the configuration options. All options must

be defined for proper system function, the details of which are shown in the table.

No. Options

I/O Options

1 PA0~PA7: wake-up enable or disable - bit option

2 PA0~PA7: pull-high enable or disable

3 PB0~PB7: pull-high enable or disable

4 PC0~PC7: pull-high enable or disable

5 PD0~PD4: pull-high enable or disable

6 PF0~PF4: pull-high enable or disable

7 PG0~PG7: pull-high enable or disable

Oscillator Options

8 OSC type selection: RC or crystal

9 fSYS clock source: OSC or RTC oscillator

10 fS internal clock source: RTC oscillator, WDT oscillator or fSYS/4

Time Base

11 Time base time-out period: 212/fS, 213/fS, 214/fS, 215/fS

PFD Options

12 PA3: normal I/O or PFD output

13 PFD clock selection: Timer/Event Counter 0 or Timer/Event Counter 1

PWM Options

14 PD0~PD3: PWM0~PWM3 function selection

15 PWM mode: 6+2 or 7+1 mode selection

WDT Options

16 WDT: enable or disable

17 CLRWDT instructions: 1 or 2 instructions

18
WDT time-out period selection.

WDT time-out period: 212/fS~213/fS, 213/fS~214/fS, 214/fS~215/fS, 215/fS~216/fS.

Interrupt Options

19

Interrupt vector selection.

04H: INT, 14H: I2C

04H: INT, 14H: SPI

04H: A/D, 14H: I2C

04H: A/D, 14H: SPI

04H: SPI, 14H: I2C

I
2
C Bus Options

20 I2C Bus function: enable or disable

Application Circuits

HT46RU26/HT46CU26

Rev. 1.00 68 June 12, 2008

� � � � � � � � 	 � � � �
 � � �

G� 4 2 ! % 5 2

� 4 - ! % 5 -

� % 2 G � % *

� % 0 ! � (�

� % ,

� % / ! � 5 �

� % . ! � � %

� % - ! � � "

� � * G � � /

� � , G � � -

� (2 G � (-

G� � 2 ! � � 	 2

� � 0 ! � � 	 0

� 	 � 2

� 	 � 1

� ' 2 G � ' -

� � 2 ! � 7

� � 1 ! � 7

� � . ! � � � 0

� � - ! � � � ,

� 	 � *

� � � 1

� � � *

� � �
� � � � � �

� 8 �

2 9 1 � (

1 2 2 + �

$ � �

$ � �

2 9 1 � (

$ � �

� � � �

 � � " � � �

� � � 0

� � � ,

0 * - . � B E
� � � � � �

� � � �
 " � & & � � � �
� � " � � � �

� � � �
 " � & & � � � �
� � " � � � �

No. Options

SPI Options

21 SPI function: enable or disable

22 SPI WCOL function: enable or disable

23 SPI CSEN function: enable or disable

24 SPI CPOL function: enable or disable

LVR Options

25 LVR function: enable or disable

HT46RU26/HT46CU26

Rev. 1.00 69 June 12, 2008

Instruction Set

Introduction

Central to the successful operat ion of any

microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to

perform certain operations. In the case of Holtek

microcontrollers, a comprehensive and flexible set of

over 60 instructions is provided to enable programmers

to implement their application with the minimum of pro-

gramming overheads.

For easier understanding of the various instruction

codes, they have been subdivided into several func-

tional groupings.

Instruction Timing

Most instructions are implemented within one instruc-

tion cycle. The exceptions to this are branch, call, or ta-

ble read instructions where two instruction cycles are

required. One instruction cycle is equal to 4 system

clock cycles, therefore in the case of an 8MHz system

oscillator, most instructions would be implemented

within 0.5�s and branch or call instructions would be im-

plemented within 1�s. Although instructions which re-

quire one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instruc-

tions, it is important to realize that any other instructions

which involve manipulation of the Program Counter Low

register or PCL will also take one more cycle to imple-

ment. As instructions which change the contents of the

PCL will imply a direct jump to that new address, one

more cycle will be required. Examples of such instruc-

tions would be �CLR PCL� or �MOV PCL, A�. For the

case of skip instructions, it must be noted that if the re-

sult of the comparison involves a skip operation then

this will also take one more cycle, if no skip is involved

then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program

is one of the most frequently used operations. Making

use of three kinds of MOV instructions, data can be

transferred from registers to the Accumulator and

vice-versa as well as being able to move specific imme-

diate data directly into the Accumulator. One of the most

important data transfer applications is to receive data

from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and

data manipulation is a necessary feature of most

microcontroller applications. Within the Holtek

microcontroller instruction set are a range of add and

subtract instruction mnemonics to enable the necessary

arithmetic to be carried out. Care must be taken to en-

sure correct handling of carry and borrow data when re-

sults exceed 255 for addition and less than 0 for

subtraction. The increment and decrement instructions

INC, INCA, DEC and DECA provide a simple means of

increasing or decreasing by a value of one of the values

in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR

and CPL all have their own instruction within the Holtek

microcontroller instruction set. As with the case of most

instructions involving data manipulation, data must pass

through the Accumulator which may involve additional

programming steps. In all logical data operations, the

zero flag may be set if the result of the operation is zero.

Another form of logical data manipulation comes from

the rotate instructions such as RR, RL, RRC and RLC

which provide a simple means of rotating one bit right or

left. Different rotate instructions exist depending on pro-

gram requirements. Rotate instructions are useful for

serial port programming applications where data can be

rotated from an internal register into the Carry bit from

where it can be examined and the necessary serial bit

set high or low. Another application where rotate data

operations are used is to implement multiplication and

division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to

specified locations using the JMP instruction or to a sub-

routine using the CALL instruction. They differ in the

sense that in the case of a subroutine call, the program

must return to the instruction immediately when the sub-

routine has been carried out. This is done by placing a

return instruction RET in the subroutine which will cause

the program to jump back to the address right after the

CALL instruction. In the case of a JMP instruction, the

program simply jumps to the desired location. There is

no requirement to jump back to the original jumping off

point as in the case of the CALL instruction. One special

and extremely useful set of branch instructions are the

conditional branches. Here a decision is first made re-

garding the condition of a certain data memory or indi-

vidual bits. Depending upon the conditions, the program

will continue with the next instruction or skip over it and

jump to the following instruction. These instructions are

the key to decision making and branching within the pro-

gram perhaps determined by the condition of certain in-

put switches or by the condition of internal data bits.

HT46RU26/HT46CU26

Rev. 1.00 70 June 12, 2008

Bit Operations

The ability to provide single bit operations on Data Mem-

ory is an extremely flexible feature of all Holtek

microcontrollers. This feature is especially useful for

output port bit programming where individual bits or port

pins can be directly set high or low using either the �SET

[m].i� or �CLR [m].i� instructions respectively. The fea-

ture removes the need for programmers to first read the

8-bit output port, manipulate the input data to ensure

that other bits are not changed and then output the port

with the correct new data. This read-modify-write pro-

cess is taken care of automatically when these bit oper-

ation instructions are used.

Table Read Operations

Data storage is normally implemented by using regis-

ters. However, when working with large amounts of

fixed data, the volume involved often makes it inconve-

nient to store the fixed data in the Data Memory. To over-

come this problem, Holtek microcontrollers allow an

area of Program Memory to be setup as a table where

data can be directly stored. A set of easy to use instruc-

tions provides the means by which this fixed data can be

referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range

of other instructions also exist such as the �HALT� in-

struction for Power-down operations and instructions to

control the operation of the Watchdog Timer for reliable

program operations under extreme electric or electro-

magnetic environments. For their relevant operations,

refer to the functional related sections.

Instruction Set Summary

The following table depicts a summary of the instruction

set categorised according to function and can be con-

sulted as a basic instruction reference using the follow-

ing listed conventions.

Table conventions:

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

HT46RU26/HT46CU26

Rev. 1.00 71 June 12, 2008

Mnemonic Description Cycles Flag Affected

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note
None

None

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note
None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the �CLR WDT1� and �CLR WDT2� instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both �CLR WDT1� and

�CLR WDT2� instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m] � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC � ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC � ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m] � ACC + [m]

Affected flag(s) OV, Z, AC, C

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �AND� [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC � ACC �AND� x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC �AND� [m]

Affected flag(s) Z

HT46RU26/HT46CU26

Rev. 1.00 72 June 12, 2008

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack � Program Counter + 1

Program Counter � addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m] � 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i � 0

Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

HT46RU26/HT46CU26

Rev. 1.00 73 June 12, 2008

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m] � [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC � [m]

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m] � ACC + 00H or

[m] � ACC + 06H or

[m] � ACC + 60H or

[m] � ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m] � [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO � 0

PDF � 1

Affected flag(s) TO, PDF

HT46RU26/HT46CU26

Rev. 1.00 74 June 12, 2008

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m] � [m] + 1

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter � addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC � [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC � x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m] � ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC � ACC �OR� [m]

Affected flag(s) Z

HT46RU26/HT46CU26

Rev. 1.00 75 June 12, 2008

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �OR� x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m] � ACC �OR� [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the re-

stored address.

Operation Program Counter � Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter � Stack

ACC � x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending

when the RETI instruction is executed, the pending Interrupt routine will be processed be-

fore returning to the main program.

Operation Program Counter � Stack

EMI � 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � [m].7

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � [m].7

Affected flag(s) None

HT46RU26/HT46CU26

Rev. 1.00 76 June 12, 2008

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � C

C � [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � C

C � [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � [m].0

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � C

C � [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � C

C � [m].0

Affected flag(s) C

HT46RU26/HT46CU26

Rev. 1.00 77 June 12, 2008

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result

of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or

zero, the C flag will be set to 1.

Operation ACC � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] � 1

Skip if [m] = 0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC � [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m] � FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i � 1

Affected flag(s) None

HT46RU26/HT46CU26

Rev. 1.00 78 June 12, 2008

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC � [m] + 1

Skip if ACC = 0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC � ACC � x

Affected flag(s) OV, Z, AC, C

HT46RU26/HT46CU26

Rev. 1.00 79 June 12, 2008

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0 � [m].7 ~ [m].4

ACC.7 ~ ACC.4 � [m].3 ~ [m].0

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC � [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

HT46RU26/HT46CU26

Rev. 1.00 80 June 12, 2008

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �XOR� [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC �XOR� [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC � ACC �XOR� x

Affected flag(s) Z

HT46RU26/HT46CU26

Rev. 1.00 81 June 12, 2008

Package Information

48-pin SSOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 395 � 420

B 291 � 299

C 8 � 12

C� 613 � 637

D 85 � 99

E � 25 �

F 4 � 10

G 25 � 35

H 4 � 12

� 0� � 8�

HT46RU26/HT46CU26

Rev. 1.00 82 June 12, 2008

, �

1

* /

* ,

% 4

�

�

(

� L
'

B

�
8

56-pin SSOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 395 � 420

B 291 � 299

C 8 � 12

C� 720 � 730

D 89 � 99

E � 25 �

F 4 � 10

G 25 � 35

H 4 � 12

� 0� � 8�

HT46RU26/HT46CU26

Rev. 1.00 83 June 12, 2008

/ .

1

%

* 3

* �

4

�

�

(

� L

B

�
8

'

Product Tape and Reel Specifications

Reel Dimensions

SSOP 48W

Symbol Description Dimensions in mm

A Reel Outer Diameter 330
1

B Reel Inner Diameter 100
0.1

C Spindle Hole Diameter
13+0.5

�0.2

D Key Slit Width 2
0.5

T1 Space Between Flange
32.2+0.3

�0.2

T2 Reel Thickness 38.2
0.2

HT46RU26/HT46CU26

Rev. 1.00 84 June 12, 2008

% �4

� 1

� *
�

Carrier Tape Dimensions

SSOP 48W

Symbol Description Dimensions in mm

W Carrier Tape Width 32
0.3

P Cavity Pitch 16
0.1

E Perforation Position 1.75
0.1

F Cavity to Perforation (Width Direction) 14.2
0.1

D Perforation Diameter 2 Min.

D1 Cavity Hole Diameter 1.5+0.25

P0 Perforation Pitch 4
0.1

P1 Cavity to Perforation (Length Direction) 2
0.1

A0 Cavity Length 12
0.1

B0 Cavity Width 16.2
0.1

K1 Cavity Depth 2.4
0.1

K2 Cavity Depth 3.2
0.1

t Carrier Tape Thickness 0.35
0.05

C Cover Tape Width 25.5

HT46RU26/HT46CU26

Rev. 1.00 85 June 12, 2008

�� 1

�

� 1� 2
�

8

(

6 2

4 2

% 2

�

HT46RU26/HT46CU26

Rev. 1.00 86 June 12, 2008

Copyright � 2008 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life

due to malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor (China) Inc. (Dongguan Sales Office)
Building No. 10, Xinzhu Court, (No. 1 Headquarters), 4 Cuizhu Road, Songshan Lake, Dongguan, China 523808
Tel: 86-769-2626-1300
Fax: 86-769-2626-1311

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

