
Cost-Effective I/O 8-Bit OTP MCU

HT48R004
HT48R008

Revision: V1.40 Date: ��������������March 31, 2017

Rev. 1.40 2 March 31, 2017 Rev. 1.40 3 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Table of Contents

Features... 5
CPU Features.. 5
Peripheral Features.. 5

General Description.. 5
Block Diagram... 6
Selection Table.. 6
Pin Assignment... 6
Pin Description... 7
Absolute Maximum Ratings... 8
D.C. Characteristics.. 9
A.C. Characteristics.. 10
Power-on Reset Characteristics.. 10
System Architecture..11

Clocking and Pipelining...11
Program Counter – PC... 12
Stack.. 13
Arithmetic and Logic Unit – ALU.. 13

Program Memory.. 14
Structure... 14
Special Vectors.. 14
Look-up Table... 14
Table Program Example... 15

Data Memory... 17
Structure... 17
Special Purpose Data Memory.. 17

Special Function Registers.. 19
Indirect Addressing Registers – IAR0, IAR1.. 19
Memory Pointers – MP0, MP1... 19
Indirect Addressing Program Example... 19
Accumulator – ACC.. 20
Program Counter Low Register – PCL... 20
Status Register – STATUS... 20
System Control Registers – CTRL0, CTRL1.. 22

Oscillator... 23
System Oscillator Overview... 23
System Clock Configurations... 23
Internal RC Oscillator – HIRC.. 23
Internal 12kHz Oscillator – LIRC.. 23

Rev. 1.40 2 March 31, 2017 Rev. 1.40 3 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Power Down Mode and Wake-up... 24
Power Down Mode... 24
Entering the Power Down Mode.. 24
Standby Current Considerations.. 24
Wake-up... 25

Watchdog Timer.. 26
Watchdog Timer Clock Source... 26
Watchdog Timer Control Registers.. 26
Watchdog Timer Operation.. 27

Reset and Initialization... 28
Reset Functions... 28
Reset Initial Conditions.. 31

Input/Output Ports.. 34
Pull-high Resistors... 35
Port A Wake-up.. 36
I/O Port Control Registers.. 37
Source Current Selection Registers .. 38
Pin-shared Functions... 40
I/O Pin Structures... 40
Programming Considerations... 41

Timer/Event Counters.. 42
Configuring the Timer/Event Counter Input Clock Source... 42
Timer Register – TMR0, TMR1.. 43
Timer Control Register – TMR0C, TMR1C.. 43
Timer Mode.. 45
Event Counter Mode.. 45
Pulse Width Capture Mode.. 46
Prescaler.. 47
PFD Function... 47
I/O Interfacing... 48
Programming Considerations... 48
Timer Program Example.. 49

I2C Interface .. 50
I2C Interface Operation .. 50
I2C Registers.. 51
I2C Bus Communication... 54
I2C Bus Start Signal ... 55
Slave Address ... 55
I2C Bus Read/Write Signal... 55
I2C Bus Slave Address Acknowledge Signal.. 55
I2C Bus Data and Acknowledge Signal.. 56
I2C Time-out Control... 57

Rev. 1.40 4 March 31, 2017 Rev. 1.40 5 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UART Module Serial Interface... 59
UART External Pin Interfacing... 59
UART Data Transfer Scheme.. 59
UART Status and Control Registers.. 60
Baud Rate Generator... 65
UART Setup and Control... 67
UART Interrupt Structure... 72
UART Power Down Mode and Wake-up.. 73

Interrupts... 74
Interrupt Register... 74
Interrupt Operation... 76
Interrupt Priority.. 77
External Interrupt.. 78
Timer/Event Counter Interrupt.. 78
UART Interrupt... 78
I2C Interrupt.. 79
Interrupt Wake-up Function.. 79
Programming Considerations... 79

Application Circuits.. 80
Instruction Set... 81

Introduction.. 81
Instruction Timing... 81
Moving and Transferring Data.. 81
Arithmetic Operations... 81
Logical and Rotate Operation.. 82
Branches and Control Transfer.. 82
Bit Operations.. 82
Table Read Operations.. 82
Other Operations.. 82

Instruction Set Summary... 83
Table Conventions.. 83

Instruction Definition.. 85
Package Information.. 94

16-pin NSOP (150mil) Outline Dimensions.. 95
20-pin SOP (300mil) Outline Dimensions.. 96
24-pin SOP (300mil) Outline Dimensions.. 97

Rev. 1.40 4 March 31, 2017 Rev. 1.40 5 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Features

CPU Features
•	 Operating voltage

♦♦ fSYS = 8MHz: VLVR~5.5V

•	 Up to 0.5μs instruction cycle with 8MHz system clock at VDD =5V

•	 Power down and wake-up functions to reduce power consumption

•	 Two oscillators
♦♦ Internal high speed RC – HIRC
♦♦ Internal low speed RC – LIRC

•	 Fully integrated internal 8MHz oscillator requires no external components

•	 All instructions executed in one or two instruction cycles

•	 Table read instruction

•	 63 powerful instructions

•	 4-level subroutine nesting

•	 Bit manipulation instruction

Peripheral Features
•	 Program Memory: 2K×14 ~ 4K×15

•	 Data Memory: 64×8 ~ 96×8

•	 Watchdog Timer function

•	 Up to 22 bidirectional I/O lines

•	 External interrupt pin shared with I/O pin

•	 Two 8-bit programmable Timer/Event Counters with overflow interrupt and prescaler

•	 Programmable Frequency Divider – PFD

•	 Universal Asynchronous Receiver Transmitter – UART (only for HT48R008)

•	 I2C Function

•	 Low voltage reset function

•	 Wide range of available package types

General Description
The series of devices are 8-bit high performance RISC architecture microcontrollers specifically
designed for the I/O control. The advantages of low power consumption, I/O flexibility, timer
functions, HALT and wake-up functions, watchdog timer, as well as low cost, enhance the versatility
of these devices to suit for a wide range of the I/O control application possibilities such as industrial
control, consumer products and subsystem controllers, etc.

Rev. 1.40 6 March 31, 2017 Rev. 1.40 7 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Block Diagram

8-bit
RISC
�CU
Co�e

UARTI�C

Inte��upt
Cont�olle�

Reset
Ci��uit

Inte�nal RC
Os�illato�s

8-bit
Time�s

Wat��dog
Time�

Low Voltage
Reset

RA�
Data

�emo�y

PFD
D�ive�

OTP
P�og�am
�emo�y

I/O
Po�ts

Fo� HT48R008

Selection Table
Most features are common to all devices, the main feature distinguishing them are Program Memory
and Data Memory capacity, I/O count, UART Interface and package types. The following table
summarises the main features of each device.

Part No. Program
Memory

Data
Memory I/O External

Interrupt
8-bit

Timer PFD I2C UART Stack Package

HT48R004 2K×14 64×8 18 1 2 √ √ – 4 16NSOP
20SOP

HT48R008 4K×15 96×8 22 1 2 √ √ √ 4 24SOP

Note: As devices exist in more than one package format, the table reflects the situation for the
package with the most pins.

Pin Assignment

HT48R004
16 NSOP-A

HT48R004
20 SOP-A

HT48R008
24 SOP-A

PB7
PB6
PB5
PB4

PA4/TX
PC5/SCL
PC4/SDA

PC3
PC2
PC1
PC0
PA3

PB3
PB2
PB1
PB0
PA5/RX
PA6/PFD
PA7/RES
VDD
VSS
PA0/TMR1
PA1/TMR0
PA2/INT

24
23
22
21
20
19
18
17
16
15
14
13

1
2
3
4
5
6
7
8
9
10
11
12

PC0

PC5/SCL
PA7/RES
VDD
VSS
PA0/TMR1

PA6/PFD

PC1

PA2/INT

PA5

PC4/SDA
PC3
PC2

PA1/TMR0
PA3

PA4 16
15
14
13
12
11
10
9

1
2
3
4
5
6
7
8

PA7/RES
VDD
VSS
PA0/TMR1

PA6/PFD

PA2/INT

PA5

PA1/TMR0PC0

PC5/SCL

PC1

PC4/SDA
PC3
PC2

PA3

PA4

PB5
PB4

PB1
PB0

20
19
18
17
16
15
14
13
12
11

1
2
3
4
5
6
7
8
9
10

Note: If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right
side of the “/” sign can be used for higher priority.

Rev. 1.40 6 March 31, 2017 Rev. 1.40 7 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Pin Description

HT48R004
Pin Name Function OPT I/T O/T Description

PA0/TMR1
PA0 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

TMR1 TMR1C ST — Timer/Event counter 1 input

PA1/TMR0
PA1 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

TMR0 TMR0C ST — Timer/Event counter 0 input

PA2/INT
PA2 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

INT INTC0
CTRL1 ST — External interrupt input

PA3~PA5 PA3~PA5 PAPU
PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

PA6/PFD
PA6 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

PFD CTRL0 ST — PFD output

PA7/RES
PA7 PAWU ST NMOS General purpose I/O. Register enabled wake-up.
RES EXTRESB ST — Reset input

PB0, PB1,
PB4, PB5

PB0, PB1,
PB4, PB5 PBPU ST CMOS General purpose I/O. Register enabled pull-up.

PC0~PC3 PC0~PC3 PCPU ST CMOS General purpose I/O. Register enabled pull-up.

PC4/SDA
PC4 PCPU ST CMOS General purpose I/O. Register enabled pull-up.
SDA — ST CMOS I2C data line

PC5/SCL
PC5 PCPU ST CMOS General purpose I/O Register enabled pull-up.
SCL — ST CMOS I2C clock line

VDD VDD — PWR — Power supply
VSS VSS — PWR — Ground

Note: OPT: Optional by register option
I/T: Input type
O/T: Output type
ST: Schmitt Trigger input
CMOS: CMOS output
NMOS: NMOS output
PWR: Power

Rev. 1.40 8 March 31, 2017 Rev. 1.40 9 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R008
Pin Name Function OPT I/T O/T Description

PA0/TMR1
PA0 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

TMR1 TMR1C ST — Timer/Event counter 1 input

PA1/TMR0
PA1 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

TMR0 TMR0C ST — Timer/Event counter 0 input

PA2/INT
PA2 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

INT INTC0
CTRL1 ST — External interrupt input

PA3 PA3 PAPU ST CMOS General purpose I/O. Register enabled pull-up.

PA4/TX
PA4 PAPU ST CMOS General purpose I/O. Register enabled pull-up.
TX UCR2 — CMOS UART transmit

PA5/RX
PA5 PAPU

PAWU ST CMOS General purpose I/O. Register enabled pull-up and wake-up.

RX UCR2 ST — UART receive

PA6/PFD
PA6 PAPU ST CMOS General purpose I/O. Register enabled pull-up.
PFD CTRL0 ST — PFD output

PA7/RES
PA7 — ST NMOS General purpose I/O.
RES EXTRESB ST — Reset input

PB0~PB7 PB0~PB7 PBPU ST CMOS General purpose I/O. Register enabled pull-up.
PC0~PC3 PC0~PC3 PCPU ST CMOS General purpose I/O. Register enabled pull-up.

PC4/SDA
PC4 PCPU ST CMOS General purpose I/O. Register enabled pull-up.
SDA — ST CMOS I2C data line

PC5/SCL
PC5 PCPU ST CMOS General purpose I/O Register enabled pull-up.
SCL — ST CMOS I2C clock line

VDD VDD — PWR — Power supply
VSS VSS — PWR — Ground

Note: OPT: Optional by register option
I/T: Input type
O/T: Output type
ST: Schmitt Trigger input
CMOS: CMOS output
NMOS: NMOS output
PWR: Power

Absolute Maximum Ratings
Supply Voltage... VSS -0.3V to VSS +6.0V
Input Voltage.. VSS -0.3V to VDD +0.3V
Storage Temperature.. -50°C to 125°C
Operating Temperature .. -40°C to 85°C

Note: These are stress ratings only. Stresses exceeding the range specified under “Absolute
Maximum Ratings” may cause substantial damage to the device. Functional operation of
these devices at other conditions beyond those listed in the specification is not implied and
prolonged exposure to extreme conditions may affect devices reliability.

Rev. 1.40 8 March 31, 2017 Rev. 1.40 9 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

D.C. Characteristics
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage (HIRC) — fSYS=8MHz 2.3 — 5.5 V

IDD Operating Current (HIRC on)
3V

No load, fSYS=8MHz
— 1.2 1.8 mA

5V — 2.4 3.6 mA

ISTB1 Standby Current (LIRC on)
3V

No load, system HALT
— — 5 μA

5V — — 10 μA

ISTB2 Standby Current (LIRC off)
3V

No load, system HALT
— — 1 μA

5V — — 2 μA

VIL1
Input Low Voltage for I/O Ports,
TMRn and INT pin

5V
—

0 — 1.5 V
— 0 — 0.2VDD V

VIH1
Input High Voltage for I/O Ports,
TMRn and INT pin

5V
—

3.5 — 5 V
— 0.8VDD — VDD V

VIL2 Input Low Voltage (RES) — — 0 — 0.4VDD V
VIH2 Input High Voltage (RES) — — 0.9VDD — VDD V
VLVR Low Voltage Reset Voltage — LVR Enable, voltage select 2.1V 2.0 2.1 2.2 V

IOH1

I/O Source Current
(PA, PB, PC, except PA7 for
HT48R004; PB, PC3~PC0 for
HT48R008)

3V VOH=0.9VDD, PXPS[n+1:n] = 00B
(n=0, 2, 4)

-0.67 -1.33 — mA
5V -1.34 -2.67 — mA
3V VOH=0.9VDD, PXPS[n+1:n] = 01B

(n=0, 2, 4)
-1 -2 — mA

5V -2 -4 — mA
3V VOH=0.9VDD, PXPS[n+1:n] = 10B

(n=0, 2, 4)
-1.34 -2.67 — mA

5V -2.65 -5.3 — mA
3V VOH=0.9VDD, PXPS[n+1:n] = 11B

(n=0, 2, 4)
-4 -8 — mA

5V -8 -16 — mA

IOH2

I/O Source Current
(PA, PC5~PC4, except PA7 for
HT48R008)

3V
VOH=0.9VDD

-4 -8 — mA

5V -8 -16 — mA

IOL1
I/O Sink Current
(I/O Ports except PA7 pin)

3V
VOL=0.1VDD

8 16 — mA
5V 16 32 — mA

IOL2 PA7 Sink Current 5V VOL=0.1VDD 2 3 — mA

RPH
Pull-high Resistance for I/O
Ports

3V — 20 60 100 kΩ
5V — 10 30 50 kΩ

Rev. 1.40 10 March 31, 2017 Rev. 1.40 11 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

A.C. Characteristics
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clock 2.3V~5.5V — 8 8 8 MHz

fHIRC System Clock (HIRC)

3V/5V — -2% 8 +2% MHz
3V/5V Ta = 0°C~70°C -5% 8 +5% MHz

3.0V~5.5V Ta = 0°C~70°C -8% 8 +8% MHz
3.0V~5.5V Ta = -40°C~85°C -12% 8 +12% MHz

fTIMER Timer I/P Frequency (TMRn) 3.3V~5.5V — 0 — 8 MHz

tWDTOSC Watchdog oscillator period
3V — 45 90 180 μs
5V — 32 65 130 μs

tRES External reset low pulse width — — 1 — — μs

tRESF
External reset low pulse width
(with filter) — — — 150 — ns

tSST System start-up timer period — Wake-up from HALT — 16 — tSYS

tLVR Low Voltage Width to Reset — — 0.25 1 2 ms

tRSTD
System Reset Delay Time
(All Reset) — — 25 50 100 ms

Note: 1. tSYS= 1/fSYS

2. To maintain the accuracy of the internal HIRC oscillator frequency, a 0.1μF decoupling capacitor should
be connected between VDD and VSS and located as close to the devices as possible.

Power-on Reset Characteristics
Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VPOR VDD Start Voltage to Ensure Power-on Reset — — — — 100 mV
RRVDD VDD Raising Rate to Ensure Power-on Reset — — 0.035 — — V/ms

tPOR
Minimum Time for VDD Stays at VPOR to Ensure
Power-on Reset — — 1 — — ms

VDD

tPOR RRVDD

VPOR
Time

Rev. 1.40 10 March 31, 2017 Rev. 1.40 11 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

System Architecture
A key factor in the high-performance features of the Holtek range of microcontrollers is attributed
to the internal system architecture. These devices take advantage of the usual features found within
RISC microcontrollers providing increased speed of operation and enhanced performance. The
pipelining scheme is implemented in such a way that instruction fetching and instruction execution
are overlapped, hence instructions are effectively executed in one cycle, with the exception of branch
or call instructions. An 8-bit wide ALU is used in practically all operations of the instruction set. It
carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions,
etc. The internal data path is simplified by moving data through the Accumulator and the ALU.
Certain internal registers are implemented in the Data Memory and can be directly or indirectly
addressed. The simple addressing methods of these registers along with additional architectural
features ensure that a minimum of external components is required to provide a functional I/O
system with maximum reliability and flexibility.

Clocking and Pipelining
The main system clock, derived from HIRC oscillator is subdivided into four internally generated
non-overlapping clocks, T1~T4.The Program Counter is incremented at the beginning of the T1
clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry out the
decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction cycle.
Although the fetching and execution of instructions takes place in consecutive instruction cycles, the
pipelining structure of the microcontroller ensures that instructions are effectively executed in one
instruction cycle. The exception to this are instructions where the contents of the Program Counter
are changed, such as subroutine calls or jumps, in which case the instruction will take one more
instruction cycle to execute.

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � �
 �

� �
� � � � � � � � � � � � � � � � � �
 �

� � � � �
 � � � �

 	 � 	
� 	 � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � �

System Clocking and Pipelining

Rev. 1.40 12 March 31, 2017 Rev. 1.40 13 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

For instructions involving branches, such as jump or call instructions, two instruction cycles are
required to complete instruction execution. An extra cycle is required as the program takes one
cycle to firstly obtain the actual jump or call address and then another cycle to actually execute the
branch. The requirement for this extra cycle should be taken into account by programmers in timing
sensitive applications.

� �
� � � � � � � � � � � � �

� � � � � � � �
 � � � � �

�
�
�
�

	 � � � � � �

� � � � � � � � � � �
� � � � � � � � � �
� � � � � � � � �
�
�
� � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � 	 � � � � � � � � � � � � � � 	
� � � � � � � � � � � �

Instruction Fetching

Program Counter – PC
During program execution, the Program Counter is used to keep track of the address of the
next instruction to be executed. It is automatically incremented by one each time an instruction
is executed except for instructions, such as “JMP” or “CALL” that demand a jump to a non-
consecutive Program Memory address. It must be noted that only the lower 8 bits, known as the
Program Counter Low Register, are directly addressable by user.

When executing instructions requiring jumping to non-consecutive addresses such as a jump
instruction, a subroutine call, interrupt or reset, etc, the microcontroller manages program control
by loading the required address into the Program Counter. For conditional skip instructions, once
the condition has been met, the next instruction, which has already been fetched during the present
instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is
obtained.

Device
Program Counter

High Byte of Program Low Byte of Program
HT48R004 PC10~PC8 PCL7~PCL0
HT48R008 PC11~PC8 PCL7~PCL0

The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is
available for program control and is a readable and writeable register. By transferring data directly
into this register, a short program jump can be executed directly. However, as only this low byte
is available for manipulation, the jumps are limited in the present page of memory, which have
256 locations. When such program jumps are executed it should also be noted that a dummy cycle
will be inserted. The lower byte of the Program Counter is fully accessible under program control.
Manipulating the PCL might cause program branching, so an extra cycle is needed to pre-fetch.

Rev. 1.40 12 March 31, 2017 Rev. 1.40 13 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Stack
This is a special part of the memory which is used to save the contents of the Program Counter
only. The stack has multiple levels and is neither part of the data nor part of the program space,
and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is
neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of
the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine,
signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value
from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

� � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �
	 � � � � �

� � � � � � � � � � � �

� � � � �
� � � � � � �

� � � � � � � � � � � � � � �

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but
the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI,
the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use
the structure more easily. However, when the stack is full, a CALL subroutine instruction can still
be executed which will result in a stack overflow. Precautions should be taken to avoid such cases
which might cause unpredictable program branching.

Arithmetic and Logic Unit – ALU
The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic
and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU
receives related instruction codes and performs the required arithmetic or logical operations after
which the result will be placed in the specified register. As these ALU calculation or operations may
result in carry, borrow or other status changes, the status register will be correspondingly updated to
reflect these changes. The ALU supports the following functions:

•	 Arithmetic operations: ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA

•	 Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA

•	 Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC

•	 Increment and Decrement INCA, INC, DECA, DEC

•	 Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI.

Rev. 1.40 14 March 31, 2017 Rev. 1.40 15 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Program Memory
The Program Memory is the location where the user code or program is stored. The series of
devices are supplied with One-Time Programmable, OTP, memory where users can program their
application code into the device. By using the appropriate programming tools, OTP device offers
users the flexibility to freely develop their applications which may be useful during debug or for
products requiring frequent upgrades or program changes.

Structure
The Program Memory has a capacity of 2k×14 bits to 4k×15 bits. The Program Memory is addressed
by the Program Counter and also contains data, table information and interrupt entries information.
Table data which can be set in any location within the Program Memory is addressed by separate
table pointer registers.

Reset

FFFH

010H

15 bits

014H

Reset

Inte��upt
Ve�to� Inte��upt

Ve�to�

HT48R004 HT48R008

14 bits

000H

004H

�FFH

Program Memory Structure

Special Vectors
Within the Program Memory, certain locations are reserved for the reset and interrupts. The location
000H is reserved for use by these devices reset for program initialisation. After a device reset is
initiated, the program will jump to this location and begin execution.

Look-up Table
Any location within the Program Memory can be defined as a look-up table where programmers can
store fixed data. To use the look-up table, the table pointer must first be set by placing the address
of the look up data to be retrieved in the table pointer register, TBLP. This register defines the total
address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the Program Memory
using the “TABRDC [m]” or “TABRDL [m]” instructions, respectively. When the instruction is
executed, the lower order table byte from the Program Memory will be transferred to the user
defined Data Memory register [m] as specified in the instruction. The higher order table data byte
from the Program Memory will be transferred to the TBLH special register. Any unused bits in this
transferred higher order byte will be read as “0”.

The accompanying diagram illustrates the addressing data flow of the look-up table.

Rev. 1.40 14 March 31, 2017 Rev. 1.40 15 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� �
� � � � � � � �

� � � � � �
 � � � � � � �
 � �

� � �
 � � � � � � � � �

	 � � �

������� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

 � � � � � � � �
 � �

� � � � � � � � � � � �
� � � � � � � � � � � �

 � � �
 � �

Table Program Example
The accompanying example shows how the table pointer and table data is defined and retrieved from
the device. This example uses raw table data located in the last page which is stored there using the
ORG statement. The value at this ORG statement is “0F00H” which refers to the start address of the
last page within the 4K Program Memory of the microcontroller.

The table pointer is set here to have an initial value of “06H”. This will ensure that the first data read
from the data table will be at the Program Memory address “0F06H” or 6 locations after the start
of the last page. Note that the value for the table pointer is referenced to the first address of the last
page if the “TABRDL [m]” instruction is being used. The high byte of the table data which in this
case is equal to zero will be transferred to the TBLH register automatically when the “TABRDL
[m]”instruction is executed.

Because the TBLH register is a read-only register and cannot be restored, care should be taken
to ensure its protection if both the main routine and Interrupt Service Routine use the table read
instructions. If using the table read instructions, the Interrupt Service Routines may change the
value of TBLH and subsequently cause errors if used again by the main routine. As a rule it is
recommended that simultaneous use of the table read instructions should be avoided. However, in
situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the
execution of any main routine table-read instructions. Note that all table related instructions require
two instruction cycles to complete their operation.

Rev. 1.40 16 March 31, 2017 Rev. 1.40 17 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Table Read Program Example

tempreg1 db	?				 ; temporary register #1
tempreg2 db	?				 ; temporary register #2
	 :
	 :
mov a,06h					 ; initialize table pointer - note that this address
							 ; is referenced
mov tblp, a					 ; to the last page or present page
	 :
	 :
tabrdl tempreg1				 ; transfers value in table referenced by table pointer
							 ; to tempreg1
							 ; data at prog. memory address “0F06H” transferred to
							 ; to tempreg1 and TBLH
dec tblp						 ; reduce value of table pointer by one
tabrdl tempreg2				 ; transfers value in table referenced by table pointer
							 ; to tempreg2
							 ; data at prog. memory address “0F05H” transferred to
							 ; tempreg2 and TBLH
							 ; in this example the data “1AH” is transferred to
							 ; tempreg1 and data “0FH” to register tempreg2
							 ; the value “00H” will be transferred to the high byte
							 ; register TBLH
	 :
	 :
org 0f00h					 ; sets initial address of last page

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
	 :
	 :

Rev. 1.40 16 March 31, 2017 Rev. 1.40 17 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Data Memory
The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where
temporary information is stored.

Structure
Divided into two sections, the first of these is an area of RAM where special function registers are
located. These registers have fixed locations and are necessary for correct operation of the device.
Many of these registers can be read from and written to directly under program control, however,
some remain protected from user manipulation. The second area of Data Memory is reserved for
general purpose use. All locations within this area are read and write accessible under program
control.

The two sections of Data Memory, the Special Purpose and General Purpose Data Memory are
located at consecutive locations. All are implemented in RAM and are 8 bits wide. The start address
of the Data Memory for all devices is the address “00H”.

All microcontroller programs require an area of read/write memory where temporary data can be
stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose
Data Memory. This area of Data Memory is fully accessible by the user program for both reading
and writing operations. By using the “SET [m].i” and “CLR [m].i” instructions individual bits can
be set or reset under program control giving the user a large range of flexibility for bit manipulation
in the Data Memory.

� � � � � � �
� � � � � � �
� � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � � � �

�
 �

� � �

 � �

	 � � �

� � �

� � �

� � �

�
 � � � � � �

� � �

� � �

	 � � �

� � �

	 � � �

� � �

� � � � � � � �

	 � � �

� � �

� � �

� � � � � � � � � � � � � � � �

Data Memory Structure

Note: Most of the Data Memory bits can be directly manipulated using the “SET [m].i” and
“CLR [m].i” with the exception of a few dedicated bits. The Data Memory can also be
accessed via the memory pointer registers.

Special Purpose Data Memory
This area of Data Memory is where registers, necessary for the correct operation of the
microcontroller, are stored. Most of the registers are both readable and writeable but some are
protected and are readable only, the details of which are located under the relevant Special Function
Register section. Note that for locations that are unused, any read instruction to these addresses will
return the value “00H”.

Rev. 1.40 18 March 31, 2017 Rev. 1.40 19 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

00H
01H
02H
03H

IAR0
MP0
IAR1
MP1

04H
ACC05H
PCL06H

TBLP07H
TBLH08H
WDTS09H

STATUS0AH
INTC00BH
TMR00CH

TMR0C0DH
TMR10EH

TMR1C0FH
PA10H

PAC11H
PAPU12H
PAWU13H

PC14H
PCC15H

PCPU16H
PB17H

PBC18H
PBPU19H
CTRL01AH
CTRL11BH

WDTLVRC1CH
INTC11DH
PXPS1EH

1FH
20H
21H
22H
23H
24H EXTRESB
25H

3FH

: unused, read as 00H

USR
UCR1
UCR2

TXR_RXR
BGR

I2CC0
I2CC1
I2CD
I2CA

I2CTOC

26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH

HT48R008
00H
01H
02H
03H

IAR0
MP0
IAR1
MP1

04H
ACC05H
PCL06H

TBLP07H
TBLH08H
WDTS09H

STATUS0AH
INTC00BH
TMR00CH

TMR0C0DH
TMR10EH

TMR1C0FH
PA10H

PAC11H
PAPU12H
PAWU13H

PC14H
PCC15H

PCPU16H
PB17H

PBC18H
PBPU19H
CTRL01AH
CTRL11BH

WDTLVRC1CH
INTC11DH
PXPC01EH
PXPC11FH

20H
21H
22H
23H
24H EXTRESB
25H

3FH

I2CC0
I2CC1
I2CD
I2CA

I2CTOC

26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH

HT48R004

Special Purpose Data Memory

Rev. 1.40 18 March 31, 2017 Rev. 1.40 19 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Special Function Registers
To ensure successful operation of the microcontroller, certain internal registers are implemented in
the Data Memory area. These registers ensure correct operation of internal functions such as timer,
interrupts, etc., as well as external functions such as I/O data control. The locations of these registers
within the Data Memory begin at the address of “00H”. Any unused Data Memory locations
between these special function registers and the point where the General Purpose Memory begins is
reserved and attempting to read data from these locations will return a value of “00H”.

Indirect Addressing Registers – IAR0, IAR1
The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM
register, do not actually physically exist as normal registers. The method of indirect addressing
for RAM data manipulation is using these Indirect Addressing Registers and Memory Pointers, in
contrast to direct memory addressing, where the actual memory address is specified. Actions on
the IAR0 and IAR1 registers will result in no actual read or write operation to these registers but
rather to the memory location specified by their corresponding Memory Pointers, MP0 or MP1. As
the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing
Registers indirectly will return a result of “00H” and writing to the registers indirectly will result in
no operation.

Memory Pointers – MP0, MP1
Two Memory Pointers, known as MP0 and MP1 are provided. These Memory Pointers are
physically implemented in the Data Memory and can be manipulated in the same way as normal
registers providing a convenient way with which to indirectly address and track data. When any
operation to the relevant Indirect Addressing Registers is carried out, the actual address which the
microcontroller is directed to is the address specified by the related Memory Pointer. Note that for
these devices, the Memory Pointers, MP0 and MP1, are both 8-bit registers and used to access the
Data Memory together with their corresponding indirect addressing registers IAR0 and IAR1.

The following example shows how to clear a section of four Data Memory locations already defined
as locations adres1 to adres4.

Indirect Addressing Program Example
data .section ‘data’
adres1	 db	 ?
adres2	 db	 ?
adres3	 db	 ?
adres4	 db	 ?
block	 db	 ?
code .section at 0 code
org 00h
start:
mov a,04h				 ; set size of block
mov block,a
mov a,offset adres1		 ; Accumulator loaded with first RAM address
mov mp0,a				 ; set memory pointer with first RAM address
loop:
clr IAR0					 ; clear the data at address defined by MP0
inc mp0					 ; increment memory pointer
sdz block				 ; check if last memory location has been cleared
jmp loop
continue:

The important point to note here is that in the example shown above, no reference is made to specific
Data Memory addresses.

Rev. 1.40 20 March 31, 2017 Rev. 1.40 21 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Accumulator – ACC
The Accumulator is central to the operation of any microcontroller and is closely related with
operations carried out by the ALU. The Accumulator is the place where all intermediate results
from the ALU are stored. Without the Accumulator it would be necessary to write the result of
each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory
resulting in higher programming and timing overheads. Data transfer operations usually involve
the temporary storage function of the Accumulator; for example, when transferring data between
one user-defined register and another, it is necessary to do this by passing the data through the
Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register – PCL
To provide additional program control functions, the low byte of the Program Counter is made
accessible to programmers by locating it within the Special Purpose area of the Data Memory. By
manipulating this register, direct jumps to other program locations are easily implemented. Loading
a value directly into this PCL register will cause a jump to the specified Program Memory location,
however as the register is only 8-bit wide only jumps within the current Program Memory page are
permitted. When such operations are used, note that a dummy cycle will be inserted.

Status Register – STATUS
This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag
(OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation
and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions
like most other registers. Any data written into the status register will not change the TO or PDF flag.
In addition, operations related to the status register may give different results due to the different
instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or
by executing the “CLR WDT” or “HALT” instruction. The PDF flag is affected only by executing
the “HALT” or “CLR WDT” instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will
not be pushed onto the stack automatically. If the contents of the status registers are important and
if the subroutine can corrupt the status register, precautions must be taken to correctly save it. Note
that bits 0~3 of the STATUS register are both readable and writeable bits.

Rev. 1.40 20 March 31, 2017 Rev. 1.40 21 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

STATUS Register

Bit 7 6 5 4 3 2 1 0
Name — — TO PDF OV Z AC C
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 x x x x

“x”: unknown
Bit 7~6	 Unimplemented, read as “0”
Bit 5	 TO: Watchdog Time-Out flag

0: After power up or executing the “CLR WDT” or “HALT” instruction
1: A watchdog time-out occurred.

Bit 4	 PDF: Power down flag
0: After power up or executing the “CLR WDT” instruction
1: By executing the “HALT” instruction

Bit 3	 OV: Overflow flag
0: No overflow
1: An operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit or vice versa.

Bit 2	 Z: Zero flag
0: The result of an arithmetic or logical operation is not zero
1: The result of an arithmetic or logical operation is zero

Bit 1	 AC: Auxiliary flag
0: No auxiliary carry
1: An operation results in a carry out of the low nibbles in addition, or no borrow
from the high nibble into the low nibble in subtraction

Bit 0	 C: Carry flag
0: No carry out
1: An operation results in a carry during an addition operation or if a borrow does
not take place during a subtraction operation

C is also affected by a rotate through carry instruction

Rev. 1.40 22 March 31, 2017 Rev. 1.40 23 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

System Control Registers – CTRL0, CTRL1
These registers are used to provide control internal functions such as the PFD function and external
interrupt edge trigger type selection.

CTRL0 Register

Bit 7 6 5 4 3 2 1 0
Name — — — — — PFDC — —
R/W — — — — — R/W — —
POR — — — — — 0 — —

Bit 7~3	 Unimplemented, read as "0"
Bit 2	 PFDC: PA6/PFD selection

0: PA6
1: PFD

Bit 1~0	 Unimplemented, read as “0”

CTRL1 Register

Bit 7 6 5 4 3 2 1 0
Name INTES1 INTES0 — — — — — —
R/W R/W R/W — — — — — —
POR 1 0 — — — — — —

Bit 7~6	 INTES1~INTES0: External interrupt edge type selection
00: Disable
01: Rising edge trigger
10: Falling edge trigger
11: Dual edge trigger

Bit 5~0	 Unimplemented, read as "0"

Rev. 1.40 22 March 31, 2017 Rev. 1.40 23 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Oscillator
Various oscillator options offer the user a wide range of functions according to their various
application requirements. The flexible features of the oscillator functions ensure that the best
optimization can be achieved in terms of speed and power saving.

System Oscillator Overview
In addition to being the source of the main system clock the oscillators also provide clock sources
for the Watchdog Timer function and Timer/Event counter.

Type Name Freq.
Internal High Speed RC HIRC 8MHz
Internal Low Speed RC LIRC 12kHz

Oscillator Types

System Clock Configurations
There is one system oscillator implemented in the device, internal 8MHz RC, HIRC. Also there is an
internal 12kHz RC oscillator LIRC used as the clock source for the WDT function and Timer/Event
counter. More details are described in the accompany sections.

Internal RC Oscillator – HIRC
The internal RC oscillator is a fully integrated system oscillator requiring no external components.
The internal RC oscillator has the frequency of 8MHz .Device trimming during the manufacturing
process and the inclusion of internal frequency compensation circuit is used to ensure that the
influence of the power supply voltage, temperature and process variations on the oscillation
frequency are minimized. Note that this internal system clock option requires no external pins for its
operation. Refer to the A.C. Characteristics for more frequency accuracy details.

Internal 12kHz Oscillator – LIRC
The LIRC is a fully self-contained free running on-chip RC oscillator with a typical frequency of
12kHz at 5V, requiring no external components for its implementation. When the devices enter the
Sleep Mode, the system clock will stop running but the LIRC oscillator continues to free-run and to
keep the watchdog and timer active. However, to preserve power in certain applications the LIRC
can be disabled by disabling the WDT function and Timer/Event counter in the HALT mode.

Rev. 1.40 24 March 31, 2017 Rev. 1.40 25 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Power Down Mode and Wake-up

Power Down Mode
All of the Holtek microcontrollers have the ability to enter a Power Down Mode, also known as the
HALT Mode or Sleep Mode. When the devices enter this mode, the normal operating current will
be reduced to an extremely low standby current level. This occurs because when the devices enter
the Power Down Mode, the system oscillator is stopped which reduces the power consumption to
extremely low levels. However, as these devices maintain their present internal condition, they can
be woken up at a later stage and continue running, without requiring a full reset. This feature is
extremely important in application areas where the MCUs must have their power supply constantly
maintained to keep the devices in a known condition.

Entering the Power Down Mode
There is only one way for the devices to enter the Power Down Mode and that is to execute the
“HALT” instruction in the application program. When this instruction is executed, the following will
occur:

•	 The system oscillator will stop running and the application program will stop at the “HALT”
instruction.

•	 The Data Memory contents and registers will maintain their present condition.

•	 The WDT will be cleared and resume counting if the WDT clock source comes from LIRC
oscillator.

•	 The I/O ports will maintain their present condition.

•	 In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO,
will be cleared.

Standby Current Considerations
As the main reason for entering the Sleep Mode is to keep the current consumption of the
MCU to as low a value as possible, perhaps only in the order of several micro-amps, there are
other considerations which must also be taken into account by the circuit designer if the power
consumption is to be minimized.

Special attention must be made to the I/O pins on these devices. All high-impedance input pins
must be connected to either a fixed high or low level as any floating input pins could create internal
oscillations and result in increased current consumption. Care must also be taken with the loads,
which are connected to I/O pins, which are set as outputs. These should be placed in a condition in
which minimum current is drawn or connected only to external circuits that do not draw current,
such as other CMOS inputs.

Rev. 1.40 24 March 31, 2017 Rev. 1.40 25 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Wake-up
After the system enters the Sleep Mode, it can be woken up from one of various sources listed as
follows:

•	 An external reset

•	 An external falling edge on Port A

•	 A system interrupt

•	 A WDT overflow

If the system is woken up by an external reset, the devices will experience a full system reset,
however, if the devices are woken up by a WDT overflow, a Watchdog Timer reset will be initiated.
Although both of these wake-up methods will initiate a reset operation, the actual source of the
wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a
system power-up or executing the clear Watchdog Timer instructions and is set when executing the
“HALT” instruction. The TO flag is set if a WDT time-out occurs, and causes a wake-up that only
resets the Program Counter and Stack Pointer, the other flags remain in their original status.

Pins PA7~PA0 in the HT48R004 and pins PA5, PA2~PA0 in the HT48R008 can be set via the
PAWU register to permit a negative transition on the pin to wake-up the system. When a Port A
pin wake-up occurs, the program will resume execution at the instruction following the “HALT”
instruction.

If the system is woken up by an interrupt, then two possible situations may occur. The first is where
the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the
program will resume execution at the instruction following the “HALT” instruction. In this situation,
the interrupt which woke-up the devices will not be immediately serviced, but will rather be serviced
later when the related interrupt is finally enabled or when a stack level becomes free. The other
situation is where the related interrupt is enabled and the stack is not full, in which case the regular
interrupt response takes place. If an interrupt request flag is set high before entering the Sleep Mode,
the wake-up function of the related interrupt will be ignored.

No matter what the source of the wake-up event is, once a wake-up event occurs, there will be a
time delay before normal program execution resumes. Consult the table for the related time

Wake-up Source
Oscillator Type

HIRC, LIRC
External RES tRSTD + tSST

PA Port
tSSTInterrupt

WDT Overflow

Note: 1. tRSTD (reset delay time), tSYS (system clock)
2. tRSTD is power-on delay, typical time = 50ms
3. tSST = 16tSYS

4. PA7~PA0 for HT48R004; PA5, PA2~PA0 for HT48R008

Wake-up Delay Time

Rev. 1.40 26 March 31, 2017 Rev. 1.40 27 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Watchdog Timer
The Watchdog Timer, also known as the WDT, is provided to prevent program malfunctions or
sequences from jumping to unknown locations, due to certain uncontrollable external events such as
electrical noise.

Watchdog Timer Clock Source
The Watchdog Timer clock source is provided by the LIRC, the system clock fSYS or fSYS/4 which is
sourced from the HIRC oscillator. The Watchdog Timer source clock is then subdivided by a ratio
of 28 to 215 to give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the
WDTS register. The LIRC internal oscillator has an approximate period frequency of 12kHz at a
supply voltage of 5V. However, it should be noted that this specified internal clock period can vary
with VDD, temperature and process variations.

Watchdog Timer Control Registers

WDTS Register

Bit 7 6 5 4 3 2 1 0
Name — — — — — WS2 WS1 WS0
R/W — — — — — R/W R/W R/W
POR — — — — — 1 1 1

Bit 7~3	 Unimplemented, read as “0”
Bit 2~0	 WS2~WS0: WDT Time-out period selection

000: 28/fS

001: 29/fS

010: 210/fS

011: 211/fS

100: 212/fS

101: 213/fS

110: 214/fS

111: 215/fS

These three bits determine the division ratio of the Watchdog Timer source clock,
which in turn determines the timeout period.

WDTLVRC Register

Bit 7 6 5 4 3 2 1 0
Name WDTCLS1 WDTCLS0 LVREN2 LVREN1 LVREN0 WDTEN2 WDTEN1 WDTEN0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6	 WDTCLS1~WDTCLS0: WDT/Timer clock source
00: fLIRC
01: fSYS/4
10: fSYS

11: fSYS

Bit 5~3	 Described in other section.
Bit 2~0	 WDTEN2~WDTEN0: WDT enable control

000: Enable
101: Disable
Other values: MCU reset (reset will be active after 2~3 LIRC clock for debounce time)

Rev. 1.40 26 March 31, 2017 Rev. 1.40 27 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Watchdog Timer Operation
The Watchdog Timer operates by providing a device reset when its timer overflows. This means
that in the application program and during normal operation the user has to strategically clear the
Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is
done using the clear watchdog instruction. Note that if the Watchdog Timer function is not enabled,
then any instruction related to the Watchdog Timer will result in no operation.

Setting the various Watchdog Timer options are controlled via the internal registers WDTLVRC
and WDTS. Enabling the Watchdog Timer can be controlled by the WDTEN bits in the internal
WDTLVRC register in the Data Memory.

The Watchdog Timer will be disabled if bits WDTEN2~WDTEN0 in the WDTLVRC register are
written with the binary value 101B while the WDT Timer will be enabled if these bits are written
with the binary value 000B. If these bits are written with the other values except 000 and 101, the
MCU will be reset.

The Watchdog Timer clock can emanate from three different sources, selected by the
WDTCLS1~WDTCLS0 bits in the WDTLVRC register. These sources are fSYS, fSYS/4 or LIRC. It
is important to note that when the system enters the Sleep Mode the instruction clock is stopped,
therefore if it has selected fSYS or fSYS/4 as the Watchdog Timer clock source, the Watchdog Timer
will stop. For systems that operate in noisy environments, it’s recommended to use the LIRC as
the clock source. The division ratio of the prescaler is determined by bits 0, 1 and 2 of the WDTS
register, known as WS0, WS1 and WS2. If the Watchdog Timer internal clock source is selected and
with the WS0, WS1 and WS2 bits of the WDTS register all set high, the prescaler division ratio will
be 1:32768, which will give a maximum time-out period.

Under normal program operation, a Watchdog Timer time-out will initialize a device reset and
set the status bit TO. However, if the system is in the Sleep Mode, when a Watchdog Timer time-
out occurs, the devices will be woken up, the TO bit in the status register will be set and only the
Program Counter and Stack Pointer will be reset. Four methods can be adopted to clear the contents
of the Watchdog Timer. The first is an external hardware reset, which means a low level on the
external reset pin, the second is a WDT software reset, which means a certain value except 000B
and 101B written into the WDTEN field, the third is using the Clear Watchdog Timer software
instructions and the fourth is via a “HALT” instruction.

There is only one method of using software instruction to clear the Watchdog Timer. That is to use
the “CLR WDT” instruction to clear the WDT.

“CLR WDT”Inst�u�tion

8-stage Divide� WDT P�es�ale�

WDTEN�~WDTEN0
bits

WDTLVRC
Registe�

Reset �CU

S/W
Cont�ol

fS fS/�8

8-to-1 �UX

CLR

WS�~WS0
(fS/�8 ~ fS/�15)

WDT Time-out
(�8/fS ~ �15/fS)

fSYS/4
fSYS

fLIRC

WDTCLS1~WDTCLS0

Watchdog Timer

Rev. 1.40 28 March 31, 2017 Rev. 1.40 29 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Reset and Initialization
A reset function is a fundamental part of any microcontroller ensuring that the devices can be set
to some predetermined condition irrespective of outside parameters. The most important reset
condition is after power is first applied to the microcontroller. In this case, internal circuitry will
ensure that the microcontroller, after a short delay, will be in a well defined state and ready to
execute the first program instruction. After this power-on reset, certain important internal registers
will be set to defined states before the program commences. One of these registers is the Program
Counter, which will be reset to zero forcing the microcontroller to begin program execution from the
lowest Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a
reset condition when the microcontroller is running. One example of this is where after power has
been applied and the microcontroller is already running, the RES line is forcefully pulled low. In such
a case, known as a normal operation reset, some of the microcontroller registers remain unchanged
allowing the microcontroller to deal with normal operation after the reset line is allowed to return
high. Another type of reset is when the Watchdog Timer overflows and resets the microcontroller.
All types of reset operations result in different register conditions being set.

Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the RES
reset is implemented in situations where the power supply voltage falls below a certain threshold.

Reset Functions
There are five ways in which a microcontroller reset can occur, through events occurring both
internally and externally:

Power-on Reset
The most fundamental and unavoidable reset is the one that occurs after power is first applied to
the microcontroller. As well as ensuring that the Program Memory begins execution from the first
memory address, a power-on reset also ensures that certain other registers are preset to known
conditions. All the I/O port and port control registers will power up in a high condition ensuring that
all pins will be first set to inputs.

� � �

� � � � � � � � � � � � � �

� � � � � � �

� � � � � �
 � � � � �

� � �

Note: tRSTD is power-on delay, typical time=50ms
Power-On Reset Timing Chart

RES Pin Reset
Although the microcontroller has an internal RC reset function, if the VDD power supply rise time
is not fast enough or does not stabilize quickly at power-on, the internal reset function may be
incapable of providing proper reset operation. For this reason it is recommended that an external
RC network is connected to the RES pin, whose additional time delay will ensure that the RES pin
remains low for an extended period to allow the power supply to stabilize. During this time delay,
normal operation of the microcontroller will be inhibited. After the RES line reaches a certain
voltage value, the reset delay time tRSTD is invoked to provide an extra delay time after which the
microcontroller will begin normal operation. The abbreviation SST in the figures stands for System
Start-up Timer.

Rev. 1.40 28 March 31, 2017 Rev. 1.40 29 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

For most applications a resistor connected between VDD and the RES pin and a capacitor connected
between VSS and the RES pin will provide a suitable external reset circuit. Any wiring connected to
the RES pin should be kept as short as possible to minimize any stray noise interference.

For applications that operate within an environment where more noise is present the reset circuit
shown is recommended.

� � � � � � �

� � � � � � �

� � � � �
� � � � �

� � �

� � �

� � � � � � � �
� � �

� � � � �
 �

� � � � �

Note: “*” It is recommended that this component is added for added ESD protection.

“**” It is recommended that this component is added in environments where power line noise
is significant.

External RES Circuit

More information regarding external reset circuits is located in Application Note HA0075E on the
Holtek website.

As the reset pin is shared with the PA7 pin, the reset function must be selected using the
RESBEN2~RESBEN0 bits in the EXTRESB control register.

This type of reset occurs when the microcontroller is already running and the RES pin is forcefully
pulled low by external hardware such as an external switch. In this case as in the case of other reset,
the Program Counter will reset to zero and program execution initiated from this point.

� � �

� � � � � � � � � � � � � �

� � � � � � �
� � � � � � �

� � �
 � � � � � � �

Note: tRSTD is power-on delay, typical time=50ms
RES Reset Timing Chart

•	 EXTRESB Register

Bit 7 6 5 4 3 2 1 0
Name — — — — — RESBEN2 RESBEN1 RESBEN0
R/W — — — — — R/W R/W R/W
POR — — — — — 0 0 0

Bit 7~3	 Unimplemented, read as "0"
Bit 2~0	 RESBEN2~RESBEN0: PA7/RES selection

000: PA7
101: RES
Other values: MCU reset

Rev. 1.40 30 March 31, 2017 Rev. 1.40 31 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Low Voltage Reset – LVR
The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of
the device. The LVR function is enabled/disabled by the LVREN2~LVREN0 bits in the WDTLVRC
register. This voltage is fixed at 2.1V (VLVR). If the supply voltage of the devices drops to within a
range of 0.9V~VLVR such as might occur when changing a battery, the LVR will automatically reset
the devices internally.

The LVR includes the following specifications: For a valid LVR signal, a low voltage, i.e., a voltage
in the range between 0.9V~VLVR must exist for greater than the value tLVR specified in the A.C.
characteristics. If the low voltage state does not exceed tLVR, the LVR will ignore it and will not
perform a reset function.

� � �

� � � � � � � � � � � � � �

� � � � � � � � � � � �

Note: tRSTD is power-on delay, typical time=50ms
Low Voltage Reset Timing Chart

•	 WDTLVRC Register

Bit 7 6 5 4 3 2 1 0
Name WDTCLS1 WDTCLS0 LVREN2 LVREN1 LVREN0 WDTEN2 WDTEN1 WDTEN0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~6	 Described in other section.
Bit 5~3	 LVREN2~LVREN0: LVR enable control

000: Enable
101: Disable
Other values: MCU reset (reset will be active after 2~3 LIRC clock for debounce time)

Bit 2~0	 Described in other section.

Watchdog Time-out Reset during Normal Operation
The Watchdog time-out Reset during normal operation is the same as a hardware RES pin reset
except that the Watchdog time-out flag TO will be set to “1”.

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �
 � � � � � �

Note: tRSTD is power-on delay, typical time=50ms
WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during Sleep Mode
The Watchdog time-out Reset during Sleep Mode is a little different from other kinds of reset. Most
of the conditions remain unchanged except that the Program Counter and the Stack Pointer will be
cleared to “0” and the TO flag will be set to “1”. Refer to the A.C. Characteristics for tSST details.

� � � �

� � � � � � � � � � � �

� � � � � � � � � � �
 � �

Note: tSST is 16 clock cycles for the system clock source is provided by HIRC.
WDT Time-out Reset during Sleep Timing Chart

Rev. 1.40 30 March 31, 2017 Rev. 1.40 31 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Reset Initial Conditions
The different types of reset described affect the reset flags in different ways. These flags, known
as PDF and TO are located in the status register and are controlled by various microcontroller
operations, such as the Sleep Mode function or Watchdog Timer. The reset flags are shown in the
table:

TO PDF RESET Conditions
0 0 Power-on reset
u u RES or LVR reset during NORMAL Mode operation
1 u WDT time-out reset during NORMAL Mode operation
1 1 WDT time-out reset during Sleep Mode operation

Note: “u” stands for unchanged
The following table indicates the way in which the various components of the microcontroller are
affected after a power-on reset occurs.

Item Condition After RESET
Program Counter Reset to zero
Interrupts All interrupts will be disabled
WDT Clear after reset, WDT begins counting
Timer/Event Counter Timer Counter will be turned off
Input/Output Ports I/O ports will be set as inputs
Stack Pointer Stack Pointer will point to the top of the stack

The different kinds of resets all affect the internal registers of the microcontroller in different ways.
To ensure reliable continuation of normal program execution after a reset occurs, it is important to
know what condition the microcontroller is in after a particular reset occurs. The following table
describes how each type of reset affects the microcontroller internal registers.

Rev. 1.40 32 March 31, 2017 Rev. 1.40 33 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004

Register Reset
(Power On)

RES Reset
(Normal Operation)

RES Reset
(HALT)

WDT Time-out
(Normal Operation)

WDT Time-out
(HALT)

PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IAR0 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
MP0 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u
IAR1 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
MP1 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u
ACC x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TBLP x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBLH - - x x x x x x - - u u u u u u - - u u u u u u - - u u u u u u - - u u u u u u
WDTS - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - u u u
STATUS - - 0 0 x x x x - - u u u u u u - - 0 1 u u u u - - 1 u u u u u - - 1 1 u u u u
INTC0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
INTC1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - u - - - u
TMR0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
TMR0C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
TMR1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
TMR1C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAWU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PAPU - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
PB - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - u u - - u u
PBC - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - u u - - u u
PBPU - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - u u - - u u
PC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCPU - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
CTRL0 - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - - 0 - - - - - - - u - -
CTRL1 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - u u - - - - - -
WDTLVRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EXTRESB - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u
I2CC0 - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u -
I2CC1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 u u u u u u u u
I2CD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
I2CA 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u -
I2CTOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PXPC0 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - u u u u u u
PXPC1 - - - - 0 1 0 1 - - - - 0 1 0 1 - - - - 0 1 0 1 - - - - 0 1 0 1 - - - - u u u u

Note: “u” stands for unchanged
“x” stands for unknown
“-” stands for unimplemented

Rev. 1.40 32 March 31, 2017 Rev. 1.40 33 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R008

Register Power-on Reset RES Reset
(Normal operation)

RES Reset
(HALT)

WDT Time-out
(Normal Operation)

WDT Time-out
(HALT)

PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MP0 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
MP1 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
ACC x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBLP x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBLH - - x x x x x x - - u u u u u u - - u u u u u u - - u u u u u u - - u u u u u u
WDTS - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - u u u
STATUS - - 0 0 x x x x - - u u u u u u - - 0 1 u u u u - - 1 u u u u u - - 1 1 u u u u
INTC0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
INTC1 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TMR0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
TMR0C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
TMR1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
TMR1C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAWU - - 0 - - 0 0 0 - - 0 - - 0 0 0 - - 0 - - 0 0 0 - - 0 - - 0 0 0 - - u - - u u u
PAPU - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
PB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PBC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PBPU 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 u u u u u - u u
PC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCPU - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
CTRL0 - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - - 0 - - - - - - - u - -
CTRL1 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - u u - - - - - -
WDTLVRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PXPS - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - u u u u u u
USR 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 u u u u u u u u
UCR1 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 u u u u u u u u
UCR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TXR_RXR x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
BRG x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
EXTRESB - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u
I2CC0 - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u -
I2CC1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 u u u u u u u u
I2CD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
I2CA 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u -
I2CTOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

Note: “u” stands for unchanged
“x” stands for unknown
“-” stands for unimplemented

Rev. 1.40 34 March 31, 2017 Rev. 1.40 35 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Input/Output Ports
Holtek microcontrollers offer considerable flexibility on their I/O ports. Most pins can have either an
input or output designation under user program control. Additionally, as there are pull-high resistors
and wake-up software configurations, the user is provided with an I/O structure to meet the needs of
a wide range of application possibilities.

These devices provide bidirectional input/output lines labeled with port names PA~PC. These I/O
ports are mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose
Data Memory table. All of these I/O ports can be used for input and output operations. For input
operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge
of instruction “MOV A, [m]”, where m denotes the port address. For output operation, all the data is
latched and remains unchanged until the output latch is rewritten.

Register
Name

Bit

7 6 5 4 3 2 1 0
PA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

PAC PAC7 PAC6 PAC5 PAC4 PAC3 PAC2 PAC1 PAC0
PAPU — PAPU6 PAPU5 PAPU4 PAPU3 PAPU2 PAPU1 PAPU0
PAWU PAWU7 PAWU6 PAWU5 PAWU4 PAWU3 PAWU2 PAWU1 PAWU0

PB — — PB5 PB4 — — PB1 PB0
PBC — — PBC5 PBC4 — — PBC1 PBC0

PBPU — — PBPU5 PBPU4 — — PBPU1 PBPU0
PC — — PC5 PC4 PC3 PC2 PC1 PC0

PCC — — PCC5 PCC4 PCC3 PCC2 PCC1 PCC0
PCPU — — PCPU5 PCPU4 PCPU3 PCPU2 PCPU1 PCPU0

I/O Register List – HT48R004

Register
Name

Bit

7 6 5 4 3 2 1 0
PA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

PAC PAC7 PAC6 PAC5 PAC4 PAC3 PAC2 PAC1 PAC0
PAPU — PAPU6 PAPU5 PAPU4 PAPU3 PAPU2 PAPU1 PAPU0
PAWU — — PAWU5 — — PAWU2 PAWU1 PAWU0

PB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0
PBC PBC7 PBC6 PBC5 PBC4 PBC3 PBC2 PBC1 PBC0

PBPU PBPU7 PBPU6 PBPU5 PBPU4 PBPU3 PBPU2 PBPU1 PBPU0
PC — — PC5 PC4 PC3 PC2 PC1 PC0

PCC — — PCC5 PCC4 PCC3 PCC2 PCC1 PCC0
PCPU — — PCPU5 PCPU4 PCPU3 PCPU2 PCPU1 PCPU0

I/O Register List – HT48R008

Rev. 1.40 34 March 31, 2017 Rev. 1.40 35 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Pull-high Resistors
Many product applications require pull-high resistors for their switch inputs usually requiring the
use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when
configured as an input have the capability of being connected to an internal pull-high resistor. These
pull-high resistors are selected using the registers PAPU~PCPU located in the Data Memory. The
pull-high resistors are implemented using weak PMOS transistors. Note that pin PA7 does not have
a pull-high resistor selection.

PAPU Register

Bit 7 6 5 4 3 2 1 0
Name — PAPU6 PAPU5 PAPU4 PAPU3 PAPU2 PAPU1 PAPU0
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit 7	 Unimplemented, read as "0"
Bit 6~0	 PAPU6~PAPU0: Port A bit 6~bit 0 pull-high control

0: Disable
1: Enable

PBPU Register
•	 HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — PBPU5 PBPU4 — — PBPU1 PBPU0
R/W — — R/W R/W — — R/W R/W
POR — — 0 0 — — 0 0

Bit 7~6	 Unimplemented, read as "0"
Bit 5~4	 PBPU5~PBPU4: Port B bit 5~bit 4 pull-high control

0: Disable
1: Enable

Bit 3~2	 Unimplemented, read as “0”
Bit 1~0	 PBPU1~PBPU0: Port B bit 1~bit 0 pull-high control

0: Disable
1: Enable

•	 HT48R008

Bit 7 6 5 4 3 2 1 0
Name PBPU7 PBPU6 PBPU5 PBPU4 PBPU3 PBPU2 PBPU1 PBPU0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 PBPU7~PBPU0: Port B bit 7~bit 0 pull-high control
0: Disable
1: Enable

Rev. 1.40 36 March 31, 2017 Rev. 1.40 37 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

PCPU Register

Bit 7 6 5 4 3 2 1 0
Name — — PCPU5 PCPU4 PCPU3 PCPU2 PCPU1 PCPU0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 0 0 0 0

Bit 7~6	 Unimplemented, read as "0"
Bit 5~0	 PCPU5~PCPU0: Port C bit 5~bit 0 pull-high control

0: Disable
1: Enable

Port A Wake-up
If the HALT instruction is executed, the devices will enter the Sleep Mode, where the system clock
will stop resulting in power being conserved, a feature that is important for battery and other low-
power applications. Various methods exist to wake-up the microcontroller, one of which is to change
the logic condition on one of the Port A pins from high to low. After a HALT instruction forces the
microcontroller into entering the Sleep Mode, the processor will remain in a low-power state until
the logic condition of the selected wake-up pin on Port A changes from high to low. This function
is especially suitable for applications that can be woken up via external switches. Note that each
of pins PA7~PA0 in the HT48R004 and pins PA5, PA2~PA0 in the HT48R008 can be selected
individually to have this wake-up feature using an internal register known as PAWU, located in the
Data Memory.

PAWU Register
•	 HT48R004

Bit 7 6 5 4 3 2 1 0
Name PAWU7 PAWU6 PAWU5 PAWU4 PAWU3 PAWU2 PAWU1 PAWU0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 PAWU7~PAWU0: Port A bit 7~bit 0 wake-up control
0: Disable
1: Enable

•	 HT48R008

Bit 7 6 5 4 3 2 1 0
Name — — PAWU5 — — PAWU2 PAWU1 PAWU0
R/W — — R/W — — R/W R/W R/W
POR — — 0 — — 0 0 0

Bit 7~6	 Unimplemented, read as "0"
Bit 5	 PAWU5: Port A bit 5 wake-up control

0: Disable
1: Enable

Bit 4~3	 Unimplemented, read as “0”
Bit 2~0	 PAWU2~PAWU0: Port A bit 2~bit 0 wake-up control

0: Disable
1: Enable

Rev. 1.40 36 March 31, 2017 Rev. 1.40 37 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I/O Port Control Registers
Each port has its own control register known as PAC~PCC, which control the input/output
configuration. With this control register, each I/O pin with or without pull-high resistors can be
reconfigured dynamically under software control. For the I/O pin to function as an input, the
corresponding bit of the control register must be written as a “1”. This will then allow the logic
state of the input pin to be directly read by instructions. When the corresponding bit of the control
register is written as a “0”, the I/O pin will be set as a CMOS output. If the pin is currently set as an
output, instructions can still be used to read the output register. However, it should be noted that the
program will in fact only read the status of the output data latch and not the actual logic status of the
output pin.

PAC Register

Bit 7 6 5 4 3 2 1 0
Name PAC7 PAC6 PAC5 PAC4 PAC3 PAC2 PAC1 PAC0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0	 PAC7~PAC0: Port A bit 7~bit 0 Input/Output control
0: Output
1: Input

PBC Register
•	 HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — PBC5 PBC4 — — PBC1 PBC0
R/W — — R/W R/W — — R/W R/W
POR — — 1 1 — — 1 1

Bit 7~6	 Unimplemented, read as "0"
Bit 5~4	 PBC5~PBC4: Port B bit 5~bit 4 Input/Output control

0: Output
1: Input

Bit 3~2	 Unimplemented, read as “0”
Bit 1~0	 PBC1~PBC0: Port B bit 1~bit 0 Input/Output control

0: Output
1: Input

•	 HT48R008

Bit 7 6 5 4 3 2 1 0
Name PBC7 PBC6 PBC5 PBC4 PBC3 PBC2 PBC1 PBC0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0	 PBC7~PBC0: Port B bit 7~bit 0 Input/Output control
0: Output
1: Input

Rev. 1.40 38 March 31, 2017 Rev. 1.40 39 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

PCC Register

Bit 7 6 5 4 3 2 1 0
Name — — PCC5 PCC4 PCC3 PCC2 PCC1 PCC0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 1 1 1 1 1 1

Bit 7~6	 Unimplemented, read as "0"
Bit 5~0	 PCC5~PCC0: Port C bit 5~ bit 0 Input/Output control

0: Output
1: Input

Source Current Selection Registers
To enhance the I/O driving ability, PA0~PA6, PB0~PB1, PB4~PB5, PC0~PC5 pins in the
HT48R004 and PB0~PB7, PC0~PC3 pins in the HT48R008 can be setup to have a choice of various
source current using specific registers, which are the PXPC0, PXPC1 registers for the HT48R004
and the PXPS register for the HT48R008.

PXPC0 Register — HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — PBPS1 PBPS0 PAPS3 PAPS2 PAPS1 PAPS0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 1 0 1 0 1

Bit 7~6	 Unimplemented, read as "0"
Bit 5~4	 PBPS1~PBPS0: PB5~PB4, PB1~PB0 source current select

00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Bit 3~2	 PAPS3~PAPS2: PA6~PA4 source current select
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Bit 1~0	 PAPS1~PAPS0: PA3~PA0 source current select
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Note: Users should refer to the D.C. Characteristirs section to obtain the exact value
for different applications.

Rev. 1.40 38 March 31, 2017 Rev. 1.40 39 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

PXPC1 Register — HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — — — PCPS3 PCPS2 PCPS1 PCPS0
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 1 0 1

Bit 7~4	 Unimplemented, read as "0"
Bit 3~2	 PCPS3~PCPS2: PC5~PC4 source current select

00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Bit 1~0	 PCPS1~PCPS0: PC3~PC0 source current select
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Note: Users should refer to the D.C. Characteristirs section to obtain the exact value
for different applications.

PXPS Register — HT48R008

Bit 7 6 5 4 3 2 1 0
Name — — PXPS5 PXPS4 PXPS3 PXPS2 PXPS1 PXPS0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 1 0 1 0 1

Bit 7~6	 Unimplemented, read as "0"
Bit 5~4	 PXPS5~PXPS4: PC3~PC0 source current selection

00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Bit 3~2	 PXPS3~PXPS2: PB7~PB4 source current selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Bit 1~0	 PXPS1~PXPS0: PB3~PB0 source current selection
00: Source current = Level 0 (min.)
01: Source current = Level 1
10: Source current = Level 2
11: Source current = Level 3(max.)

Note: Users should refer to the D.C. Characteristirs section to obtain the exact value
for different applications.

Rev. 1.40 40 March 31, 2017 Rev. 1.40 41 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Pin-shared Functions
The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more
than one function. Limited numbers of pins can force serious design constraints on designers but by
supplying pins with multi-functions, many of these difficulties can be overcome. For some pins, the
chosen function of the multi-function I/O pins is set by application program control.

External Interrupt Input
The external interrupt pin, INT, is pin-shared with an I/O pin. To use the pin as an external interrupt
input the correct bits in the INTC0 register must be programmed. The pin must also be set as an
input by setting the corresponding bit in the Port Control Register. A pull-high resistor can also
be selected via the appropriate port pull-high resistor register. Note that even if the pin is set as an
external interrupt input the I/O function still remains.

External Timer/Event Counter Input
The Timer/Event Counter pins are pin-shared with I/O pins. For these shared pins to be used as
Timer/Event Counter input, the Timer/Event Counter must be configured to be in the Event Counters
or Pulse Width Capture Mode. This is achieved by setting the appropriate bits in the Timer/Event
Counter Control Register. The pin must also be set as input by setting the appropriate bit in the Port
Control Register. Pull-high resistor options can also be selected using the port pull-high resistor
registers. Note that even if the pin is set as an external timer input the I/O function still remains.

PFD Output
The PFD function output is pin-shared with an I/O pin. The output function of this pin is chosen
using the CTRL0 register. Note that the corresponding bit of the port control register must be set
the pin as an output to enable the PFD output. If the port control register has set the pin as an input,
then the pin will function as a normal logic input with the usual pull-high selection, even if the PFD
function has been selected.

I/O Pin Structures
The accompanying diagrams illustrate the I/O pin internal structures. As the exact logical
construction of the I/O pin may differ from these drawings, they are supplied as a guide only to
assist with the functional understanding of the I/O pins.

� � �

�
�
�

� � � � � � � � � � � � � �� �
 � � � � � � � � � � �

� � �
 � � � � � � � � 	 �
 � � �

� �

� �
�

� �

� �
�

� � � � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � � � � 	 �
 � � �

� � � � � � �
 � �

� � �
 � � � � � � � � � � � 	 �
 � � �

� � � � � � � � � � � � � 	 �
 � � �

� � � � � � � �

� � � � � � �

�

�

� �

� � � �
� � � � � � �

� � � � � � 	 �
� � 	 �
 � � �
� � � � � �

Generic Input/Output Ports

Rev. 1.40 40 March 31, 2017 Rev. 1.40 41 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

�
�
�� � � � � � � � � � � � � � � � � �

� �

� � �

� �

� � �

�
 � � �
 � �
 � �
� � � � �
 	 �

� � � � � � �
 � � �
 � � � � � � � � � �

� � � � � � � � � �

� � � � � �
 � � �
 � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � �
 � �

� � � � � � �

�

�

� � � � � 	 � � � 	 � � � �
 �� � � � � � � � � � � � 	 �

� � �

PA7 NMOS Input/Output Port

Programming Considerations
Within the user program, one of the things first to consider is port initialization. After a reset, all
of the I/O data and port control registers will be set to high. This means that all I/O pins will be
defaulted to an input state, the level of which depends on the other connected circuitry and whether
pull-high selections have been chosen. If the port control registers are then programmed to set some
pins as outputs, these output pins will have an initial high output value unless the associated port
data registers are first programmed. Selecting which pins are inputs and which are outputs can be
achieved byte-wide by loading the correct values into the appropriate port control register or by
programming individual bits in the port control register using the “SET [m].i” and “CLR [m].i”
instructions. Note that when using these bit control instructions, a read-modify-write operation takes
place. The microcontroller must first read in the data on the entire port, modify it to the required new
bit values and then rewrite this data back to the output ports.

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � � �

 � � � � � �
 	 � � �

� � � � � � � � �

Read Modify Write Timing

Each of pins PA7~PA0 in the HT48R004 and pins PA5, PA2~PA0 in the HT48R008 has wake-up
function, selected via the PAWU register. When the devices are in the Sleep Mode, various methods
are available to wake these devices up. One of these is a high to low transition of any pins. Single or
multiple pins on Port A can be set to have this function.

Rev. 1.40 42 March 31, 2017 Rev. 1.40 43 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Timer/Event Counters
The provision of timers form an important part of any microcontroller, giving the designer a means
of carrying out time related functions. The series of devices contain two 8-bit count-up timers. As
the timers have three different operating modes, they can be configured to operate as a general timer,
an external event counter or as a pulse width capture device. The provision of an internal prescaler
to the clock circuitry on gives added range to the timers.

There are two types of registers related to the Timer/Event Counters. The first is the registers that
contain the actual value of the timer and into which an initial value can be preloaded, TMR0 and
TMR1. Reading from these registers retrieves the contents of the Timer/Event Counter. The second
type of associated registers is the Timer Control Register which defines the timer options and
determines how the timer is to be used. The devices can have the timer clock configured to come
from the internal clock source. In addition, the timer clock source can also be configured to come
from an external timer pin.

Configuring the Timer/Event Counter Input Clock Source
The Timer/Event Counter clock source can originate from various sources, an internal clock or
an external pin. The internal clock source is used when the timer is in the timer mode. For the
Timer/Event Counter 0/1, this internal clock source is first divided by a prescaler, the division
ratio of which is conditioned by the Timer Control Register bits TnPSC2~TnPSC0. The internal
clock source can be derived from the system clock fSYS or from the instruction clock fSYS/4 or the
internal low speed oscillator LIRC for Timer/Event Counter selected by the clock selection bits
WDTCLS1~WDTCLS0 in the register WDTLVRC.

An external clock source is used when the Timer/Event Counter is in the event counting mode, the
clock source being provided on an external timer pin. Depending upon the condition of the TnEG
bit, each high to low, or low to high transition on the external timer pin will increment the counter
by one.

� �
� � � �

� � � � �

� � � � � � � � � � �

� � � � � � �
 � � �

� � �
 	 � � � � � � � � 	 � � � � � � � � � � � � � �
 � � � � � � � �

��
�� �� ��
 � � � �
 � � � ­

� � � � � � � � � � � � � � �
 � � � 	 � � � � � � � �
� � � � � � � � � � � � � � � � �
 � � ­

� � � � � � �

�

� �

� � � �
 � � �

� � � � � � �
 � �

�

Clock Source for Timer/WDT

� � � �

� � � � � � � � � � � � � � � �

�
 � � � �
 � � �

	 � � � � � � �

� � 	��
� � � �

� � � �

� � � � � � �
 � � � �
� � � � � � � � �
 � � �
 � � � � � � � �

� � � � � � �

� � � � � � ­
� � � �
 � � � � �
 �

� � � � � � � � � �

� � � �

8-bit Timer/Event Counter 0 Structure

Rev. 1.40 42 March 31, 2017 Rev. 1.40 43 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � �

� � � � � � � � � � � � � � � �

�
 � � � �
 � � �

	 � � � � � � �

� � � �

� � � �

� � � � � � �
 � � � �
� � � � � � � � �
 � � �
 � � � � � � � �

� � � � � � �

� � � � � � � �
� � � �
 � � � � �
 �

� � � � � � � � ­

8-bit Timer/Event Counter 1 Structure

Timer Register – TMR0, TMR1
The timer registers are special function registers located in the Special Purpose Data Memory and
is the place where the actual timer value is stored. The register is known as TMR0 and TMR1.
The value in the timer register increases by one each time an internal clock pulse is received or
an external transition occurs on the external timer pin. The timer will count from the initial value
loaded by the preload register to the full count of FFH at which point the timer overflows and an
internal interrupt signal is generated. The timer value will then reset with the initial preload register
value and continue counting.

Note that to achieve a maximum full range count of FFH, the preload register must first be cleared.
It should be noted that after power-on, the preload register will be in an unknown condition. Note
that if the Timer/Event Counter is in an OFF condition and data is written to its preload register,
this data will be immediately written into the actual counter. However, if the counter is enabled and
counting, any new data written into the preload data register during this period will remain in the
preload register and will only be written into the actual counter the next time an overflow occurs.

Timer Control Register – TMR0C, TMR1C
The flexible features of the Holtek microcontroller Timer/Event Counters enable them to operate in
three different modes, the options of which are determined by the contents of their respective control
register.

The Timer Control Register is known as TMRnC. It is the Timer Control Register together with
its corresponding timer register that controls the full operation of the Timer/Event Counter. Before
the timer can be used, it is essential that the Timer Control Register is fully programmed with the
right data to ensure its correct operation, a process that is normally carried out during program
initialization.

To choose which of the three modes the timer is to operate in, either in the timer mode, the event
counting mode or the pulse width capture mode, bits 7 and 6 of the Timer Control Register, which
are known as the bit pair TnM1/TnM0, must be set to the required logic levels. The timer-on bit,
which is bit 4 of the Timer Control Register and known as TnON, provides the basic on/off control
of the respective timer. Setting the bit to high allows the counter to run. Clearing the bit stops the
counter. Bits 0~2 of the Timer Control Register determine the division ratio of the input clock
prescaler. The prescaler bit settings have no effect if an external clock source is used. If the timer is
in the event count or pulse width capture mode, the active transition edge level type is selected by
the logic level of bit 3 of the Timer Control Register which is known as TnEG.

Rev. 1.40 44 March 31, 2017 Rev. 1.40 45 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

TMR0C Register

Bit 7 6 5 4 3 2 1 0
Name T0M1 T0M0 — T0ON T0EG T0PSC2 T0PSC1 T0PSC0
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 0 0 — 0 1 0 0 0

Bit 7~6	 T0M1~T0M0: Timer operation mode selection
00: No mode available
01: Event counter mode
10: Timer mode
11: Pulse width capture mode

Bit 5	 Unimplemented, read as “0”
Bit 4	 T0ON: Timer/event counter counting enable

0: Disable
1: Enable

Bit 3	 T0EG: Timer/Event Counter active edge selection
In event counter mode (T0M1~T0M0 = 01)
0: Count on rising edge
1: Count on falling edge

In pulse width measurement mode (T0M1~T0M0 = 11)
0: Start counting on falling edge, stop on the rising edge
1: Start counting on rising edge, stop on the falling edge

Bit 2~0	 T0PSC2~T0PSC0: Timer prescalar rate selection
000: fS

001: fS/2
010: fS/4
011: fS/8
100: fS/16
101: fS/32
110: fS/64
111: fS/128

TMR1C Register

Bit 7 6 5 4 3 2 1 0
Name T1M1 T1M0 — T1ON T1EG T1PSC2 T1PSC1 T1PSC0
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 0 0 — 0 1 0 0 0

Bit 7~6	 T1M1~T1M0: Timer operation mode selection
00: No mode available
01: Event counter mode
10: Timer mode
11: Pulse width capture mode

Bit 5	 Unimplemented, read as “0”
Bit 4	 T1ON: Timer/event counter counting enable

0: Disable
1: Enable

Bit 3	 T1EG: Timer/Event Counter active edge selection
In event counter mode (T1M1~T1M0 = 01)
0: Count on rising edge
1: Count on falling edge

In pulse width measurement mode (T1M1~T1M0 = 11)
0: Start counting on falling edge, stop on the rising edge
1: Start counting on rising edge, stop on the falling edge

Rev. 1.40 44 March 31, 2017 Rev. 1.40 45 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Bit 2~0	 T1PSC2~T1PSC0: Timer prescalar rate selection
000: fS

001: fS/2
010: fS/4
011: fS/8
100: fS/16
101: fS/32
110: fS/64
111: fS/128

Timer Mode
In this mode, the Timer/Event Counter can be utilized to measure fixed time intervals, providing
an internal interrupt signal each time the Timer/Event Counter overflows. To operate in this mode,
the Operating Mode Select bit pair, TnM1/TnM0, in the Timer Control Register must be set to the
correct value as shown.

Bit7 Bit6
1 0

Control Register Operating Mode Select Bits for the Timer Mode

In this mode the internal clock is used as the timer clock. The timer input clock source is fSYS or fSYS/4.
However, this timer clock source is further divided by a prescaler, the value of which is determined by
the bits TnPSC2~TnPSC0 in the Timer Control Register. The timer-on bit, TnON must be set high to
enable the timer to run. Each time an internal clock high to low transition occurs, the timer increments
by one. When the timer is full and overflows, an interrupt signal is generated and the timer will reload
the value already loaded into the preload register and continue counting. A timer overflow condition
and corresponding internal interrupts are two of the wake-up sources. However, the internal interrupts
can be disabled by ensuring that the TnE bits of the INTC0 register are reset to zero.

� � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � �
 � �

� � � � � � � � � � � � � � � � �
 � � � � � � � � 	 � � � � � � � � 	 � � � �

Timer Mode Timing Chart

Event Counter Mode
In this mode, a number of externally changing logic events, occurring on the external timer TMRn pin,
can be recorded by the Timer/Event Counter. To operate in this mode, the Operating Mode Select bit
pair, TnM1/TnM0, in the Timer Control Register must be set to the correct value as shown.

Bit7 Bit6
0 1

Control Register Operating Mode Select Bits for the Timer Mode

In this mode, the external timer TMRn pin is used as the Timer/Event Counter clock source,
however it is not divided by the internal prescaler. After the other bits in the Timer Control Register
have been set, the enable bit TnON, which is bit 4 of the Timer Control Register, can be set high to
enable the Timer/Event Counter to run. If the Active Edge Select bit, TnEG, which is bit 3 of the
Timer Control Register, is low, the Timer/Event Counter will increment each time the external timer
pin receives a low to high transition. If the TnEG is high, the counter will increment each time the
external timer pin receives a high to low transition. When it is full and overflows, an interrupt signal
is generated and the Timer/Event Counter will reload the value already loaded into the preload

Rev. 1.40 46 March 31, 2017 Rev. 1.40 47 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

register and continue counting. The interrupt can be disabled by ensuring that the Timer/Event
Counter Interrupt Enable bit in the corresponding Interrupt Control Register. It is reset to zero.

As the external timer pin is shared with an I/O pin, to ensure that the pin is configured to operate as
an event counter input pin, two things have to happen. The first is to ensure that the Operating Mode
Select bits in the Timer Control Register place the Timer/Event Counter in the Event Counting
Mode. The second is to ensure that the port control register configures the pin as an input. It should
be noted that in the event counting mode, even if the microcontroller is in the Sleep Mode, the
Timer/Event Counter will continue to record externally changing logic events on the timer input
TMRn pin. As a result when the timer overflows it will generate a timer interrupt and corresponding
wake-up source.

� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � �
 � � � � � � � � � � � �� � � � � �

Event Counter Mode Timing Chart (TnEG=1)

Pulse Width Capture Mode
In this mode, the Timer/Event Counter can be utilised to measure the width of external pulses
applied to the external timer pin. To operate in this mode, the Operating Mode Select bit pair, TnM1/
TnM0, in the Timer Control Register must be set to the correct value as shown.

Bit7 Bit6
1 1

Control Register Operating Mode Select Bits for the Pulse Width Capture Mode

In this mode the internal clock, fSYS, fSYS/4 or fLIRC is used as the internal clock for the 8-bit Timer/
Event Counter. However, the clock source, fS, for the 8-bit timer is further divided by a prescaler,
the value of which is determined by the Prescaler Rate Select bits TnPSC2~TnPSC0, which are bit
2~0 of the Timer Control Register, After other bits in the Timer Control Register have been set, the
enable bit TnON, which is bit 4 of the Timer Control Register, can be set high to enable the Timer/
Event Counter, however it will not actually start counting until an active edge is received on the
external timer pin.

If the Active Edge Select bit TnEG which is bit 3 of the Timer Control Register is low, once a high
to low transition has been received on the external timer pin, the Timer/Event Counter will start
counting until the external timer pin returns to its original high level. At this point the enable bit will
be automatically reset to zero and the Timer/Event Counter will stop counting. If the Active Edge
Select bit is high, the Timer/Event Counter will begin counting once a low to high transition has
been received on the external timer pin and stop counting when the external timer pin returns to its
original low level. As before, the enable bit will be automatically reset to zero and the Timer/Event
Counter will stop counting. It is important to note that in the pulse width capture mode, the enable
bit is automatically reset to zero when the external control signal on the external timer pin returns
to its original level, whereas in the other two modes the enable bit can only be reset to zero under
program control.

The residual value in the Timer/Event Counter, which can now be read by the program, therefore
represents the length of the pulse received on the TMRn pin. As the enable bit has now been reset,
any further transitions on the external timer pin will be ignored. The timer cannot begin further
pulse width capture until the enable bit is set high again by the program. In this way, single shot
pulse measurements can be easily made. It should be noted that in this mode the Timer/Event
Counter is controlled by logical transitions on the external timer pin and not by the logic level.

Rev. 1.40 46 March 31, 2017 Rev. 1.40 47 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

When the Timer/Event Counter is full and overflows, an interrupt signal is generated and the Timer/
Event Counter will reload the value already loaded into the preload register and continue counting.
The interrupt can be disabled by ensuring that the Timer/Event Counter Interrupt Enable bit in the
corresponding Interrupt Control Register, it is reset to zero. As the TMRn pin is shared with an I/O 	
pin, to ensure that the pin is configured to operate as a pulse width capture pin, two things have to be
implemented. The first is to ensure that the Operating Mode Select bits in the Timer Control Register
place the Timer/Event Counter in the pulse width capture mode, the second is to ensure that the port
control register configure the pin as an input.

� � � � � � � �� � � � �

� � � � � � � � � � �
 �
� � � � � �
 	 �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � 	 �
 	 �

� � � � � � � � �
� � � � � � � � 	 � � � �

� � � � � � � � � � � 	 �
 	 � � � � � � � �
 � � � � � � � � � � ­ �

Pulse Width Capture Mode Timing Chart (TnEG=0)

Prescaler
Bits TnPSC2~TnPSC0 of the TMRnC register can be used to define a division ratio for the internal
clock source of the Timer/Event Counter enabling longer time out periods to be set.

PFD Function
The Programmable Frequency Divider provides a means of producing a variable frequency output
suitable for application, such as some interfaces requiring a precise frequency generator.

The Timer/Event Counter overflow signal is the clock source for the PFD function, which is
controlled by PFDC bit in CTRL0. For these devices the clock source can come from Timer/Event
Counter 0. The output frequency is controlled by loading the required values into the timer prescaler
and timer registers to give the required division ratio. The counter will begin to count-up from this
preload register value until full, at which point an overflow signal is generated, causing both the PFD
outputs to change state. Then the counter will be automatically reloaded with the preload register
value and continue counting-up. If the CTRL0 register has selected the PFD function, then for PFD
output to operate, it is essential for the Port A control register PAC to set the PFD pins as outputs.
PA6 must be set high to activate the PFD. The output data bits can be used as the on/off control bit
for the PFD outputs. Note that the PFD outputs will all be low if the output data bit is cleared to
zero.

� � � � � � � � � � � � � �

� � � � � � � � �

�
 � � � �
 �

� � � � � 	
 � 	
 � �
 � �
 �

PFD Function

Rev. 1.40 48 March 31, 2017 Rev. 1.40 49 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I/O Interfacing
The Timer/Event Counter, when configured to run in the event counter or pulse width capture
mode, requires the use of an external timer pin for its operation. As this pin is a shared pin it must
be configured correctly to ensure that it is set for use as a Timer/Event Counter input pin. This is
achieved by ensuring that the mode selects bits in the Timer/Event Counter control register, either
the event counter or pulse width capture mode. Additionally the corresponding Port Control Register
bit must be set high to ensure that the pin is set as an input. Any pull-high resistor connected to this
pin will remain valid even if the pin is used as a Timer/Event Counter input.

Programming Considerations
When running in the timer mode, the internal system clock is used as the timer clock source and
is therefore synchronised with the overall operation of the microcontroller. In this mode when
the appropriate timer register is full, the microcontroller will generate an internal interrupt signal
directing the program flow to the respective internal interrupt vector. For the pulse width capture
mode, the internal system clock is also used as the timer clock source but the timer will only run
when the correct logic condition appears on the external timer input pin. As this is an external
event and not synchronised with the internal timer clock, the microcontroller will only see this
external event when the next timer clock pulse arrives. As a result, there may be small differences
in measured values requiring programmers to take this into account during programming. The same
applies if the timer is configured to be in the event counting mode, which again is an external event
and not synchronised with the internal system or timer clock.

When the Timer/Event Counter is read, or if data is written to the preload register, the clock is
inhibited to avoid errors, however as this may result in a counting error, this should be taken into
account by the programmer. Care must be taken to ensure that the timers are properly initialised
before using them for the first time. The associated timer enable bits in the interrupt control
register must be properly set otherwise the internal interrupt associated with the timer will remain
inactive. The edge select, timer mode and clock source control bits in timer control register must
also be correctly set to ensure the timer is properly configured for the required application. It is
also important to ensure that an initial value is first loaded into the timer registers before the timer
is switched on; this is because after power-on the initial values of the timer registers are unknown.
After the timer has been initialised the timer can be turned on and off by controlling the enable bit in
the timer control register.

When the Timer/Event Counter overflows, its corresponding interrupt request flag in the interrupt
control register will be set. If the Timer/Event Counter interrupt is enabled this will in turn generate
an interrupt signal. However irrespective of whether the interrupts are enabled or not, a Timer/Event
Counter overflow will also generate a wake-up signal if the devices are in a Power-down condition.
This situation may occur if the Timer/Event Counter is in the Event Counting Mode and if the external
signal continues to change state. In such a case, the Timer/Event Counter will continue to count
these external events and if an overflow occurs the devices will be woken up from its Power-down 	
condition. To prevent such a wake-up from occurring, the timer interrupt request flag should first be
set high before issuing the “HALT” instruction to enter the Sleep Mode.

Rev. 1.40 48 March 31, 2017 Rev. 1.40 49 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Timer Program Example
The program shows how the Timer/Event Counter registers are set along with how the interrupts are
enabled and managed. Note how the Timer/Event Counter is turned on, by setting bit 4 of the Timer
Control Register. The Timer/Event Counter can be turned off in a similar way by clearing the same
bit. This example program sets the Timer/Event Counters to be in the timer mode, which uses the
internal system clock as their clock source.

PFD Programming Example
org 	04h 				 ; external interrupt vector
org 	08h 				 ; Timer Counter 0 interrupt vector
jmp 	tmr0int 			 ; jump here when Timer 0 overflows
	 :
	 :
org 	20h 				 ; main program
	 :	
	 :	
						 ; internal Timer 0 interrupt routine
tmr0int:
	 :
						 ; Timer 0 main program placed here
	 :
	 :
begin:
						 ; set Timer 0 registers
mov 	a,09bh 				 ; set Timer 0 preload value
mov 	tmr0,a
mov 	a,081h 				 ; set Timer 0 control register
mov 	tmr0c,a 			 ; timer mode and prescaler set to /2 set interrupt register
mov 	a, 0c0H				 ; select fSYS for the TMR0 clock source
mov 	wdtlvrc, a
mov 	a,05h 				 ; enable master interrupt and both timer interrupts
mov 	intc0,a
	 :	
	 :
set 	tmr0c.4 			 ; start Timer 0
	 :	
	 :

Rev. 1.40 50 March 31, 2017 Rev. 1.40 51 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Interface
The I2C interface is used to communicate with external peripheral devices such as sensors,
EEPROM memory etc. Originally developed by Philips, it is a two line low speed serial interface
for synchronous serial data transfer. The advantage of only two lines for communication, relatively
simple communication protocol and the ability to accommodate multiple devices on the same bus
has made it an extremely popular interface type for many applications.

� � � � � �
� � � � �

� � � � � �
� � � � � �

� � � � � �
� � � � �

� � �

� � �
� � �

I2C Master/Slave Bus Connection

I2C Interface Operation
The I2C serial interface is a two line interface, a serial data line, SDA, and serial clock line, SCL. As
many devices may be connected together on the same bus, their outputs are both open drain types.
For this reason it is necessary that external pull-high resistors are connected to these outputs. Note
that no chip select line exists, as each device on the I2C bus is identified by a unique address which
will be transmitted and received on the I2C bus.

When two devices communicate with each other on the bidirectional I2C bus, one is known as the
master device and one as the slave device. Both master and slave can transmit and receive data.
However, it is the master device that has overall control of the bus. For this device, which only
operates in slave mode, there are two methods of transferring data on the I2C bus, the slave transmit
mode and the slave receive mode.

It is suggested that the user shall not enter the micro processor to HALT mode by application
program during processing I2C communication.

� � � � � � � � � � � � � � � � �
� � � � � �

� � � � � �
 � � � � � � � � � � � � � � �
� � � �
 �

� � �
 � � � � � � � � � �

� � � � 	 � � � � � � � � � � � �

�
�
�

 � � � � � � � � � � 	 �
�

 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � 	 � � � �
� � � � � � � � � � � �

� ­ � � � � � � � � � � � � � � � �

� � � � 	 � � � � � � � � � � � � � � �

� � � � � � � �

 � � � � � �
� � � � � � � � � �

� �
 � � � � �

� �

� � � � � � �

� � � � � � �

� � � � � � �

� � ­ � � � 	 �
� � � 	 � � � � �

� � � � � � �
� �
 � � � �

 � � �

� � � � � � �
�

� � � � � � �

� � � � � � � ­ � �

� � � � � � �
� � � � � � � � � � � � �

 � � � � � � � � � � 	 �

� � � � � � �

 � � � �

I2C Block Diagram

Rev. 1.40 50 March 31, 2017 Rev. 1.40 51 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � � � � � � � � � �
� � � � � � � � � � �

� � �
 � � � � � � � �

 � � � �
� �
 � � �
 � 	 � � � � � � � � � � � � � �

� � � � � � � �
 � �
� � � � � � � � � �

� � �
 �
 � � � � 	 � � �
� � � � � � � � � � �

� � � � � � � �
 � �
� � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

I2C Registers
There are four control registers associated with the I2C bus, I2CC0, I2CC1, I2CA and I2CTOC and
one data register, I2CD. The I2CD register is used to store the data being transmitted and received
on the I2C bus. Before the microcontroller writes data to the I2C bus, the actual data to be transmitted
must be placed in the I2CD register. After the data is received from the I2C bus, the microcontroller
can read it from the I2CD register. Any transmission or reception of data from the I2C bus must be
made via the I2CD register.

Register
Name

Bit

7 6 5 4 3 2 1 0
I2CC0 — — — — I2CDBNC1 I2CDBNC0 I2CEN —
I2CC1 HCF HAAS HBB HTX TXAK SRW IAMWU RXAK
I2CD D7 D6 D5 D4 D3 D2 D1 D0
I2CA A6 A5 A4 A3 A2 A1 A0 —

I2CTOC I2CTOEN I2CTOF I2CTOS5 I2CTOS4 I2CTOS3 I2CTOS2 I2CTOS1 I2CTOS0

I2C Registers List

I2CC0 Register

Bit 7 6 5 4 3 2 1 0
Name — — — — I2CDBC1 I2CDBC0 I2CEN —
R/W — — — — R/W R/W R/W —
POR — — — — 0 0 0 —

Bit 7~4	 Unimplemented, read as “0”
Bit 3~2	 I2CDBC1~I2CDBC0: I2C Debounce Time Selection

00: No debounce
01: 2 system clock debounce
10: 4 system clock debounce
11: 4 system clock debounce

Bit 1 	 I2CEN: I2C enable
0: Disable
1: Enable

Bit 0	 Unimplemented, read as “0”

Rev. 1.40 52 March 31, 2017 Rev. 1.40 53 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2CC1 Register

Bit 7 6 5 4 3 2 1 0
Name HCF HAAS HBB HTX TXAK SRW IAMWU RXAK
R/W R R R R/W R/W R R/W R
POR 1 0 0 0 0 0 0 1

Bit 7 	 HCF: I2C Bus data transfer completion flag
0: Data is being transferred
1: Completion of an 8-bit data transfer

The HCF flag is the data transfer flag. This flag will be zero when data is being
transferred. Upon completion of an 8-bit data transfer the flag will go high and an
interrupt will be generated.
Below is an example of the flow of a two-byte I2C data transfer.
First, I2C slave device receive a start signal from I2C master and then HCF bit is
automatically cleared to zero.
Second, I2C slave device finish receiving the 1st data byte and then HCF bit is
automatically set to one.
Third, user read the 1st data byte from I2CD register by the application program and
then HCF bit is automatically cleared to zero.
Fourth, I2C slave device finish receiving the 2nd data byte and then HCF bit is
automatically set to one and so on.
Finally, I2C slave device receive a stop signal from I2C master and then HCF bit is
automatically set to one.

Bit 6	 HAAS: I2C Bus address match flag
0: Not address match
1: Address match

The HAAS flag is the address match flag. This flag is used to determine if the slave
device address is the same as the master transmit address. If the addresses match then
this bit will be high, if there is no match then the flag will be low.

Bit 5	 HBB: I2C Bus busy flag
0: I2C Bus is not busy
1: I2C Bus is busy

The HBB flag is the I2C busy flag. This flag will be “1” when the I2C bus is busy
which will occur when a START signal is detected. The flag will be set to “0” when
the bus is free which will occur when a STOP signal is detected.

Bit 4	 HTX: Select I2C slave device is transmitter or receiver
0: Slave device is the receiver
1: Slave device is the transmitter

Bit 3	 TXAK: I2C Bus transmit acknowledge flag
0: Slave send acknowledge flag
1: Slave do not send acknowledge flag

The TXAK bit is the transmit acknowledge flag. After the slave device receipt of 8-bits
of data, this bit will be transmitted to the bus on the 9th clock from the slave device.
The slave device must always set TXAK bit to “0” before further data is received.

Bit 2	 SRW: I2C Slave Read/Write flag
0: Slave device should be in receive mode
1: Slave device should be in transmit mode

The SRW flag is the I2C Slave Read/Write flag. This flag determines whether
the master device wishes to transmit or receive data from the I2C bus. When the
transmitted address and slave address is match, that is when the HAAS flag is set high,
the slave device will check the SRW flag to determine whether it should be in transmit
mode or receive mode. If the SRW flag is high, the master is requesting to read data
from the bus, so the slave device should be in transmit mode. When the SRW flag
is zero, the master will write data to the bus, therefore the slave device should be in
receive mode to read this data.

Rev. 1.40 52 March 31, 2017 Rev. 1.40 53 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Bit 1	 IAMWU: I2C Address Match Wake-up Control
0: Disable
1: Enable – must be cleared by the application program after wake-up

The I2C module can run without using internal clock, and generate an interrupt if
the I2C interrupt is enabled, which can be used in SLEEP Mode, NORMAL(SLOW)
Mode. This bit should be set to “1” to enable the I2C address match wake up from
the SLEEP or IDLE Mode. If the IAMWU bit has been set before entering either the
SLEEP or IDLE mode to enable the I2C address match wake up, then this bit must
be cleared by the application program after wake-up to ensure correction device
operation.

Bit 0	 RXAK: I2C Bus Receive acknowledge flag
0: Slave receive acknowledge flag
1: Slave do not receive acknowledge flag

The RXAK flag is the receiver acknowledge flag. When the RXAK flag is “0”, it
means that a acknowledge signal has been received at the 9th clock, after 8 bits of data
have been transmitted. When the slave device in the transmit mode, the slave device
checks the RXAK flag to determine if the master receiver wishes to receive the next
byte. The slave transmitter will therefore continue sending out data until the RXAK
flag is “1”. When this occurs, the slave transmitter will release the SDA line to allow
the master to send a STOP signal to release the I2C Bus.

The I2CD register is used to store the data being transmitted and received. The same register is used
by both the SPI and I2C functions. Before the device writes data to the I2C bus, the actual data to
be transmitted must be placed in the I2CD register. After the data is received from the I2C bus, the
device can read it from the I2CD register. Any transmission or reception of data from the I2C bus
must be made via the I2CD register.

I2CD Register

Bit 7 6 5 4 3 2 1 0
Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x” unknown
Bit 7~0 	 D7~D0: I2C Data Buffer bit 7~bit 0

I2CA Register

Bit 7 6 5 4 3 2 1 0
Name A6 A5 A4 A3 A2 A1 A0 —
R/W R/W R/W R/W R/W R/W R/W R/W —
POR x x x x x x x —

“x” unknown
Bit 7~1 	 A6~A0: I2C slave address

A6~ A0 is the I2C slave address bit 6~bit 0.
The I2CA register is the location where the 7-bit slave address of the slave device
is stored. Bits 7~ 1 of the I2CA register define the device slave address. Bit 0 is not
defined.
When a master device, which is connected to the I2C bus, sends out an address, which
matches the slave address in the I2CA register, the slave device will be selected.

Bit 0	 Unimplemented, read as “0”

Rev. 1.40 54 March 31, 2017 Rev. 1.40 55 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Bus Communication
Communication on the I2C bus requires four separate steps, a START signal, a slave device address
transmission, a data transmission and finally a STOP signal. When a START signal is placed on the
I2C bus, all devices on the bus will receive this signal and be notified of the imminent arrival of data
on the bus. The first seven bits of the data will be the slave address with the first bit being the MSB.
If the address of the slave device matches that of the transmitted address, the HAAS bit in the I2CC1
register will be set and an I2C interrupt will be generated. After entering the interrupt service routine,
the slave device must first check the condition of the HAAS bit to determine whether the interrupt
source originates from an address match or from the completion of an 8-bit data transfer. During a
data transfer, note that after the 7-bit slave address has been transmitted, the following bit, which is
the 8th bit, is the read/write bit whose value will be placed in the SRW bit. This bit will be checked
by the slave device to determine whether to go into transmit or receive mode. Before any transfer
of data to or from the I2C bus, the microcontroller must initialise the bus. The following are steps to
achieve this:

Step 1
Set I2CEN bit in the I2CC0 register to “1” to enable the I2C bus.

Step 2
Write the slave address of the device to the I2C bus address register I2CA.

Step 3
Set the IICE interrupt enable bit of the interrupt control register to enable the I2C interrupt.

� � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � �
 � �
 	 � � �

� � � � � � � � �

� � � � � � � � � �
� � � � � � � � � � �

�

� � �� �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � ­

� � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � ­

I2C Bus Initialisation Flow Chart

Rev. 1.40 54 March 31, 2017 Rev. 1.40 55 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Bus Start Signal
The START signal can only be generated by the master device connected to the I2C bus and not by
the slave device. This START signal will be detected by all devices connected to the I2C bus. When
detected, this indicates that the I2C bus is busy and therefore the HBB bit will be set. A START
condition occurs when a high to low transition on the SDA line takes place when the SCL line
remains high.

Slave Address
The transmission of a START signal by the master will be detected by all devices on the I2C bus.
To determine which slave device the master wishes to communicate with, the address of the slave
device will be sent out immediately following the START signal. All slave devices, after receiving
this 7-bit address data, will compare it with their own 7-bit slave address. If the address sent out by
the master matches the internal address of the microcontroller slave device, then an internal I2C bus
interrupt signal will be generated. The next bit following the address, which is the 8th bit, defines the
read/write status and will be saved to the SRW bit of the I2CC1 register. The slave device will then
transmit an acknowledge bit, which is a low level, as the 9th bit. The slave device will also set the
status flag HAAS when the addresses match.

As an I2C bus interrupt can come from two sources, when the program enters the interrupt
subroutine, the HAAS bit should be examined to see whether the interrupt source has come from
a matching slave address or from the completion of a data byte transfer. When a slave address is
matched, the device must be placed in either the transmit mode and then write data to the I2CD
register, or in the receive mode where it must implement a dummy read from the I2CD register to
release the SCL line.

I2C Bus Read/Write Signal
The SRW bit in the I2CC1 register defines whether the slave device wishes to read data from the I2C
bus or write data to the I2C bus. The slave device should examine this bit to determine if it is to be a
transmitter or a receiver. If the SRW flag is “1” then this indicates that the master device wishes to
read data from the I2C bus, therefore the slave device must be setup to send data to the I2C bus as a
transmitter. If the SRW flag is “0” then this indicates that the master wishes to send data to the I2C
bus, therefore the slave device must be setup to read data from the I2C bus as a receiver.

I2C Bus Slave Address Acknowledge Signal
After the master has transmitted a calling address, any slave device on the I2C bus, whose
own internal address matches the calling address, must generate an acknowledge signal. The
acknowledge signal will inform the master that a slave device has accepted its calling address. If no
acknowledge signal is received by the master then a STOP signal must be transmitted by the master
to end the communication. When the HAAS flag is high, the addresses have matched and the slave
device must check the SRW flag to determine if it is to be a transmitter or a receiver. If the SRW
flag is high, the slave device should be setup to be a transmitter so the HTX bit in the I2CC1 register
should be set to “1”. If the SRW flag is low, then the microcontroller slave device should be setup as
a receiver and the HTX bit in the I2CC1 register should be set to “0”.

Rev. 1.40 56 March 31, 2017 Rev. 1.40 57 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Bus Data and Acknowledge Signal
The transmitted data is 8-bits wide and is transmitted after the slave device has acknowledged
receipt of its slave address. The order of serial bit transmission is the MSB first and the LSB last.
After receipt of 8-bits of data, the receiver must transmit an acknowledge signal, level "0", before
it can receive the next data byte. If the slave transmitter does not receive an acknowledge bit signal
from the master receiver, then the slave transmitter will release the SDA line to allow the master
to send a STOP signal to release the I2C Bus. The corresponding data will be stored in the I2CD
register. If setup as a transmitter, the slave device must first write the data to be transmitted into the
I2CD register. If setup as a receiver, the slave device must read the transmitted data from the I2CD
register.

When the slave receiver receives the data byte, it must generate an acknowledge bit, known as
TXAK, on the 9th clock. The slave device, which is setup as a transmitter will check the RXAK bit
in the I2CC1 register to determine if it is to send another data byte, if not then it will release the
SDA line and await the receipt of a STOP signal from the master.

� � � �

� � � � � � � � � �� � � � � � � � � � ��

� � � � � � �� �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � �

 � � � � � � �
 �
� � � � �
 � � � � � � � � � � � �
	 � � � � � � � � � � � � � �
 �
� � � � � � � � � � � � �
 �
�
 �
 � � � � ­ � � � � � � � �

� � �
� � � � �

� � �

� �
 � � �

� � � � � � ­
� � �

� � �

� � � � � � � � � � �

� � � � � 	 � � � � � � � � � 	 � � � �

I2C Communication Timing Diagram

Note: *When a slave address is matched, the device must be placed in either the transmit mode and
then write data to the I2CD register, or in the receive mode where it must implement a dummy
read from the I2CD register to release the I2C SCL line.

Rev. 1.40 56 March 31, 2017 Rev. 1.40 57 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � � �

� � � � � �
�

� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �

� � ��

� � � �

� � � � � � � �
�

� � �

�

�

� � � � �
 �
 	
� � � � � �
 � � � � � � � �

� � � � � � � �

� � � �

� � �

� � 	 	 � � � � � � �
 �
 	
� � � � � �
 � � � � � � � �

� � � � � � � �

� � � �

� � � �

� � � � � � � � � � � �
 � � � � �
� � � � � � � � � � � � � � � �

� � � � � � �

� � � � � � � � � � � �
 � � � � �
�
 � � � � � � � � � � � � � � � � �

� � � �

� � � � � � �
� � � � � � � �

� � 	 	 � � � � � � �
 �
 	
� � � � � �
 � � � � � � � �

� � � � � � � �

� � � � � � �
� � � � � � � �

� � � �

I2C Bus ISR Flow Chart

I2C Time-out Control
In order to reduce the problem of I2C lockup due to reception of erroneous clock sources, a time-out
function is provided. If the clock source to the I2C is not received then after a fixed time period, the
I2C circuitry and registers will be reset.

The time-out counter starts counting on an I2C bus “START” & “address match” condition, and
is cleared by an SCL falling edge. Before the next SCL falling edge arrives, if the time elapsed is
greater than the time-out setup by the I2CTOC register, then a time-out condition will occur. The
time-out function will stop when an I2C “STOP” condition occurs.

Rev. 1.40 58 March 31, 2017 Rev. 1.40 59 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � � � � � � � � � �
� � � � � � � � � � � � �

� �
� � � � � � � � � � � � �
 � � � � � � � � � � � �

� � � � � � � � � �� � � � � � � � � � ��

� � � � � � �� �

� � �
� � � � �

�
 	

� � � 	 � �

� � � �
� � �

�
 	

� � �
 � � 	 � � � � � �

�

�

I2C Time-out Control

When an I2C time-out counter overflow occurs, the counter will stop and the I2CTOEN bit will
be cleared to zero and the I2CTOF bit will be set high to indicate that a time-out condition has
occurred. The time-out condition will also generate an interrupt which uses the I2C interrupt vector.
When an I2C time-out occurs, the I2C internal circuitry will be reset and the registers will be reset
into the following condition:

Register After I2C Time-out
I2CD, I2CA, I2CC0 No change
I2CC1 Reset to POR condition

I2C Registers after Time-out

The I2CTOF flag can be cleared by the application program. There are 64 time-out periods which
can be selected using bits in the I2CTOC register. The time-out time is given by the formula:

((1~64) × 32) / fLIRC

This gives a range of about 1ms to 64ms. Note also that the LIRC oscillator is continuously enabled.

I2CTOC Register

Bit 7 6 5 4 3 2 1 0
Name I2CTOEN I2CTOF I2CTOS5 I2CTOS4 I2CTOS3 I2CTOS2 I2CTOS1 I2CTOS0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7 	 I2CTOEN: I2C Time-out Control
0: Disable
1: Enable

Bit 6	 I2CTOF: Time-out flag (set by time-out and clear by software)
0: No time-out
1: Time-out occurred

Bit 5~0	 I2CTOS5~I2CTOS0: Time-out Definition
I2C time-out clock source is fLIRC/32.
I2C time-out time is given by: ([I2CTOS5: I2CTOS0] + 1) × (32/fLIRC)

Rev. 1.40 58 March 31, 2017 Rev. 1.40 59 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UART Module Serial Interface
The HT48R008 device contains an integrated full-duplex asynchronous serial communications
UART interface that enables communication with external devices that contain a serial interface.
The UART function has many features and can transmit and receive data serially by transferring
a frame of data with eight or nine data bits per transmission as well as being able to detect errors
when the data is overwritten or incorrectly framed. The UART function possesses its own internal
interrupt which can be used to indicate when a reception occurs or when a transmission terminates.

The integrated UART function contains the following features:

•	 Full-duplex, asynchronous communication

•	 8 or 9 bits character length

•	 Even, odd or no parity options

•	 One or two stop bits

•	 Baud rate generator with 8-bit prescaler

•	 Parity, framing, noise and overrun error detection

•	 Support for interrupt on address detect (last character bit=1)

•	 Separately enabled transmitter and receiver

•	 2-byte Deep FIFO Receive Data Buffer

•	 Transmit and receive interrupts

•	 Interrupts can be initialized by the following conditions:
♦♦ Transmitter Empty
♦♦ Transmitter Idle
♦♦ Receiver Full
♦♦ Receiver Overrun
♦♦ Address Mode Detect

UART External Pin Interfacing
To communicate with an external serial interface, the internal UART has two external pins known
as TX and RX. The TX pin is the UART transmitter pin, which can be used as a general purpose I/
O pin if the pin is not configured as a UART transmitter, which occurs when the TXEN bit value is
equal to zero. Similarly, the RX pin is the UART receiver pin, which can also be used as a general
purpose I/O pin, if the pin is not configured as a receiver, which occurs if the RXEN bit in the
UCR2 register is equal to zero. Along with the UARTEN bit, the TXEN and RXEN bits, if set, will
automatically setup these I/O pins to their respective TX output and RX input conditions and disable
any pull-high resistor option which may exist on the RX pin.

UART Data Transfer Scheme
The following block diagram shows the overall data transfer structure arrangement for the UART.
The actual data to be transmitted from the MCU is first transferred to the TXR register by the
application program. The data will then be transferred to the Transmit Shift Register from where it
will be shifted out, LSB first, onto the TX pin at a rate controlled by the Baud Rate Generator. Only
the TXR register is mapped onto the MCU Data Memory, the Transmit Shift Register is not mapped
and is therefore inaccessible to the application program.

Rev. 1.40 60 March 31, 2017 Rev. 1.40 61 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Data to be received by the UART is accepted on the external RX pin, from where it is shifted in,
LSB first, to the Receiver Shift Register at a rate controlled by the Baud Rate Generator. When
the shift register is full, the data will then be transferred from the shift register to the internal RXR
register, where it is buffered and can be manipulated by the application program. Only the RXR
register is mapped onto the MCU Data Memory, the Receiver Shift Register is not mapped and is
therefore inaccessible to the application program.

It should be noted that the actual register for data transmission and reception, although referred to
in the text, and in application programs, as separate TXR and RXR registers, only exists as a single
shared register in the Data Memory. This shared register known as the TXR_RXR register is used
for both data transmission and data reception.

� �

� � � � � �

� � � � � � � � � � � � � � � �
 � � � � � � � � � � �

� � � � � � � � � � � �

� � � � �
 � � � � � � �
 � � � � � � � � � � �

� � � � � �

� � 	 � � � � � �
� � � � � � � � �

� � � � � �

� 	

 � �

� � � � � � � � � � 	 �

UART Data Transfer Scheme

UART Status and Control Registers
There are four control registers associated with the UART function. The USR, UCR1 and UCR2
registers control the overall function of the UART, while the BRG register controls the Baud rate.
The actual data to be transmitted and received on the serial interface is managed through the TXR_
RXR data registers.

Register
Name

Bit

7 6 5 4 3 2 1 0
USR PERR NF FERR OERR RIDLE RXIF TIDLE TXIF

UCR1 UARTEN BNO PREN PRT STOPS TXBRK RX8 TX8
UCR2 TXEN RXEN BRGH ADDEN WAKE RIE TIIE TEIE
TXR_
RXR TXRX7 TXRX6 TXRX5 TXRX4 TXRX3 TXRX2 TXRX1 TXRX0

BRG BRG7 BRG6 BRG5 BRG4 BRG3 BRG2 BRG1 BRG0

UART Registers Summary

Rev. 1.40 60 March 31, 2017 Rev. 1.40 61 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

USR Register
The USR register is the status register for the UART, which can be read by the program to determine
the UART present status. All flags within the USR register are read only. Further explanation on
each of the flags is given below.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Name PERR NF FERR OERR RIDLE RXIF TIDLE TXIF
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7	 PERR: Parity error flag
0: No parity error is detected
1: Parity error is detected

The PERR flag is the parity error flag. When this read only flag is “0”, it indicates a
parity error has not been detected. When the flag is “1”, it indicates that the parity of
the received word is incorrect. This error flag is applicable only if Parity mode (odd or
even) is selected. The flag can also be cleared by a software sequence which involves
a read to the status register USR followed by an access to the RXR data register.

Bit 6	 NF: Noise flag
0: No noise is detected
1: Noise is detected

The NF flag is the noise flag. When this read only flag is “0”, it indicates no noise
condition. When the flag is “1”, it indicates that the UART has detected noise on the
receiver input. The NF flag is set during the same cycle as the RXIF flag but will not
be set in the case of as overrun. The NF flag can be cleared by a software sequence
which will involve a read to the status register USR followed by an access to the RXR
data register.

Bit 5	 FERR: Framing error flag
0: No framing error is detected
1: Framing error is detected

The FERR flag is the framing error flag. When this read only flag is “0”, it indicates
that there is no framing error. When the flag is “1”, it indicates that a framing error
has been detected for the current character. The flag can also be cleared by a software
sequence which will involve a read to the status register USR followed by an access to
the RXR data register.

Bit 4	 OERR: Overrun error flag
0: No overrun error is detected
1: Overrun error is detected

The OERR flag is the overrun error flag which indicates when the receiver buffer has
overflowed. When this read only flag is “0”, it indicates that there is no overrun error.
When the flag is “1”, it indicates that an overrun error occurs which will inhibit further
transfers to the RXR receive data register. The flag is cleared by a software sequence,
which is a read to the status register USR followed by an access to the RXR data
register.

Bit 3	 RIDLE: Receiver status	
0: Data reception is in progress (data being received)
1: No data reception is in progress (receiver is idle)

The RIDLE flag is the receiver status flag. When this read only flag is “0”, it indicates
that the receiver is between the initial detection of the start bit and the completion of
the stop bit. When the flag is “1”, it indicates that the receiver is idle. Between the
completion of the stop bit and the detection of the next start bit, the RIDLE bit is “1”
indicating that the UART receiver is idle and the RX pin stays in logic high condition.

Rev. 1.40 62 March 31, 2017 Rev. 1.40 63 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Bit 2	 RXIF: Receive RXR data register status
0: RXR data register is empty
1: RXR data register has available data, at least one more character can be read.

The RXIF flag is the receive data register status flag. When this read only flag is “0”,
it indicates that the RXR read data register is empty. When the flag is “1”, it indicates
that the RXR read data register contains new data. When the contents of the shift
register are transferred to the RXR register, an interrupt is generated if RIE=1 in the
UCR2 register. If one or more errors are detected in the received word, the appropriate
receive-related flags NF, FERR, and/or PERR are set within the same clock cycle.
The RXIF flag is cleared when the USR register is read with RXIF set, followed by a
read from the RXR register, and if the RXR register has no data available.

Bit 1	 TIDLE: Transmission idle
0: Data transmission is in progress (data being transmitted)
1: No data transmission is in progress (transmitter is idle)

The TIDLE flag is known as the transmission complete flag. When this read only
flag is “0”, it indicates that a transmission is in progress. This flag will be set to “1”
when the TXIF flag is “1” and when there is no transmit data or break character being
transmitted. When TIDLE is equal to “1”, the TX pin becomes idle with the pin state
in logic high condition. The TIDLE flag is cleared by reading the USR register with
TIDLE set and then writing to the TXR register. The flag is not generated when a data
character or a break is queued and ready to be sent.

Bit 0	 TXIF: Transmit TXR data register status
0: Character is not transferred to the transmit shift register
1: Character has transferred to the transmit shift register (TXR data register is empty)

The TXIF flag is the transmit data register empty flag. When this read only flag is “0”,
it indicates that the character is not transferred to the transmitter shift register. When
the flag is “1”, it indicates that the transmitter shift register has received a character
from the TXR data register. The TXIF flag is cleared by reading the UART status
register (USR) with TXIF set and then writing to the TXR data register. Note that
when the TXEN bit is set, the TXIF flag bit will also be set since the transmit data
register is not yet full.

UCR1 Register
The UCR1 register together with the UCR2 register are the two UART control registers that are used
to set the various options for the UART function, such as overall on/off control, parity control, data
transfer bit length etc. Further explanation on each of the bits is given below:

Bit 7 6 5 4 3 2 1 0
Name UARTEN BNO PREN PRT STOPS TXBRK RX8 TX8
R/W R/W R/W R/W R/W R/W R/W R W
POR 0 0 0 0 0 0 x 0

“x” unknown
Bit 7	 UARTEN: UART function enable control

0: Disable UART. TX and RX pins are as I/O pins
1: Enable UART. TX and RX pins function as UART pins

The UARTEN bit is the UART enable bit. When this bit is equal to “0”, the UART
will be disabled and the RX pin as well as the TX pin will be as General Purpose I/O
pins. When the bit is equal to “1”, the UART will be enabled and the TX and RX pins
will function as defined by the TXEN and RXEN enable control bits.

Rev. 1.40 62 March 31, 2017 Rev. 1.40 63 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

When the UART is disabled, it will empty the buffer so any character remaining in
the buffer will be discarded. In addition, the value of the baud rate counter will be
reset. If the UART is disabled, all error and status flags will be reset. Also the TXEN,
RXEN, TXBRK, RXIF, OERR, FERR, PERR and NF bits will be cleared, while the
TIDLE, TXIF and RIDLE bits will be set. Other control bits in UCR1, UCR2 and
BRG registers will remain unaffected. If the UART is active and the UARTEN bit is
cleared, all pending transmissions and receptions will be terminated and the module
will be reset as defined above. When the UART is re-enabled, it will restart in the
same configuration.

Bit 6	 BNO: Number of data transfer bits selection
0: 8-bit data transfer
1: 9-bit data transfer

This bit is used to select the data length format, which can have a choice of either
8-bit or 9-bit format. When this bit is equal to “1”, a 9-bit data length format will be
selected. If the bit is equal to “0”, then an 8-bit data length format will be selected. If
9-bit data length format is selected, then bits RX8 and TX8 will be used to store the 9th
bit of the received and transmitted data respectively.

Bit 5	 PREN: Parity function enable control
0: Parity function is disabled
1: Parity function is enabled

This is the parity enable bit. When this bit is equal to “1”, the parity function will be
enabled. If the bit is equal to “0”, then the parity function will be disabled.

Bit 4	 PRT: Parity type selection bit
0: Even parity for parity generator
1: Odd parity for parity generator

This bit is the parity type selection bit. When this bit is equal to “1”, odd parity type
will be selected. If the bit is equal to “0”, then even parity type will be selected.

Bit 3	 STOPS: Number of Stop bits selection
0: One stop bit format is used
1: Two stop bits format is used

This bit determines if one or two stop bits are to be used. When this bit is equal to “1”,
two stop bits are used. If this bit is equal to “0”, then only one stop bit is used.

Bit 2	 TXBRK: Transmit break character
0: No break character is transmitted
1: Break characters transmit

The TXBRK bit is the Transmit Break Character bit. When this bit is “0”, there are
no break characters and the TX pin operates normally. When the bit is “1”, there are
transmit break characters and the transmitter will send logic zeros. When this bit is
equal to “1”, after the buffered data has been transmitted, the transmitter output is held
low for a minimum of a 13-bit length and until the TXBRK bit is reset.

Bit 1	 RX8: Receive data bit 8 for 9-bit data transfer format (read only)
This bit is only used if 9-bit data transfers are used, in which case this bit location will
store the 9th bit of the received data known as RX8. The BNO bit is used to determine
whether data transfers are in 8-bit or 9-bit format.

Bit 0	 TX8: Transmit data bit 8 for 9-bit data transfer format (write only)
This bit is only used if 9-bit data transfers are used, in which case this bit location
will store the 9th bit of the transmitted data known as TX8. The BNO bit is used to
determine whether data transfers are in 8-bit or 9-bit format.

Rev. 1.40 64 March 31, 2017 Rev. 1.40 65 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UCR2 Register
The UCR2 register is the second of the two UART control registers and serves several purposes.
One of its main functions is to control the basic enable/disable operation of the UART Transmitter
and Receiver as well as enabling the various UART interrupts. The register also serves to control the
baud rate speed, receiver wake-up enable and the address detect enable. Further explanation on each
of the bits is given below:

Bit 7 6 5 4 3 2 1 0
Name TXEN RXEN BRGH ADDEN WAKE RIE TIIE TEIE
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7	 TXEN: UART Transmitter enabled control
0: UART transmitter is disabled
1: UART transmitter is enabled

The bit named TXEN is the Transmitter Enable Bit. When this bit is equal to “0”, the
transmitter will be disabled with any pending data transmissions being aborted. In
addition the buffers will be reset. In this situation the TX pin will be as GPIO PORT.
If the TXEN bit is equal to “1” and the UARTEN bit is also equal to “1”, the
transmitter will be enabled and the TX pin will be controlled by the UART. Clearing
the TXEN bit during a transmission will cause the data transmission to be aborted and
will reset the transmitter. If this situation occurs, the TX pin will be as GPIO PORT.

Bit 6	 RXEN: UART Receiver enabled control
0: UART receiver is disabled
1: UART receiver is enabled

The bit named RXEN is the Receiver Enable Bit. When this bit is equal to “0”, the
receiver will be disabled with any pending data receptions being aborted. In addition
the receive buffers will be reset. In this situation the RX pin will be as GPIO PORT.
If the RXEN bit is equal to “1” and the UARTEN bit is also equal to “1”, the receiver
will be enabled and the RX pin will be controlled by the UART. Clearing the RXEN
bit during a reception will cause the data reception to be aborted and will reset the
receiver. If this situation occurs, the RX pin will be as GPIO PORT.

Bit 5	 BRGH: Baud Rate speed selection
0: Low speed baud rate
1: High speed baud rate

The bit named BRGH selects the high or low speed mode of the Baud Rate Generator.
This bit, together with the value placed in the baud rate register BRG, controls the
Baud Rate of the UART. If this bit is equal to “1”, the high speed mode is selected. If
the bit is equal to “0”, the low speed mode is selected.

Bit 4	 ADDEN: Address detect function enable control
0: Address detect function is disabled
1: Address detect function is enabled

The bit named ADDEN is the address detect function enable control bit. When this
bit is equal to “1”, the address detect function is enabled. When it occurs, if the 8th
bit, which corresponds to RX7 if BNO=0 or the 9th bit, which corresponds to RX8 if
BNO=1, has a value of “1”, then the received word will be identified as an address,
rather than data. If the corresponding interrupt is enabled, an interrupt request will be
generated each time the received word has the address bit set, which is the 8th or 9th
bit depending on the value of BNO. If the address bit known as the 8th or 9th bit of the
received word is “0” with the address detect function being enabled, an interrupt will
not be generated and the received data will be discarded.

Bit 3	 WAKE: RX pin falling edge wake-up function enable control
0: RX pin wake-up function is disabled
1: RX pin wake-up function is enabled

Rev. 1.40 64 March 31, 2017 Rev. 1.40 65 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

This bit enables or disables the receiver wake-up function. If this bit is equal to “1”
and the MCU is in Power-down mode, a falling edge on the RX input pin will wake-up 	
the device. If this bit is equal to “0” and the MCU is in Power-down mode, any edge
transitions on the RX pin will not wake-up the device.

Bit 2	 RIE: Receiver interrupt enable control
0: receiver related interrupt is disabled
1: receiver related interrupt is enabled

This bit enables or disables the receiver interrupt. If this bit is equal to “1” and when
the receiver overrun flag OERR or receive data available flag RXIF is set, the UART
interrupt request flag will be set. If this bit is equal to “0”, the UART interrupt request
flag will not be influenced by the condition of the OERR or RXIF flags.

Bit 1	 TIIE: Transmitter Idle interrupt enable control
0: Transmitter idle interrupt is disabled
1: Transmitter idle interrupt is enabled

This bit enables or disables the transmitter idle interrupt. If this bit is equal to “1” and
when the transmitter idle flag TIDLE is set, due to a transmitter idle condition, the
UART interrupt request flag will be set. If this bit is equal to “0”, the UART interrupt
request flag will not be influenced by the condition of the TIDLE flag.

Bit 0	 TEIE: Transmitter Empty interrupt enable control
0: Transmitter empty interrupt is disabled
1: Transmitter empty interrupt is enabled

his bit enables or disables the transmitter empty interrupt. If this bit is equal to “1” and
when the transmitter empty flag TXIF is set, due to a transmitter empty condition, the
UART interrupt request flag will be set. If this bit is equal to “0”, the UART interrupt
request flag will not be influenced by the condition of the TXIF flag.

TXR_RXR Register

Bit 7 6 5 4 3 2 1 0
Name TXRX7 TXRX6 TXRX5 TXRX4 TXRX3 TXRX2 TXRX1 TXRX0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x” means unknown
Bit 7~0	 TXRX7~TXRX0: UART Transmit/receive data bit

Baud Rate Generator
To setup the speed of the serial data communication, the UART function contains its own dedicated
baud rate generator. The baud rate is controlled by its own internal free running 8-bit timer, the
period of which is determined by two factors. The first of these is the value placed in the baud rate
register BRG and the second is the value of the BRGH bit with the control register UCR2. The
BRGH bit decides if the baud rate generator is to be used in a high speed mode or low speed mode,
which in turn determines the formula that is used to calculate the baud rate. The value N in the BRG
register which is used in the following baud rate calculation formula determines the division factor.
Note that N is the decimal value placed in the BRG register and has a range of between 0 and 255.

UCR2 BRGH Bit 0 1
Baud Rate (BR) fSYS / [64 (N+1)] fSYS / [16 (N+1)]

By programming the BRGH bit which allows selection of the related formula and programming the
required value in the BRG register, the required baud rate can be setup. Note that because the actual
baud rate is determined using a discrete value, N, placed in the BRG register, there will be an error
associated between the actual and requested value. The following example shows how the BRG
register value N and the error value can be calculated.

Rev. 1.40 66 March 31, 2017 Rev. 1.40 67 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Calculating the baud rate and error values
For a clock frequency of 4 MHz, and with BRGH set to “0” determine the BRG register value N, the
actual baud rate and the error value for a desired baud rate of 4800.

From the above table the desired baud rate BR = fSYS / [64 (N+1)]

Re-arranging this equation gives N = [fSYS / (BR×64) / 64] - 1

Giving a value for N = [(8000000 / 9600) / 64] - 1 = 12.0208

To obtain the closest value, a decimal value of 12 should be placed into the BRG register. This gives
an actual or calculated baud rate value of BR = 4000000 / [64 (12 + 1)] = 4808

Therefore the error is equal to (4808 - 4800) / 4800 = 0.16%

The following tables show actual values of baud rate and error values for the two values of BRGH.

Baud
Rate

K/BPS

Baud Rates for BRGH=0
fCLKI=4MHz fCLKI=3.579545MHz fCLKI=7.159MHz

BRG Kbaud Error(%) BRG Kbaud Error(%) BRG Kbaud Error(%)
0.3 207 0.300 0.16 185 0.300 0.00 — — —
1.2 51 1.202 0.16 46 1.190 -0.83 92 1.203 0.23
2.4 25 2.404 0.16 22 2.432 1.32 46 2.380 -0.83
4.8 12 4.808 0.16 11 4.661 -2.90 22 4.863 1.32
9.6 6 8.929 -6.99 5 9.321 -2.90 11 9.332 -2.90

19.2 2 20.833 8.51 2 18.643 -2.90 5 18.643 -2.90
38.4 — — — — — — 2 32.286 -2.90
57.6 0 62.500 8.51 0 55.930 -2.90 1 55.930 -2.90
115.2 — — — — — — 0 111.859 -2.90

Baud Rates and Error Values for BRGH = 0

Baud
Rate

K/BPS

Baud Rates for BRGH=1

fCLKI=4MHz fCLKI=3.579545MHz fCLKI=7.159MHz

BRG Kbaud Error(%) BRG Kbaud Error(%) BRG Kbaud Error(%)
0.3 — — — — — — — — —
1.2 207 1.202 0.16 185 1.203 0.23 — — —
2.4 103 2.404 0.16 92 2.406 0.23 185 2.406 0.23
4.8 51 4.808 0.16 46 4.76 -0.83 92 4.811 0.23
9.6 25 9.615 0.16 22 9.727 1.32 46 9.520 -0.83

19.2 12 19.231 0.16 11 18.643 -2.90 22 19.454 1.32
38.4 6 35.714 -6.99 5 37.286 -2.90 11 37.286 -2.90
57.6 3 62.5 8.51 3 55.930 -2.90 7 55.930 -2.90
115.2 1 125 8.51 1 111.86 -2.90 3 111.86 -2.90
250 0 250 0 — — — — — —

Baud Rates and Error Values for BRGH = 1

Rev. 1.40 66 March 31, 2017 Rev. 1.40 67 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

BRG Register

Bit 7 6 5 4 3 2 1 0
Name BRG7 BRG6 BRG5 BRG4 BRG3 BRG2 BRG1 BRG0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x” means unknown
Bit 7~0	 BRG7~BRG0: Baud Rate values

By programming the BRGH bit in UCR2 Register which allows selection of the
related formula described above and programming the required value in the BRG
register, the required baud rate can be setup.
Note: Baud rate= fSYS/[64*(N+1)] if BRGH=0

Baud rate= fSYS/[16*(N+1)] if BRGH=1

UART Setup and Control
For data transfer, the UART function utilizes a non-return-to-zero, more commonly known as NRZ,
format. This is composed of one start bit, eight or nine data bits, and one or two stop bits. Parity
is supported by the UART hardware, and can be setup to be even, odd or no parity. For the most
common data format, 8 data bits along with no parity and one stop bit, denoted as 8, N, 1, is used
as the default setting, which is the setting at power-on. The number of data bits and stop bits, along
with the parity, are setup by programming the corresponding BNO, PRT, PREN, and STOPS bits
in the UCR1 register. The baud rate used to transmit and receive data is setup using the internal
8-bit baud rate generator, while the data is transmitted and received LSB first. Although the UART
transmitter and receiver are functionally independent, they both use the same data format and baud
rate. In all cases stop bits will be used for data transmission.

•	 Enabling/disabling the UART interface
The basic on/off function of the internal UART function is controlled using the UARTEN bit in
the UCR1 register. As the UART transmit and receive pins, TX and RX respectively, are pin-
shared with normal I/O pins. One of the basic functions of the UARTEN control bit is to control
the UART function of these two pins. If the UARTEN, TXEN and RXEN bits are set, then these
two I/O pins will be setup as a TX output pin and an RX input pin respectively, in effect disabling
the normal I/O pin function. If no data is being transmitted on the TX pin then it will default to a
logic high value.
Clearing the UARTEN bit will disable the TX and RX pins and allow these two pins to be used
as normal I/O pins. When the UART function is disabled the buffer will be reset to an empty
condition, at the same time discarding any remaining residual data. Disabling the UART will also
reset the error and status flags with bits TXEN, RXEN, TXBRK, RXIF, OERR, FERR, PERR
and NF being cleared while bits TIDLE, TXIF and RIDLE will be set. The remaining control bits
in the UCR1, UCR2 and BRG registers will remain unaffected. If the UARTEN bit in the UCR1
register is cleared while the UART is active, then all pending transmissions and receptions will
be immediately suspended and the UART will be reset to a condition as defined above. If the
UART is then subsequently re-enabled, it will restart again in the same configuration.

Rev. 1.40 68 March 31, 2017 Rev. 1.40 69 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

•	 Data, parity and stop bit selection
The format of the data to be transferred is composed of various factors such as data bit length,
parity on/off, parity type, address bits and the number of stop bits. These factors are determined
by the setup of various bits within the UCR1 register. The BNO bit controls the number of data
bits which can be set to either 8 or 9, the PRT bit controls the choice of odd or even parity, the
PREN bit controls the parity on/off function and the STOPS bit decides whether one or two stop
bits are to be used. The following table shows various formats for data transmission. The address
bit identifies the frame as an address character. The number of stop bits, which can be either one
or two, is independent of the data length.

Start Bit Data Bits Address Bits Parity Bits Stop Bit
Example of 8-bit Data Formats

1 8 0 0 1
1 7 0 1 1
1 7 1 0 1

Example of 9-bit Data Formats
1 9 0 0 1
1 8 0 1 1
1 8 1 0 1

Transmitter Receiver Data Format

The following diagram shows the transmit and receive waveforms for both 8-bit and 9-bit data
formats.

� �

�
 � �
� � � � �
� � �

� � � � �
 � � � �

� � � � � � � � � � � � � � � � �

� �

�
 � �
� � � � �
� � �

� � � � �
 � � � �

� � � � � � � � � � � � � � � � �

� � � � 	

UART Transmitter
Data word lengths of either 8 or 9 bits can be selected by programming the BNO bit in the UCR1
register. When BNO bit is set, the word length will be set to 9 bits. In this case the 9th bit, which
is the MSB, needs to be stored in the TX8 bit in the UCR1 register. At the transmitter core lies the
Transmitter Shift Register, more commonly known as the TSR, whose data is obtained from the
transmit data register, which is known as the TXR register. The data to be transmitted is loaded
into this TXR register by the application program. The TSR register is not written to with new data
until the stop bit from the previous transmission has been sent out. As soon as this stop bit has been
transmitted, the TSR can then be loaded with new data from the TXR register, if it is available. It
should be noted that the TSR register, unlike many other registers, is not directly mapped into the
Data Memory area and as such is not available to the application program for direct read/write
operations. An actual transmission of data will normally be enabled when the TXEN bit is set, but
the data will not be transmitted until the TXR register has been loaded with data and the baud rate
generator has defined a shift clock source. However, the transmission can also be initiated by first
loading data into the TXR register, after which the TXEN bit can be set. When a transmission of
data begins, the TSR is normally empty, in which case a transfer to the TXR register will result in
an immediate transfer to the TSR. If during a transmission the TXEN bit is cleared, the transmission
will immediately cease and the transmitter will be reset. The TX output pin will then return to
having a normal general purpose I/O pin function.

Rev. 1.40 68 March 31, 2017 Rev. 1.40 69 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

•	 Transmitting data
When the UART is transmitting data, the data is shifted on the TX pin from the shift register,
with the least significant bit LSB first. In the transmit mode, the TXR register forms a buffer
between the internal bus and the transmitter shift register. It should be noted that if 9-bit data
format has been selected, then the MSB will be taken from the TX8n bit in the UCR1 register.
The steps to initiate a data transfer can be summarized as follows:
♦♦ Make the correct selection of the BNO, PRT, PREN and STOPS bits to define the required
word length, parity type and number of stop bits.

♦♦ Setup the BRG register to select the desired baud rate.
♦♦ Set the TXEN bit to ensure that the UART transmitter is enabled and the TX pin is used as a
UART transmitter pin.

♦♦ Access the USR register and write the data that is to be transmitted into the TXR register. Note
that this step will clear the TXIF bit.

This sequence of events can now be repeated to send additional data. It should be noted that
when TXIF=0, data will be inhibited from being written to the TXR register. Clearing the TXIF
flag is always achieved using the following software sequence:
1. A USR register access
2. A TXR register write execution
The read-only TXIF flag is set by the UART hardware and if set indicates that the TXR register
is empty and that other data can now be written into the TXR register without overwriting the
previous data. If the TEIE bit is set, then the TXIF flag will generate an interrupt. During a data
transmission, a write instruction to the TXR register will place the data into the TXR register,
which will be copied to the shift register at the end of the present transmission. When there is no
data transmission in progress, a write instruction to the TXR register will place the data directly
into the shift register, resulting in the commencement of data transmission, and the TXIF bit
being immediately set. When a frame transmission is complete, which happens after stop bits
are sent or after the break frame, the TIDLE bit will be set. To clear the TIDLE bit the following
software sequence is used:
1. A USR register access
2. A TXR register write execution
Note that both the TXIF and TIDLE bits are cleared by the same software sequence.

•	 Transmit break
If the TXBRK bit is set, then the break characters will be sent on the next transmission. Break
character transmission consists of a start bit, followed by 13xN “0” bits, where N=1, 2, etc. if
a break character is to be transmitted, then the TXBRK bit must be first set by the application
program and then cleared to generate the stop bits. Transmitting a break character will not
generate a transmit interrupt. Note that a break condition length is at least 13 bits long. If the
TXBRK bit is continually kept at a logic high level, then the transmitter circuitry will transmit
continuous break characters. After the application program has cleared the TXBRK bit, the
transmitter will finish transmitting the last break character and subsequently send out one or two
stop bits. The automatic logic high at the end of the last break character will ensure that the start
bit of the next frame is recognized.

Rev. 1.40 70 March 31, 2017 Rev. 1.40 71 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UART Receiver
The UART is capable of receiving word lengths of either 8 or 9 bits can be selected by programming
the BNO bit in the UCR1 register. When BNO bit is set, the word length will be set to 9 bits. In
this case the 9th bit, which is the MSB, will be stored in the RX8 bit in the UCR1 register. At the
receiver core lines the Receiver Shift Register more commonly known as the RSR. The data which
is received on the RX external input pin is sent to the data recovery block. The data recovery block
operating speed is 16 times that of the baud rate, while the main receive serial shifter operates at the
baud rate. After the RX pin is sampled for the stop bit, the received data in RSR is transferred to the
receive data register, if the register is empty. The data which is received on the external RX input pin
is sampled three times by a majority detect circuit to determine the logic level that has been placed
onto the RX pin. It should be noted that the RSR register, unlike many other registers, is not directly
mapped into the Data Memory area and as such is not available to the application program for direct
read/write operations.

•	 Receiving data
When the UART receiver is receiving data, the data is serially shifted in on the external RX input
pin to the shift register, with the least significant bit LSB first. The RXR register is a two byte
deep FIFO data buffer, where two bytes can be held in the FIFO while the third byte can continue
to be received. Note that the application program must ensure that the data is read from RXR
before the third byte has been completely shifted in, otherwise the third byte will be discarded
and an overrun error OERR will be subsequently indicated. The steps to initiate a data transfer
can be summarized as follows:
♦♦ Make the correct selection of the BNO, PRT, PREN and STOPS bits to define the required
word length, parity type and number of stop bits.

♦♦ Setup the BRG register to select the desired baud rate.
♦♦ Set the RXEN bit to ensure that the UART receiver is enabled and the RX pin is used as a
UART receiver pin.

At this point the receiver will be enabled which will begin to look for a start bit.
When a character is received, the following sequence of events will occur:
♦♦ The RXIF bit in the USR register will be set then RXR register has data available, at least
three more character can be read.

♦♦ When the contents of the shift register have been transferred to the RXR register and if the
RIE bit is set, then an interrupt will be generated.

♦♦ If during reception, a frame error, noise error, parity error or an overrun error has been
detected, and then the error flags can be set.

The RXIF bit can be cleared using the following software sequence:
1. A USR register access
2. A RXR register read execution

•	 Receiving break
Any break character received by the UART will be managed as a framing error. The receiver
will count and expect a certain number of bit times as specified by the values programmed into
the BNO and STOPS bits. If the break is much longer than 13 bit times, the reception will be
considered as complete after the number of bit times specified by BNO and STOPS. The RXIF
bit is set, FERR is set, zeros are loaded into the receive data register, interrupts are generated if
appropriate and the RIDLE bit is set. If a long break signal has been detected and the receiver has
received a start bit, the data bits and the invalid stop bit, which sets the FERR flag, the receiver
must wait for a valid stop bit before looking for the next start bit. The receiver will not make
the assumption that the break condition on the line is the next start bit. A break is regarded as
a character that contains only zeros with the FERR flag set. The break character will be loaded

Rev. 1.40 70 March 31, 2017 Rev. 1.40 71 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

into the buffer and no further data will be received until stop bits are received. It should be noted
that the RIDLE read only flag will go high when the stop bits have not yet been received. The
reception of a break character on the UART registers will result in the following:
♦♦ The framing error flag, FERR, will be set.
♦♦ The receive data register, RXR, will be cleared.
♦♦ The OERR, NF, PERR, RIDLE or RXIF flags will possibly be set.

•	 Idle status
When the receiver is reading data, which means it will be in between the detection of a start bit
and the reading of a stop bit, the receiver status flag in the USR register, otherwise known as the
RIDLE flag, will have a zero value. In between the reception of a stop bit and the detection of
the next start bit, the RIDLE flag will have a high value, which indicates the receiver is in an idle
condition.

•	 Receiver interrupt
The read only receive interrupt flag RXIF in the USR register is set by an edge generated by
the receiver. An interrupt is generated if RIE=1, when a word is transferred from the Receive
Shift Register, RSR, to the Receive Data Register, RXR. An overrun error can also generate an
interrupt if RIE=1.

Managing Receiver Errors
Several types of reception errors can occur within the UART module, the following section describes
the various types and how they are managed by the UART.

•	 Overrun Error – OERR
The RXR register is composed of a two byte deep FIFO data buffer, where two bytes can be held
in the FIFO register, while a third byte can continue to be received. Before the third byte has been
entirely shifted in, the data should be read from the RXR register. If this is not done, the overrun
error flag OERR will be consequently indicated.
In the event of an overrun error occurring, the following will happen:
♦♦ The OERR flag in the USR register will be set.
♦♦ The RXR contents will not be lost.
♦♦ The shift register will be overwritten.
♦♦ An interrupt will be generated if the RIE bit is set.
The OERR flag can be cleared by an access to the USR register followed by a read to the RXR
register.

•	 Noise Error – NF Flag
Over-sampling is used for data recovery to identify valid incoming data and noise. If noise is
detected within a frame, the following will occur:
♦♦ The read only noise flag, NF, in the USR register will be set on the rising edge of the RXIF bit.
♦♦ Data will be transferred from the shift register to the RXR register.
♦♦ No interrupt will be generated. However this bit rises at the same time as the RXIF bit which
itself generates an interrupt.

Note that the NF flag is reset by a USR register read operation followed by an RXR register read
operation.

•	 Framing Error – FERR
The read only framing error flag, FERR, in the USR register, is set if a zero is detected instead of
stop bits. If two stop bits are selected, both stop bits must be high. Otherwise the FERR flag will
be set. The FERR flag is buffered along with the received data and is cleared in any reset.

Rev. 1.40 72 March 31, 2017 Rev. 1.40 73 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

•	 Parity Error – PERR
The read only parity error flag, PERR, in the USR register, is set if the parity of the received
word is incorrect. This error flag is only applicable if the parity function is enabled, PREN=1, and
if the parity type, odd or even, is selected. The read only PERR flag is buffered along with the
received data bytes. It is cleared on any reset, it should be noted that the FERR and PERR flags
are buffered along with the corresponding word and should be read before reading the data word.

UART Interrupt Structure
Several individual UART conditions can generate a UART interrupt. When these conditions exist,
a low pulse will be generated to get the attention of the microcontroller. These conditions are a
transmitter data register empty, transmitter idle, receiver data available, receiver overrun, address
detect and an RX pin wake-up. When any of these conditions are created, if its corresponding
interrupt control is enabled and the stack is not full, the program will jump to its corresponding
interrupt vector where it can be serviced before returning to the main program. Four of these
conditions have the corresponding USR register flags which will generate a UART interrupt if its
associated interrupt enable control bit in the UCR2 register is set. The two transmitter interrupt
conditions have their own corresponding enable control bits, while the two receiver interrupt
conditions have a shared enable control bit. These enable bits can be used to mask out individual
UART interrupt sources.

The address detect condition, which is also a UART interrupt source, does not have an associated
flag, but will generate a UART interrupt when an address detect condition occurs if its function
is enabled by setting the ADDEN bit in the UCR2 register. An RX pin wake-up, which is also a
UART interrupt source, does not have an associated flag, but will generate a UART interrupt if
the microcontroller is woken up by a falling edge on the RX pin, if the WAKE and RIE bits in the
UCR2 register are set. Note that in the event of an RX wake-up interrupt occurring, there will be a
certain period of delay, commonly known as the System Start-up Time, for the oscillator to restart
and stabilize before the system resumes normal operation.

Note that the USR register flags are read only and cannot be cleared or set by the application
program, neither will they be cleared when the program jumps to the corresponding interrupt
servicing routine, as is the case for some of the other interrupts. The flags will be cleared
automatically when certain actions are taken by the UART, the details of which are given in the
UART register section. The overall UART interrupt can be disabled or enabled by the related
interrupt enable control bits in the interrupt control registers of the microcontroller to decide whether
the interrupt requested by the UART module is masked out or allowed.

T�ansmitte� Empty
Flag TXIF

USR Registe�

T�ansmitte� Idle
Flag TIDLE

Re�eive� Ove��un
Flag OERR

Re�eive� Data
Available RXIF

ADDEN

RX Pin
Wake-up

WAKE 0
1

0
1

0
1

RX� if BNO=0
RX8 if BNO=1UCR� Registe�

OR RIE 0
1

TIIE 0
1

TEIE 0
1

UART Inte��upt
Request Flag

UARTF

UCR� Registe�

UARTE

INTC1
Registe�

E�I

INTC0
Registe�

UART Interrupt Scheme

Rev. 1.40 72 March 31, 2017 Rev. 1.40 73 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Address Detect Mode
Setting the Address Detect function enable control bit, ADDEN, in the UCR2 register, enables this
special function. If this bit is set to 1, then an additional qualifier will be placed on the generation
of a Receiver Data Available interrupt, which is requested by the RXIF flag. If the ADDEN bit
is equal to 1, then when the data is available, an interrupt will only be generated, if the highest
received bit has a high value. Note that the related interrupt enable control bit and the EMI bit of the
microcontroller must also be enabled for correct interrupt generation. The highest address bit is the
9th bit if the bit BNO=1 or the 8th bit if the bit BNO=0. If the highest bit is high, then the received
word will be defined as an address rather than data. A Data Available interrupt will be generated
every time the last bit of the received word is set. If the ADDEN bit is equal to 0, then a Receive
Data Available interrupt will be generated each time the RXIF flag is set, irrespective of the data last
bit status. The address detection and parity functions are mutually exclusive functions. Therefore, if
the address detect function is enabled, then to ensure correct operation, the parity function should be
disabled by resetting the parity function enable bit PREN to zero.

ADDEN Bit 9 if BNO=1,
Bit 8 if BNO=0

UART Interrupt
Generated

0
0 √
1 √

1
0 ×
1 √

ADDEN Bit Function

UART Power Down Mode and Wake-up
When the MCU is in the Power Down Mode, the UART will cease to function. When the device
enters the Power Down Mode, all clock sources to the module are shutdown. If the MCU enters the
Power Down Mode while a transmission is still in progress, then the transmission will be paused
until the UART clock source derived from the microcontroller is activated. In a similar way, if the
MCU enters the Power Down Mode while receiving data, then the reception of data will likewise be
paused. When the MCU enters the Power Down Mode, note that the USR, UCR1, UCR2, transmit
and receive registers, as well as the BRG register will not be affected. It is recommended to make
sure first that the UART data transmission or reception has been finished before the microcontroller
enters the Power Down mode.

The UART function contains a receiver RX pin wake-up function, which is enabled or disabled
by the WAKE bit in the UCR2 register. If this bit, along with the UART enable bit, UARTEN, the
receiver enable bit, RXEN and the receiver interrupt bit, RIE, are all set before the MCU enters
the Power Down Mode, then a falling edge on the RX pin will wake up the MCU from the Power
Down Mode. Note that as it takes certain system clock cycles after a wake-up, before normal
microcontroller operation resumes, any data received during this time on the RX pin will be ignored.

For a UART wake-up interrupt to occur, in addition to the bits for the wake-up being set, the global
interrupt enable bit, EMI, and the UART interrupt enable bit, UARTE, must also be set. If these two
bits are not set then only a wake up event will occur and no interrupt will be generated. Note also
that as it takes certain system clock cycles after a wake-up before normal microcontroller resumes,
the UART interrupt will not be generated until after this time has elapsed.

Rev. 1.40 74 March 31, 2017 Rev. 1.40 75 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Interrupts
Interrupts are an important part of any microcontroller system. When an external event or an internal
function such as a Timer/Event Counter requires microcontroller attention, their corresponding
interrupt will enforce a temporary suspension of the main program allowing the microcontroller to
direct attention to their respective needs.

The series of devices contain only one external interrupt and multiple internal interrupts. The
external interrupts are controlled by the action of the external interrupt pin, while the internal
interrupt is controlled by the Timer/Event Counter.

Interrupt Register
Overall interrupt control, which means interrupt enabling and request flag setting, is controlled by
using the registers, INTC0 and INTC1. By controlling the appropriate enable bits in the register each
individual interrupt can be enabled or disabled. Also when an interrupt occurs, the corresponding
request flag will be set by the microcontroller. The global enable flag cleared to zero will disable all
interrupts.

Function Enable Bit Request Flag
Global EMI —
INT Pin INTE INTF
Timer 0 T0E T0F
Timer 1 T1E T1F

I2C IICE IICF
UART UARTE UARTF

Note: The UART Interrupt is only for the HT48R008 device.

INTC0 Register

Bit 7 6 5 4 3 2 1 0
Name — T1F T0F INTF T1E T0E INTE EMI
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit 7	 Unimplemented, read as "0"
Bit 6	 T1F: Timer/Event Counter 1 request flag

0: No request
1: Interrupt request

Bit 5	 T0F: Timer/Event Counter 0 request flag
0: No request
1: Interrupt request

Bit 4	 INTF: INT pin interrupt request flag
0: No request
1: Interrupt request

Bit 3	 Unimplemented, read as “0”
Bit 2	 T0E: Timer/Event Counter 0 interrupt control

0: Disable
1: Enable

Bit 1	 INTE: INT interrupt control
0: Disable
1: Enable

Bit 0	 EMI: Global interrupt control
0: Disable
1: Enable

Rev. 1.40 74 March 31, 2017 Rev. 1.40 75 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

INTC1 Register
•	 HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — — IICF — — — IICE
R/W — — — R/W — — — R/W
POR — — — 0 — — — 0

Bit 7~5	 Unimplemented, read as "0"
Bit 4	 IICF: I2C interrupt request flag

0: No request
1: Interrupt request

Bit 3~1	 Unimplemented, read as “0”	
Bit 0	 IICE: I2C interrupt control

0: Disable
1: Enable

•	 HT48R008

Bit 7 6 5 4 3 2 1 0
Name — — UARTF IICF — — UARTE IICE
R/W — — R/W R/W — — R/W R/W
POR — — 0 0 — — 0 0

Bit 7~6	 Unimplemented, read as "0"
Bit 5	 UARTF: UART request flag

0: No request
1: Interrupt request

Bit 4	 IICF: I2C interrupt request flag
0: No request
1: Interrupt request

Bit 3~2	 Unimplemented, read as “0”
Bit 1	 UARTE: UART interrupt control

0: Disable
1: Enable

Bit 0	 IICE: I2C interrupt control
0: Disable
1: Enable

Rev. 1.40 76 March 31, 2017 Rev. 1.40 77 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Interrupt Operation
A Timer/Event Counter overflow or an active edge on the external interrupt pin will all generate an
interrupt request by setting their corresponding request flag, if their appropriate interrupt enable bit
is set. When this happens, the Program Counter, which stores the address of the next instruction to
be executed, will be transferred onto the stack. The Program Counter will then be loaded with a new
address which will be the value of the corresponding interrupt vector. The microcontroller will then
fetch its next instruction from this interrupt vector.

The instruction at this vector will usually be a JMP statement which will jump to another section
of program which is known as the interrupt service routine. Here is located the code to control the
appropriate interrupt. The interrupt service routine must be terminated with a RETI instruction,
which retrieves the original Program Counter address from the stack and allows the microcontroller
to continue with normal execution at the point where the interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the
following diagram with their order of priority.

04H

08H

0CH

Vector

Low

Priority
High

Request
Flags

Enable
Bits

Master
Enable

EMI auto disabled in ISR

Interrupt
Name

EMI

EMI

EMIINTFINT Pin INTE

T0FTimer 0 T0E

T1FTimer 1 T1E

Legend

xxF Request Flag – auto reset in ISR

xxE Enable Bit

10HEMIIICFI2C IICE

14HEMIUARTFUART UARTE

Only for HT48R008

Interrupt Scheme

Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the EMI bit will
be cleared automatically. This will prevent any further interrupt nesting from occurring. However,
if other interrupt requests occur during this interval, although the interrupt will not be immediately
serviced, the request flag will still be recorded. If an interrupt requires immediate servicing while the
program is already in another interrupt service routine, the EMI bit should be set after entering the
routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged,
even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service
is desired, the stack must be prevented from becoming full.

When an interrupt request is generated it takes 2 or 3 instruction cycles before the program jumps to
the interrupt vector. If the devices are in the Sleep Mode and are woken up by an interrupt request
then it will take 3 cycles before the program jumps to the interrupt vector.

Rev. 1.40 76 March 31, 2017 Rev. 1.40 77 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

�ain
P�og�am

Enable bit set?

�ain
P�og�am

Automati�ally Disable Inte��upt
Clea� E�I & Request Flag

Wait fo� �~� Inst�u�tion Cy�les

ISR Ent�y
...
...

RETI
(it will set E�I automati�ally)

Inte��upt Request o�
Inte��upt Flag Set by Inst�u�tion

N

Y

Interrupt Flow

Interrupt Priority
Interrupts, occurring in the interval between the rising edges of two consecutive T2 pulses, will be
serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In case of
simultaneous requests, the following table shows the priority that is applied. These can be masked
by resetting the EMI bit.

Interrupt Source Priority Vector
External interrupt 1 04H
Timer/Event Counter 0 overflow 2 08H
Timer/Event Counter 1 overflow 3 0CH
I2C interrupt 4 10H
UART interrupt 5 14H

Note: The UART Interrupt is only for the HT48R008 device.

In cases where both external and internal interrupts are enabled and where an external and internal
interrupt occur simultaneously, the external interrupt will always have priority and will therefore be
serviced first. Suitable masking of the individual interrupts using the interrupt registers can prevent
simultaneous occurrences.

Rev. 1.40 78 March 31, 2017 Rev. 1.40 79 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

External Interrupt
For an external interrupt to occur, the global interrupt enable bit, EMI, and external interrupt enable
bit, INTE, must first be set. An actual external interrupt will take place when the external interrupt
request flag, INTF is set, a situation that will occur when an edge transition appears on the external
INT line. The type of transition that will trigger an external interrupt, whether high to low, low to
high or both is determined by the INTES0 and INTES1 bits, which are bits 6 and 7 respectively in
the CTRL1 control register. These two bits can also disable the external interrupt function.

INTES1 INTES0 Request Flag
0 0 External interrupt disable
0 1 Rising edge trigger
1 0 Falling edge trigger
1 1 Dual edge trigger

The external interrupt pin is pin-shared with the I/O pin PA2 and can only be used as an external
interrupt pin if the corresponding external interrupt enable bit in the INTC0 register has been set
and the edge trigger type has been selected using the CTRL1 register. The pin must also be set as
an input by setting the corresponding PAC.2 bit in the port control register. When the interrupt is
enabled, the stack is not full and a transition appears on the external interrupt pin, a subroutine
call to the external interrupt vector at location 04H, will take place. When the interrupt is serviced,
the external interrupt request flag, INTF, will be automatically reset and the EMI bit will be
automatically cleared to disable other interrupts. Note that any pull-high resistor connections on this
pin will remain valid even if the pin is used as an external interrupt input.

Timer/Event Counter Interrupt
For a Timer/Event Counter interrupt to occur, the global interrupt enable bit, EMI and the
corresponding timer interrupt enable bit TnE must first be set. An actual Timer/Event Counter
interrupt will take place when the Timer/Event Counter request flag TnF is set, a situation that will
occur when the relevant Timer/Event Counter overflows. When the interrupt is enabled, the stack is
not full and a Timer/Event Counter overflow occurs, a subroutine call to the relevant timer interrupt
vector, will take place. When the interrupt is serviced, the timer interrupt request flag TnF will be
automatically reset and the EMI bit will be automatically cleared to disable other interrupts.

UART Interrupt
The UART interrupt is only contained in the HT48R008 device. Several individual UART conditions
can generate a UART interrupt. When these conditions exist, a low pulse will be generated to get the
attention of the microcontroller. These conditions are a transmitter data register empty, transmitter
idle, receiver data available, receiver overrun, address detect and an RX pin wake-up. To allow the
program to branch to the respective interrupt vector addresses, the global interrupt enable bit, EMI,
and UART interrupt enable bit, UARTE, must first be set. When the interrupt is enabled, the stack is
not full and any of these conditions are created, a subroutine call to the UART Interrupt vector will
take place. When the interrupt is serviced, the UART Interrupt flag, UARTF, will be automatically
cleared. The EMI bit will also be automatically cleared to disable other interrupts. However, the
USR register flags will be cleared automatically when certain actions are taken by the UART, the
details of which are given in the UART section.

Rev. 1.40 78 March 31, 2017 Rev. 1.40 79 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Interrupt
An I2C Interrupt request will take place when the I2C Interrupt request flag, IICF, is set, which
occurs when a byte of data has been received or transmitted by the I2C interface, a slave address is
matched, or an I2C time-out condition has occurred. To allow the program to branch to its respective
interrupt vector address, the global interrupt enable bit, EMI, and the Serial Interface Interrupt
enable bit, IICE, must first be set. When the interrupt is enabled, the stack is not full and any of these
conditions are created, a subroutine call to the respective Interrupt vector, will take place. When the
I2C Interface Interrupt is serviced, the interrupt request flag, IICF, will be automatically reset and the
EMI bit will be cleared to disable other interrupts.

Interrupt Wake-up Function
Each of the interrupt functions has the capability of waking up the microcontroller when in the
Sleep Mode. A wake-up is generated when an interrupt request flag changes from low to high and
is independent of whether the interrupt is enabled or not. Therefore, even though the devices are
in the Sleep Mode and its system oscillator is stopped, situations such as external edge transitions
on the external interrupt pins or timer/event counter overflow may cause their respective interrupt
flag to be set high and consequently generate an interrupt. Care must therefore be taken if spurious
wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then the
corresponding interrupt request flag should be set high before the devices enter the Sleep Mode. The
interrupt enable bits have no effect on the interrupt wake-up function.

Programming Considerations
By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being
serviced, however, once an interrupt request flag is set, it will remain in this condition in the
interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by
the application program.

It is recommended that programs do not use the “CALL” instruction within the interrupt service
subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately.
If only one stack is left and the interrupt is not well controlled, the original control sequence will be
damaged once a CALL subroutine is executed in the interrupt subroutine.

All of these interrupts have the capability of waking up the microcontroller when it is in Sleep
Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is
required to prevent a certain interrupt from waking up the microcontroller then its respective request
flag should be first set high before entering the Sleep Mode.

As only the Program Counter is pushed onto the stack, then if the contents of the accumulator, status
register or other registers are altered by the interrupt service program, which may corrupt the desired
control sequence, then the contents should be saved in advance.

To return from an interrupt subroutine, either a RET or RETI instruction may be executed. The RETI
instruction in addition to executing a return to the main program also automatically sets the EMI
bit high to allow further interrupts. The RET instruction however only executes a return to the main
program leaving the EMI bit in its present zero state and therefore disabling the execution of further
interrupts.

Rev. 1.40 80 March 31, 2017 Rev. 1.40 81 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Application Circuits

� � � � �

� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
�
 � � �
 �
�
 � � �
 �
� � � � � � �
� � � �
 � �
� � � �
 � 	

� �
 � � � �

� � �

�

� � �

� � � � �
� � � � � � �

� � � � � � �

� � � � �
� � � � �

� � � �

� � � � � �

� � � � � �

� � � � � � � �

� � � � �

� � � � � � � �
� � � � � � � �

� � � � � � �
� � �

� � � � � �

� � � � � � �
�
 � � �
 �
�
 � � �
 �
�
 � � 	 � �
�
 � � 	
 �

� � 	 � � � �

� � �

� 	 	

� � �

� � � � �
� � � � � � �

� � � � � � �

� � � � �
� � � � �

� � � �

� � � � � �

� � � � � �
� � � � � �

� � � � � � � �

Rev. 1.40 80 March 31, 2017 Rev. 1.40 81 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Instruction Set

Introduction
Central to the successful operation of any microcontroller is its instruction set, which is a set of
program instruction codes that directs the microcontroller to perform certain operations. In the case
of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to
enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several
functional groupings.

Instruction Timing
Most instructions are implemented within one instruction cycle. The exceptions to this are branch,
call, or table read instructions where two instruction cycles are required. One instruction cycle is
equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions
would be implemented within 0.5μs and branch or call instructions would be implemented within
1μs. Although instructions which require one more cycle to implement are generally limited to
the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other
instructions which involve manipulation of the Program Counter Low register or PCL will also take
one more cycle to implement. As instructions which change the contents of the PCL will imply a
direct jump to that new address, one more cycle will be required. Examples of such instructions
would be “CLR PCL” or “MOV PCL, A”. For the case of skip instructions, it must be noted that if
the result of the comparison involves a skip operation then this will also take one more cycle, if no
skip is involved then only one cycle is required.

Moving and Transferring Data
The transfer of data within the microcontroller program is one of the most frequently used
operations. Making use of several kinds of MOV instructions, data can be transferred from registers
to the Accumulator and vice-versa as well as being able to move specific immediate data directly
into the Accumulator. One of the most important data transfer applications is to receive data from
the input ports and transfer data to the output ports.

Arithmetic Operations
The ability to perform certain arithmetic operations and data manipulation is a necessary feature of
most microcontroller applications. Within the Holtek microcontroller instruction set are a range of
add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care
must be taken to ensure correct handling of carry and borrow data when results exceed 255 for
addition and less than 0 for subtraction. The increment and decrement instructions such as INC,
INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the
values in the destination specified.

Rev. 1.40 82 March 31, 2017 Rev. 1.40 83 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Logical and Rotate Operation
The standard logical operations such as AND, OR, XOR and CPL all have their own instruction
within the Holtek microcontroller instruction set. As with the case of most instructions involving
data manipulation, data must pass through the Accumulator which may involve additional
programming steps. In all logical data operations, the zero flag may be set if the result of the
operation is zero. Another form of logical data manipulation comes from the rotate instructions such
as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different
rotate instructions exist depending on program requirements. Rotate instructions are useful for serial
port programming applications where data can be rotated from an internal register into the Carry
bit from where it can be examined and the necessary serial bit set high or low. Another application
which rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer
Program branching takes the form of either jumps to specified locations using the JMP instruction
or to a subroutine using the CALL instruction. They differ in the sense that in the case of a
subroutine call, the program must return to the instruction immediately when the subroutine has
been carried out. This is done by placing a return instruction “RET” in the subroutine which will
cause the program to jump back to the address right after the CALL instruction. In the case of a JMP
instruction, the program simply jumps to the desired location. There is no requirement to jump back
to the original jumping off point as in the case of the CALL instruction. One special and extremely
useful set of branch instructions are the conditional branches. Here a decision is first made regarding
the condition of a certain data memory or individual bits. Depending upon the conditions, the
program will continue with the next instruction or skip over it and jump to the following instruction.
These instructions are the key to decision making and branching within the program perhaps
determined by the condition of certain input switches or by the condition of internal data bits.

Bit Operations
The ability to provide single bit operations on Data Memory is an extremely flexible feature of all
Holtek microcontrollers. This feature is especially useful for output port bit programming where
individual bits or port pins can be directly set high or low using either the “SET [m].i” or “CLR [m].i”
instructions respectively. The feature removes the need for programmers to first read the 8-bit output
port, manipulate the input data to ensure that other bits are not changed and then output the port with
the correct new data. This read-modify-write process is taken care of automatically when these bit
operation instructions are used.

Table Read Operations
Data storage is normally implemented by using registers. However, when working with large
amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in
the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program
Memory to be setup as a table where data can be directly stored. A set of easy to use instructions
provides the means by which this fixed data can be referenced and retrieved from the Program
Memory.

Other Operations
In addition to the above functional instructions, a range of other instructions also exist such as
the “HALT” instruction for Power-down operations and instructions to control the operation of
the Watchdog Timer for reliable program operations under extreme electric or electromagnetic
environments. For their relevant operations, refer to the functional related sections.

Rev. 1.40 82 March 31, 2017 Rev. 1.40 83 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Instruction Set Summary
The following table depicts a summary of the instruction set categorised according to function and
can be consulted as a basic instruction reference using the following listed conventions.

Table Conventions
x: Bits immediate data	
m: Data Memory address	
A: Accumulator	
i: 0~7 number of bits	
addr: Program memory address

Mnemonic Description Cycles Flag Affected
Arithmetic
ADD A,[m] Add Data Memory to ACC 1 Z, C, AC, OV
ADDM A,[m] Add ACC to Data Memory 1Note Z, C, AC, OV
ADD A,x Add immediate data to ACC 1 Z, C, AC, OV
ADC A,[m] Add Data Memory to ACC with Carry 1 Z, C, AC, OV
ADCM A,[m] Add ACC to Data memory with Carry 1Note Z, C, AC, OV
SUB A,x Subtract immediate data from the ACC 1 Z, C, AC, OV
SUB A,[m] Subtract Data Memory from ACC 1 Z, C, AC, OV
SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory 1Note Z, C, AC, OV
SBC A,[m] Subtract Data Memory from ACC with Carry 1 Z, C, AC, OV
SBCM A,[m] Subtract Data Memory from ACC with Carry, result in Data Memory 1Note Z, C, AC, OV
DAA [m] Decimal adjust ACC for Addition with result in Data Memory 1Note C
Logic Operation
AND A,[m] Logical AND Data Memory to ACC 1 Z
OR A,[m] Logical OR Data Memory to ACC 1 Z
XOR A,[m] Logical XOR Data Memory to ACC 1 Z
ANDM A,[m] Logical AND ACC to Data Memory 1Note Z
ORM A,[m] Logical OR ACC to Data Memory 1Note Z
XORM A,[m] Logical XOR ACC to Data Memory 1Note Z
AND A,x Logical AND immediate Data to ACC 1 Z
OR A,x Logical OR immediate Data to ACC 1 Z
XOR A,x Logical XOR immediate Data to ACC 1 Z
CPL [m] Complement Data Memory 1Note Z
CPLA [m] Complement Data Memory with result in ACC 1 Z
Increment & Decrement
INCA [m] Increment Data Memory with result in ACC 1 Z
INC [m] Increment Data Memory 1Note Z
DECA [m] Decrement Data Memory with result in ACC 1 Z
DEC [m] Decrement Data Memory 1Note Z
Rotate
RRA [m] Rotate Data Memory right with result in ACC 1 None
RR [m] Rotate Data Memory right 1Note None
RRCA [m] Rotate Data Memory right through Carry with result in ACC 1 C
RRC [m] Rotate Data Memory right through Carry 1Note C
RLA [m] Rotate Data Memory left with result in ACC 1 None
RL [m] Rotate Data Memory left 1Note None
RLCA [m] Rotate Data Memory left through Carry with result in ACC 1 C
RLC [m] Rotate Data Memory left through Carry 1Note C

Rev. 1.40 84 March 31, 2017 Rev. 1.40 85 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Mnemonic Description Cycles Flag Affected
Data Move
MOV A,[m] Move Data Memory to ACC 1 None
MOV [m],A Move ACC to Data Memory 1Note None
MOV A,x Move immediate data to ACC 1 None
Bit Operation
CLR [m].i Clear bit of Data Memory 1Note None
SET [m].i Set bit of Data Memory 1Note None
Branch
JMP addr Jump unconditionally 2 None
SZ [m] Skip if Data Memory is zero 1Note None
SZA [m] Skip if Data Memory is zero with data movement to ACC 1Note None
SZ [m].i Skip if bit i of Data Memory is zero 1Note None
SNZ [m].i Skip if bit i of Data Memory is not zero 1Note None
SIZ [m] Skip if increment Data Memory is zero 1Note None
SDZ [m] Skip if decrement Data Memory is zero 1Note None
SIZA [m] Skip if increment Data Memory is zero with result in ACC 1Note None
SDZA [m] Skip if decrement Data Memory is zero with result in ACC 1Note None
CALL addr Subroutine call 2 None
RET Return from subroutine 2 None
RET A,x Return from subroutine and load immediate data to ACC 2 None
RETI Return from interrupt 2 None
Table Read
TABRD [m] Read table (specific page) to TBLH and Data Memory 2Note None
TABRDC [m] Read table (current page) to TBLH and Data Memory 2Note None
TABRDL [m] Read table (last page) to TBLH and Data Memory 2Note None
Miscellaneous
NOP No operation 1 None
CLR [m] Clear Data Memory 1Note None
SET [m] Set Data Memory 1Note None
CLR WDT Clear Watchdog Timer 1 TO, PDF
CLR WDT1 Pre-clear Watchdog Timer 1 TO, PDF
CLR WDT2 Pre-clear Watchdog Timer 1 TO, PDF
SWAP [m] Swap nibbles of Data Memory 1Note None
SWAPA [m] Swap nibbles of Data Memory with result in ACC 1 None
HALT Enter power down mode 1 TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required, if no
skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
3. For the “CLR WDT1” and “CLR WDT2” instructions the TO and PDF flags may be affected by the
execution status. The TO and PDF flags are cleared after both “CLR WDT1” and “CLR WDT2”
instructions are consecutively executed. Otherwise the TO and PDF flags remain unchanged.

Rev. 1.40 84 March 31, 2017 Rev. 1.40 85 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Instruction Definition

ADC A,[m]	 Add Data Memory to ACC with Carry
Description	 The contents of the specified Data Memory, Accumulator and the carry flag are added.	
	 The result is stored in the Accumulator.
Operation	 ACC ← ACC + [m] + C
Affected flag(s)	 OV, Z, AC, C

ADCM A,[m]	 Add ACC to Data Memory with Carry
Description	 The contents of the specified Data Memory, Accumulator and the carry flag are added. 	
	 The result is stored in the specified Data Memory.
Operation	 [m] ← ACC + [m] + C
Affected flag(s)	 OV, Z, AC, C

ADD A,[m]	 Add Data Memory to ACC
Description	 The contents of the specified Data Memory and the Accumulator are added.	
	 The result is stored in the Accumulator.
Operation	 ACC ← ACC + [m]
Affected flag(s)	 OV, Z, AC, C

ADD A,x	 Add immediate data to ACC
Description	 The contents of the Accumulator and the specified immediate data are added. 	
	 The result is stored in the Accumulator.
Operation	 ACC ← ACC + x
Affected flag(s)	 OV, Z, AC, C

ADDM A,[m]	 Add ACC to Data Memory
Description	 The contents of the specified Data Memory and the Accumulator are added. 	
	 The result is stored in the specified Data Memory.
Operation	 [m] ← ACC + [m]
Affected flag(s)	 OV, Z, AC, C

AND A,[m]	 Logical AND Data Memory to ACC
Description	 Data in the Accumulator and the specified Data Memory perform a bitwise logical AND 	
	 operation. The result is stored in the Accumulator.
Operation	 ACC ← ACC ″AND″ [m]
Affected flag(s)	 Z

AND A,x	 Logical AND immediate data to ACC
Description	 Data in the Accumulator and the specified immediate data perform a bit wise logical AND 	
	 operation. The result is stored in the Accumulator.
Operation	 ACC ← ACC ″AND″ x
Affected flag(s)	 Z

ANDM A,[m]	 Logical AND ACC to Data Memory
Description	 Data in the specified Data Memory and the Accumulator perform a bitwise logical AND	
	 operation. The result is stored in the Data Memory.
Operation	 [m] ← ACC ″AND″ [m]
Affected flag(s)	 Z

Rev. 1.40 86 March 31, 2017 Rev. 1.40 87 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

CALL addr	 Subroutine call
Description	 Unconditionally calls a subroutine at the specified address. The Program Counter then	
	 increments by 1 to obtain the address of the next instruction which is then pushed onto the	
	 stack. The specified address is then loaded and the program continues execution from this	
	 new address. As this instruction requires an additional operation, it is a two cycle instruction.
Operation	 Stack ← Program Counter + 1	
	 Program Counter ← addr
Affected flag(s)	 None

CLR [m]	 Clear Data Memory
Description	 Each bit of the specified Data Memory is cleared to 0.
Operation	 [m] ← 00H
Affected flag(s)	 None

CLR [m].i	 Clear bit of Data Memory
Description	 Bit i of the specified Data Memory is cleared to 0.
Operation	 [m].i ← 0
Affected flag(s)	 None

CLR WDT	 Clear Watchdog Timer
Description	 The TO, PDF flags and the WDT are all cleared.
Operation	 WDT cleared	
	 TO ← 0	
	 PDF ← 0
Affected flag(s)	 TO, PDF

CLR WDT1	 Pre-clear Watchdog Timer
Description	 The TO, PDF flags and the WDT are all cleared. Note that this instruction works in	
	 conjunction with CLR WDT2 and must be executed alternately with CLR WDT2 to have	
	 effect. Repetitively executing this instruction without alternately executing CLR WDT2 will	
	 have no effect.
Operation	 WDT cleared	
	 TO ← 0	
	 PDF ← 0
Affected flag(s)	 TO, PDF

CLR WDT2	 Pre-clear Watchdog Timer
Description	 The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction 	
	 with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect.	
 	 Repetitively executing this instruction without alternately executing CLR WDT1 will have no	
	 effect.
Operation	 WDT cleared	
	 TO ← 0	
	 PDF ← 0
Affected flag(s)	 TO, PDF

CPL [m]	 Complement Data Memory
Description	 Each bit of the specified Data Memory is logically complemented (1′s complement). Bits which 	
	 previously contained a 1 are changed to 0 and vice versa.
Operation	 [m] ← [m]
Affected flag(s)	 Z

Rev. 1.40 86 March 31, 2017 Rev. 1.40 87 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

CPLA [m]	 Complement Data Memory with result in ACC
Description	 Each bit of the specified Data Memory is logically complemented (1′s complement). Bits which 	
	 previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in	
	 the Accumulator and the contents of the Data Memory remain unchanged.
Operation	 ACC ← [m]
Affected flag(s)	 Z

DAA [m]	 Decimal-Adjust ACC for addition with result in Data Memory
Description	 Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value	
	 resulting from the previous addition of two BCD variables. If the low nibble is greater than 9	
	 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble	
	 remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6	
	 will be added to the high nibble. Essentially, the decimal conversion is performed by adding	
	 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag	
	 may be affected by this instruction which indicates that if the original BCD sum is greater than 	
	 100, it allows multiple precision decimal addition.
Operation	 [m] ← ACC + 00H or	
	 [m] ← ACC + 06H or 	
	 [m] ← ACC + 60H or	
	 [m] ← ACC + 66H
Affected flag(s)	 C

DEC [m]	 Decrement Data Memory
Description	 Data in the specified Data Memory is decremented by 1.
Operation	 [m] ← [m] − 1
Affected flag(s)	 Z

DECA [m]	 Decrement Data Memory with result in ACC
Description	 Data in the specified Data Memory is decremented by 1. The result is stored in the	
	 Accumulator. The contents of the Data Memory remain unchanged.
Operation	 ACC ← [m] − 1
Affected flag(s)	 Z

HALT	 Enter power down mode
Description	 This instruction stops the program execution and turns off the system clock. The contents of 	
	 the Data Memory and registers are retained. The WDT and prescaler are cleared. The power	
	 down flag PDF is set and the WDT time-out flag TO is cleared.
Operation	 TO ← 0	
	 PDF ← 1
Affected flag(s)	 TO, PDF

INC [m]	 Increment Data Memory
Description	 Data in the specified Data Memory is incremented by 1.
Operation	 [m] ← [m] + 1
Affected flag(s)	 Z

INCA [m]	 Increment Data Memory with result in ACC
Description	 Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator. 	
	 The contents of the Data Memory remain unchanged.
Operation	 ACC ← [m] + 1
Affected flag(s)	 Z

Rev. 1.40 88 March 31, 2017 Rev. 1.40 89 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

JMP addr	 Jump unconditionally
Description	 The contents of the Program Counter are replaced with the specified address. Program	
	 execution then continues from this new address. As this requires the insertion of a dummy	
	 instruction while the new address is loaded, it is a two cycle instruction.
Operation	 Program Counter ← addr
Affected flag(s)	 None

MOV A,[m]	 Move Data Memory to ACC
Description	 The contents of the specified Data Memory are copied to the Accumulator.
Operation	 ACC ← [m]
Affected flag(s)	 None

MOV A,x	 Move immediate data to ACC
Description	 The immediate data specified is loaded into the Accumulator.
Operation	 ACC ← x
Affected flag(s)	 None

MOV [m],A	 Move ACC to Data Memory
Description	 The contents of the Accumulator are copied to the specified Data Memory.
Operation	 [m] ← ACC
Affected flag(s)	 None

NOP	 No operation
Description	 No operation is performed. Execution continues with the next instruction.
Operation	 No operation
Affected flag(s)	 None

OR A,[m]	 Logical OR Data Memory to ACC
Description	 Data in the Accumulator and the specified Data Memory perform a bitwise	
	 logical OR operation. The result is stored in the Accumulator.
Operation	 ACC ← ACC ″OR″ [m]
Affected flag(s)	 Z

OR A,x	 Logical OR immediate data to ACC
Description	 Data in the Accumulator and the specified immediate data perform a bitwise logical OR 	
	 operation. The result is stored in the Accumulator.
Operation	 ACC ← ACC ″OR″ x
Affected flag(s)	 Z

ORM A,[m]	 Logical OR ACC to Data Memory
Description	 Data in the specified Data Memory and the Accumulator perform a bitwise logical OR 	
	 operation. The result is stored in the Data Memory.
Operation	 [m] ← ACC ″OR″ [m]
Affected flag(s)	 Z

RET	 Return from subroutine
Description	 The Program Counter is restored from the stack. Program execution continues at the restored	
	 address.
Operation	 Program Counter ← Stack
Affected flag(s)	 None

Rev. 1.40 88 March 31, 2017 Rev. 1.40 89 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

RET A,x	 Return from subroutine and load immediate data to ACC
Description	 The Program Counter is restored from the stack and the Accumulator loaded with the specified 	
	 immediate data. Program execution continues at the restored address.
Operation	 Program Counter ← Stack	
	 ACC ← x
Affected flag(s)	 None

RETI	 Return from interrupt
Description	 The Program Counter is restored from the stack and the interrupts are re-enabled by setting the 	
	 EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the 	
	 RETI instruction is executed, the pending Interrupt routine will be processed before returning 	
	 to the main program.
Operation	 Program Counter ← Stack	
	 EMI ← 1
Affected flag(s)	 None

RL [m]	 Rotate Data Memory left
Description	 The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.
Operation	 [m].(i+1) ← [m].i; (i=0~6)	
	 [m].0 ← [m].7
Affected flag(s)	 None

RLA [m]	 Rotate Data Memory left with result in ACC
Description	 The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0. 	
	 The rotated result is stored in the Accumulator and the contents of the Data Memory remain	
	 unchanged.
Operation	 ACC.(i+1) ← [m].i; (i=0~6)	
	 ACC.0 ← [m].7
Affected flag(s)	 None

RLC [m]	 Rotate Data Memory left through Carry
Description	 The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7	
	 replaces the Carry bit and the original carry flag is rotated into bit 0.
Operation	 [m].(i+1) ← [m].i; (i=0~6)	
	 [m].0 ← C	
	 C ← [m].7
Affected flag(s)	 C

RLCA [m]	 Rotate Data Memory left through Carry with result in ACC
Description	 Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the 	
	 Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the	
	 Accumulator and the contents of the Data Memory remain unchanged.
Operation	 ACC.(i+1) ← [m].i; (i=0~6)	
	 ACC.0 ← C	
	 C ← [m].7
Affected flag(s)	 C

RR [m]	 Rotate Data Memory right
Description	 The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.
Operation	 [m].i ← [m].(i+1); (i=0~6)	
	 [m].7 ← [m].0
Affected flag(s)	 None

Rev. 1.40 90 March 31, 2017 Rev. 1.40 91 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

RRA [m]	 Rotate Data Memory right with result in ACC
Description	 Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0	
	 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the	
	 Data Memory remain unchanged.
Operation	 ACC.i ← [m].(i+1); (i=0~6)	
	 ACC.7 ← [m].0
Affected flag(s)	 None

RRC [m]	 Rotate Data Memory right through Carry
Description	 The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0	
	 replaces the Carry bit and the original carry flag is rotated into bit 7.
Operation	 [m].i ← [m].(i+1); (i=0~6)	
	 [m].7 ← C	
	 C ← [m].0
Affected flag(s)	 C

RRCA [m]	 Rotate Data Memory right through Carry with result in ACC
Description	 Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces 	
	 the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the 	
	 Accumulator and the contents of the Data Memory remain unchanged.
Operation	 ACC.i ← [m].(i+1); (i=0~6)	
	 ACC.7 ← C	
	 C ← [m].0
Affected flag(s)	 C

SBC A,[m]	 Subtract Data Memory from ACC with Carry
Description	 The contents of the specified Data Memory and the complement of the carry flag are	
	 subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the 	
	 result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is	
	 positive or zero, the C flag will be set to 1.
Operation	 ACC ← ACC − [m] − C
Affected flag(s)	 OV, Z, AC, C

SBCM A,[m]	 Subtract Data Memory from ACC with Carry and result in Data Memory
Description	 The contents of the specified Data Memory and the complement of the carry flag are 	
	 subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the 	
	 result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is 	
	 positive or zero, the C flag will be set to 1.
Operation	 [m] ← ACC − [m] − C
Affected flag(s)	 OV, Z, AC, C

SDZ [m]	 Skip if decrement Data Memory is 0
Description	 The contents of the specified Data Memory are first decremented by 1. If the result is 0 the 	
	 following instruction is skipped. As this requires the insertion of a dummy instruction while 	
	 the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program 	
	 proceeds with the following instruction.
Operation	 [m] ← [m] − 1	
	 Skip if [m]=0
Affected flag(s)	 None

Rev. 1.40 90 March 31, 2017 Rev. 1.40 91 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

SDZA [m]	 Skip if decrement Data Memory is zero with result in ACC
Description	 The contents of the specified Data Memory are first decremented by 1. If the result is 0, the 	
	 following instruction is skipped. The result is stored in the Accumulator but the specified 	
	 Data Memory contents remain unchanged. As this requires the insertion of a dummy	
	 instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0, 	
	 the program proceeds with the following instruction.
Operation	 ACC ← [m] − 1	
	 Skip if ACC=0
Affected flag(s)	 None

SET [m]	 Set Data Memory
Description	 Each bit of the specified Data Memory is set to 1.
Operation	 [m] ← FFH
Affected flag(s)	 None

SET [m].i	 Set bit of Data Memory
Description	 Bit i of the specified Data Memory is set to 1.
Operation	 [m].i ← 1
Affected flag(s)	 None

SIZ [m]	 Skip if increment Data Memory is 0
Description	 The contents of the specified Data Memory are first incremented by 1. If the result is 0, the	
	 following instruction is skipped. As this requires the insertion of a dummy instruction while 	
	 the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program	
	 proceeds with the following instruction.
Operation	 [m] ← [m] + 1	
	 Skip if [m]=0
Affected flag(s)	 None

SIZA [m]	 Skip if increment Data Memory is zero with result in ACC
Description	 The contents of the specified Data Memory are first incremented by 1. If the result is 0, the 	
	 following instruction is skipped. The result is stored in the Accumulator but the specified	
	 Data Memory contents remain unchanged. As this requires the insertion of a dummy	
	 instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not	
	 0 the program proceeds with the following instruction.
Operation	 ACC ← [m] + 1	
	 Skip if ACC=0
Affected flag(s)	 None

SNZ [m].i	 Skip if bit i of Data Memory is not 0
Description	 If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this	
	 requires the insertion of a dummy instruction while the next instruction is fetched, it is a two 	
	 cycle instruction. If the result is 0 the program proceeds with the following instruction.
Operation	 Skip if [m].i ≠ 0
Affected flag(s)	 None

SUB A,[m]	 Subtract Data Memory from ACC
Description	 The specified Data Memory is subtracted from the contents of the Accumulator. The result is 	
	 stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be 	
	 cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation	 ACC ← ACC − [m]
Affected flag(s)	 OV, Z, AC, C

Rev. 1.40 92 March 31, 2017 Rev. 1.40 93 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

SUBM A,[m]	 Subtract Data Memory from ACC with result in Data Memory
Description	 The specified Data Memory is subtracted from the contents of the Accumulator. The result is 	
	 stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be 	
	 cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation	 [m] ← ACC − [m]
Affected flag(s)	 OV, Z, AC, C

SUB A,x	 Subtract immediate data from ACC
Description	 The immediate data specified by the code is subtracted from the contents of the Accumulator. 	
	 The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C 	
	 flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation	 ACC ← ACC − x
Affected flag(s)	 OV, Z, AC, C

SWAP [m]	 Swap nibbles of Data Memory
Description	 The low-order and high-order nibbles of the specified Data Memory are interchanged.
Operation	 [m].3~[m].0 ↔ [m].7~[m].4
Affected flag(s)	 None

SWAPA [m]	 Swap nibbles of Data Memory with result in ACC
Description	 The low-order and high-order nibbles of the specified Data Memory are interchanged. The 	
	 result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation	 ACC.3~ACC.0 ← [m].7~[m].4	
	 ACC.7~ACC.4 ← [m].3~[m].0
Affected flag(s)	 None

SZ [m]	 Skip if Data Memory is 0
Description	 If the contents of the specified Data Memory is 0, the following instruction is skipped. As this 	
	 requires the insertion of a dummy instruction while the next instruction is fetched, it is a two 	
	 cycle instruction. If the result is not 0 the program proceeds with the following instruction.
Operation	 Skip if [m]=0
Affected flag(s)	 None

SZA [m]	 Skip if Data Memory is 0 with data movement to ACC
Description	 The contents of the specified Data Memory are copied to the Accumulator. If the value is zero, 	
	 the following instruction is skipped. As this requires the insertion of a dummy instruction 	
	 while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the 	
	 program proceeds with the following instruction.
Operation	 ACC ← [m]	
	 Skip if [m]=0
Affected flag(s)	 None

SZ [m].i	 Skip if bit i of Data Memory is 0
Description	 If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires	
	 the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle	
	 instruction. If the result is not 0, the program proceeds with the following instruction.
Operation	 Skip if [m].i=0
Affected flag(s)	 None

Rev. 1.40 92 March 31, 2017 Rev. 1.40 93 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

TABRD [m]	 Read table (specific page) to TBLH and Data Memory
Description	 The low byte of the program code (specific page) addressed by the table pointer pair 	
	 (TBHP and TBLP) is moved to the specified Data Memory and the high byte moved to TBLH.
Operation	 [m] ← program code (low byte)	
	 TBLH ← program code (high byte)
Affected flag(s)	 None

TABRDC [m]	 Read table (current page) to TBLH and Data Memory
Description	 The low byte of the program code (current page) addressed by the table pointer (TBLP) is 	
	 moved to the specified Data Memory and the high byte moved to TBLH.
Operation	 [m] ← program code (low byte)	
	 TBLH ← program code (high byte)
Affected flag(s)	 None

TABRDL [m]	 Read table (last page) to TBLH and Data Memory
Description	 The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved 	
	 to the specified Data Memory and the high byte moved to TBLH.
Operation	 [m] ← program code (low byte)	
	 TBLH ← program code (high byte)
Affected flag(s)	 None

XOR A,[m]	 Logical XOR Data Memory to ACC
Description	 Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR 	
	 operation. The result is stored in the Accumulator.
Operation	 ACC ← ACC ″XOR″ [m]
Affected flag(s)	 Z

XORM A,[m]	 Logical XOR ACC to Data Memory
Description	 Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR 	
	 operation. The result is stored in the Data Memory.
Operation	 [m] ← ACC ″XOR″ [m]
Affected flag(s)	 Z

XOR A,x	 Logical XOR immediate data to ACC
Description	 Data in the Accumulator and the specified immediate data perform a bitwise logical XOR 	
	 operation. The result is stored in the Accumulator.
Operation	 ACC ← ACC ″XOR″ x
Affected flag(s)	 Z

Rev. 1.40 94 March 31, 2017 Rev. 1.40 95 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Package Information

Note that the package information provided here is for consultation purposes only. As this
information may be updated at regular intervals users are reminded to consult the Holtek website for
the latest version of the Package/Carton Information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant
section to be transferred to the relevant website page.

•	 Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)

•	 Packing Meterials Information

•	 Carton information

Rev. 1.40 94 March 31, 2017 Rev. 1.40 95 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

16-pin NSOP (150mil) Outline Dimensions

� �

�

�

�

�

� �

�

�

� �

�
�

� �

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.236 BSC —
B — 0.154 BSC —
C 0.012 — 0.020
C’ — 0.390 BSC —
D — — 0.069
E — 0.050 BSC —
F 0.004 — 0.010
G 0.016 — 0.050
H 0.004 — 0.010
α 0° — 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A — 6.0 BSC —
B — 3.9 BSC —
C 0.31 — 0.51
C’ — 9.9 BSC —
D — — 1.75
E — 1.27 BSC —
F 0.10 — 0.25
G 0.40 — 1.27
H 0.10 — 0.25
α 0° — 8°

Rev. 1.40 96 March 31, 2017 Rev. 1.40 97 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

20-pin SOP (300mil) Outline Dimensions

� �

�

� �

� �

� �

�

�

� �

� �
�

�

�

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.406 BSC —
B — 0.295 BSC —
C 0.012 — 0.020
C’ — 0.504 BSC —
D — — 0.104
E — 0.050 BSC —
F 0.004 — 0.012
G 0.016 — 0.050
H 0.008 — 0.013
α 0° — 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A — 10.30 BSC —
B — 7.5 BSC —
C 0.31 — 0.51
C’ — 12.8 BSC —
D — — 2.65
E — 1.27 BSC —
F 0.10 — 0.30
G 0.40 — 1.27
H 0.20 — 0.33
α 0° — 8°

Rev. 1.40 96 March 31, 2017 Rev. 1.40 97 March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

24-pin SOP (300mil) Outline Dimensions

� �

�

� �

� �

� �

�

�

� �

� �
�

�

�

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.406 BSC —
B — 0.295 BSC —
C 0.012 — 0.020
C’ — 0.606 BSC —
D — — 0.104
E — 0.050 BSC —
F 0.004 — 0.012
G 0.016 — 0.050
H 0.008 — 0.013
α 0° — 8°

Symbol
Dimensions in mm

Min. Nom. Max.

A — 10.30 BSC —

B — 7.5 BSC —

C 0.31 — 0.51

C’ — 15.4 BSC —

D — — 2.65

E — 1.27 BSC —

F 0.10 — 0.30

G 0.40 — 1.27

H 0.20 — 0.33

α 0° — 8°

Rev. 1.40 98 March 31, 2017 Rev. 1.40 PB March 31, 2017

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Copyright© 2017 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time
of publication. However, Holtek assumes no responsibility arising from the use of
the specifications described. The applications mentioned herein are used solely
for the purpose of illustration and Holtek makes no warranty or representation that
such applications will be suitable without further modification, nor recommends
the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Holtek's products are not authorized for use as critical
components in life support devices or systems. Holtek reserves the right to alter
its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.tw.

