
Cost-Effective I/O 8-Bit OTP MCU

HT48R004
HT48R008

Revision: V1.40 Date: �a��� �1� �01��a��� �1� �01�

Rev. 1.40 � �a��� �1� �01� Rev. 1.40 � �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Table of Contents

Features .. 5
CPU Featu�es ... 5
Pe�ip�e�al Featu�es ... 5

General Description ... 5
Block Diagram .. 6
Selection Table ... 6
Pin Assignment .. 6
Pin Description .. 7
Absolute Maximum Ratings .. 8
D.C. Characteristics ... 9
A.C. Characteristics ... 10
Power-on Reset Characteristics ... 10
System Architecture ...11

Clo�king and Pipelining ..11
P�og�am Counte� – PC .. 1�
Sta�k ... 1�
A�it�meti� and Logi� Unit – ALU ... 1�

Program Memory ... 14
St�u�tu�e .. 14
Spe�ial Ve�to�s ... 14
Look-up Table .. 14
Table P�og�am Example .. 15

Data Memory .. 17
St�u�tu�e .. 1�
Spe�ial Pu�pose Data �emo�y ... 1�

Special Function Registers ... 19
Indi�e�t Add�essing Registe�s – IAR0� IAR1 ... 19
�emo�y Pointe�s – �P0� �P1 .. 19
Indi�e�t Add�essing P�og�am Example .. 19
A��umulato� – ACC ... �0
P�og�am Counte� Low Registe� – PCL .. �0
Status Registe� – STATUS .. �0
System Cont�ol Registe�s – CTRL0� CTRL1 ... ��

Oscillator .. 23
System Os�illato� Ove�view .. ��
System Clock Configurations .. ��
Inte�nal RC Os�illato� – HIRC ... ��
Inte�nal 1�kHz Os�illato� – LIRC ... ��

Rev. 1.40 � �a��� �1� �01� Rev. 1.40 � �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Power Down Mode and Wake-up .. 24
Powe� Down �ode .. �4
Ente�ing t�e Powe� Down �ode ... �4
Standby Cu��ent Conside�ations ... �4
Wake-up .. �5

Watchdog Timer ... 26
Wat��dog Time� Clo�k Sou��e .. �6
Wat��dog Time� Cont�ol Registe�s ... �6
Wat��dog Time� Ope�ation ... ��

Reset and Initialization .. 28
Reset Fun�tions .. �8
Reset Initial Conditions ... �1

Input/Output Ports ... 34
Pull-�ig� Resisto�s .. �5
Po�t A Wake-up ... �6
I/O Po�t Cont�ol Registe�s ... ��
Sou��e Cu��ent Sele�tion Registe�s ... �8
Pin-s�a�ed Fun�tions .. 40
I/O Pin St�u�tu�es .. 40
P�og�amming Conside�ations .. 41

Timer/Event Counters ... 42
Configuring the Timer/Event Counter Input Clock Source .. 4�
Time� Registe� – T�R0� T�R1 ... 4�
Time� Cont�ol Registe� – T�R0C� T�R1C ... 4�
Time� �ode ... 45
Event Counte� �ode ... 45
Pulse Widt� Captu�e �ode ... 46
P�es�ale� ... 4�
PFD Fun�tion .. 4�
I/O Inte�fa�ing .. 48
P�og�amming Conside�ations .. 48
Time� P�og�am Example ... 49

I2C Interface ... 50
I�C Inte�fa�e Ope�ation ... 50
I�C Registe�s ... 51
I�C Bus Communi�ation .. 54
I�C Bus Sta�t Signal .. 55
Slave Add�ess .. 55
I�C Bus Read/W�ite Signal .. 55
I�C Bus Slave Add�ess A�knowledge Signal ... 55
I�C Bus Data and A�knowledge Signal ... 56
I�C Time-out Cont�ol .. 5�

Rev. 1.40 4 �a��� �1� �01� Rev. 1.40 5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UART Module Serial Interface .. 59
UART Exte�nal Pin Inte�fa�ing .. 59
UART Data T�ansfe� S��eme.. 59
UART Status and Cont�ol Registe�s.. 60
Baud Rate Gene�ato� .. 65
UART Setup and Cont�ol... 6�
UART Inte��upt St�u�tu�e... ��
UART Powe� Down �ode and Wake-up ... ��

Interrupts .. 74
Inte��upt Registe� .. �4
Inte��upt Ope�ation .. �6
Inte��upt P�io�ity ... ��
Exte�nal Inte��upt ... �8
Time�/Event Counte� Inte��upt ... �8
UART Inte��upt .. �8
I�C Inte��upt ... �9
Inte��upt Wake-up Fun�tion ... �9
P�og�amming Conside�ations .. �9

Application Circuits ... 80
Instruction Set .. 81

Int�odu�tion ... 81
Inst�u�tion Timing .. 81
�oving and T�ansfe��ing Data ... 81
A�it�meti� Ope�ations .. 81
Logi�al and Rotate Ope�ation ... 8�
B�an��es and Cont�ol T�ansfe� ... 8�
Bit Ope�ations ... 8�
Table Read Ope�ations ... 8�
Ot�e� Ope�ations ... 8�

Instruction Set Summary .. 83
Table Conventions ... 8�

Instruction Definition ... 85
Package Information ... 94

16-pin NSOP (150mil) Outline Dimensions ... 95
�0-pin SOP (�00mil) Outline Dimensions ... 96
�4-pin SOP (�00mil) Outline Dimensions ... 9�

Rev. 1.40 4 �a��� �1� �01� Rev. 1.40 5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Features

CPU Features
•	 Operating	voltage

	♦ fSYS	=	8MHz:	VLVR~5.5V

•	 Up	to	0.5μs	instruction	cycle	with	8MHz	system	clock	at	VDD	=5V

•	 Power	down	and	wake-up	functions	to	reduce	power	consumption

•	 Two	oscillators
	♦ Internal	high	speed	RC	–	HIRC
	♦ Internal	low	speed	RC	–	LIRC

•	 Fully	integrated	internal	8MHz	oscillator	requires	no	external	components

•	 All	instructions	executed	in	one	or	two	instruction	cycles

•	 Table	read	instruction

•	 63	powerful	instructions

•	 4-level	subroutine	nesting

•	 Bit	manipulation	instruction

Peripheral Features
•	 Program	Memory:	2K×14	~	4K×15

•	 Data	Memory:	64×8	~	96×8

•	 Watchdog	Timer	function

•	 Up	to	22	bidirectional	I/O	lines

•	 External	interrupt	pin	shared	with	I/O	pin

•	 Two	8-bit	programmable	Timer/Event	Counters	with	overflow	interrupt	and	prescaler

•	 Programmable	Frequency	Divider	–	PFD

•	 Universal	Asynchronous	Receiver	Transmitter	–	UART	(only	for	HT48R008)

•	 I2C	Function

•	 Low	voltage	reset	function

•	 Wide	range	of	available	package	types

General Description
The	series	of	devices	are	8-bit	high	performance	RISC	architecture	microcontrollers	specifically	
designed	for	 the	 I/O	control.	The	advantages	of	 low	power	consumption,	 I/O	flexibility,	 timer	
functions,	HALT	and	wake-up	functions,	watchdog	timer,	as	well	as	low	cost,	enhance	the	versatility	
of	these	devices	to	suit	for	a	wide	range	of	the	I/O	control	application	possibilities	such	as	industrial	
control,	consumer	products	and	subsystem	controllers,	etc.

Rev. 1.40 6 �a��� �1� �01� Rev. 1.40 � �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Block Diagram

8-bit
RISC
�CU
Co�e

UARTI�C

Inte��upt
Cont�olle�

Reset
Ci��uit

Inte�nal RC
Os�illato�s

8-bit
Time�s

Wat��dog
Time�

Low Voltage
Reset

RA�
Data

�emo�y

PFD
D�ive�

OTP
P�og�am
�emo�y

I/O
Po�ts

Fo� HT48R008

Selection Table
Most	features	are	common	to	all	devices,	the	main	feature	distinguishing	them	are	Program	Memory	
and	Data	Memory	capacity,	 I/O	count,	UART	Interface	and	package	 types.	The	following	table	
summarises	the	main	features	of	each	device.

Part No. Program
Memory

Data
Memory I/O External

Interrupt
8-bit

Timer PFD I2C UART Stack Package

HT48R004 �K×14 64×8 18 1 � √ √ – 4 16NSOP
�0SOP

HT48R008 4K×15 96×8 �� 1 � √ √ √ 4 �4SOP

Note:	As	devices	exist	 in	more	 than	one	package	format,	 the	 table	reflects	 the	situation	for	 the	
package	with	the	most	pins.

Pin Assignment

HT48R004
16 NSOP-A

HT48R004
20 SOP-A

HT48R008
24 SOP-A

PB7
PB6
PB5
PB4

PA4/TX
PC5/SCL
PC4/SDA

PC3
PC2
PC1
PC0
PA3

PB3
PB2
PB1
PB0
PA5/RX
PA6/PFD
PA7/RES
VDD
VSS
PA0/TMR1
PA1/TMR0
PA2/INT

24
23
22
21
20
19
18
17
16
15
14
13

1
2
3
4
5
6
7
8
9
10
11
12

PC0

PC5/SCL
PA7/RES
VDD
VSS
PA0/TMR1

PA6/PFD

PC1

PA2/INT

PA5

PC4/SDA
PC3
PC2

PA1/TMR0
PA3

PA4 16
15
14
13
12
11
10
9

1
2
3
4
5
6
7
8

PA7/RES
VDD
VSS
PA0/TMR1

PA6/PFD

PA2/INT

PA5

PA1/TMR0PC0

PC5/SCL

PC1

PC4/SDA
PC3
PC2

PA3

PA4

PB5
PB4

PB1
PB0

20
19
18
17
16
15
14
13
12
11

1
2
3
4
5
6
7
8
9
10

Note:	If	the	pin-shared	pin	functions	have	multiple	outputs	simultaneously,	its	pin	names	at	the	right	
side	of	the	“/”	sign	can	be	used	for	higher	priority.

Rev. 1.40 6 �a��� �1� �01� Rev. 1.40 � �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Pin Description

HT48R004
Pin Name Function OPT I/T O/T Description

PA0/T�R1
PA0 PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

T�R1 T�R1C ST — Time�/Event �ounte� 1 input

PA1/T�R0
PA1 PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

T�R0 T�R0C ST — Time�/Event �ounte� 0 input

PA�/INT
PA� PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

INT INTC0
CTRL1 ST — Exte�nal inte��upt input

PA�~PA5 PA�~PA5 PAPU
PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

PA6/PFD
PA6 PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

PFD CTRL0 ST — PFD output

PA�/RES
PA� PAWU ST N�OS Gene�al pu�pose I/O. Registe� enabled wake-up.
RES EXTRESB ST — Reset input

PB0� PB1�
PB4� PB5

PB0� PB1�
PB4� PB5 PBPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.

PC0~PC� PC0~PC� PCPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.

PC4/SDA
PC4 PCPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.
SDA — ST C�OS I�C data line

PC5/SCL
PC5 PCPU ST C�OS Gene�al pu�pose I/O Registe� enabled pull-up.
SCL — ST C�OS I�C �lo�k line

VDD VDD — PWR — Powe� supply
VSS VSS — PWR — G�ound

Note:	OPT:	Optional	by	register	option
I/T:	Input	type
O/T:	Output	type
ST:	Schmitt	Trigger	input
CMOS:	CMOS	output
NMOS:	NMOS	output
PWR:	Power

Rev. 1.40 8 �a��� �1� �01� Rev. 1.40 9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R008
Pin Name Function OPT I/T O/T Description

PA0/T�R1
PA0 PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

T�R1 T�R1C ST — Time�/Event �ounte� 1 input

PA1/T�R0
PA1 PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

T�R0 T�R0C ST — Time�/Event �ounte� 0 input

PA�/INT
PA� PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

INT INTC0
CTRL1 ST — Exte�nal inte��upt input

PA� PA� PAPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.

PA4/TX
PA4 PAPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.
TX UCR� — C�OS UART t�ansmit

PA5/RX
PA5 PAPU

PAWU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up and wake-up.

RX UCR� ST — UART �e�eive

PA6/PFD
PA6 PAPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.
PFD CTRL0 ST — PFD output

PA�/RES
PA� — ST N�OS Gene�al pu�pose I/O.
RES EXTRESB ST — Reset input

PB0~PB� PB0~PB� PBPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.
PC0~PC� PC0~PC� PCPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.

PC4/SDA
PC4 PCPU ST C�OS Gene�al pu�pose I/O. Registe� enabled pull-up.
SDA — ST C�OS I�C data line

PC5/SCL
PC5 PCPU ST C�OS Gene�al pu�pose I/O Registe� enabled pull-up.
SCL — ST C�OS I�C �lo�k line

VDD VDD — PWR — Powe� supply
VSS VSS — PWR — G�ound

Note:	OPT:	Optional	by	register	option
I/T:	Input	type
O/T:	Output	type
ST:	Schmitt	Trigger	input
CMOS:	CMOS	output
NMOS:	NMOS	output
PWR:	Power

Absolute Maximum Ratings
Supply	Voltage	.. VSS	-0.3V	to	VSS	+6.0V
Input	Voltage	... VSS	-0.3V	to	VDD	+0.3V
Storage	Temperature	... -50°C	to	125°C
Operating	Temperature		... 	-40°C	to	85°C

Note:	These	are	 stress	 ratings	only.	Stresses	 exceeding	 the	 range	 specified	under	 “Absolute	
Maximum	Ratings”	may	cause	substantial	damage	 to	 the	device.	Functional	operation	of	
these	devices	at	other	conditions	beyond	those	listed	in	the	specification	is	not	 implied	and	
prolonged	exposure	to	extreme	conditions	may	affect	devices	reliability.

Rev. 1.40 8 �a��� �1� �01� Rev. 1.40 9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

D.C. Characteristics
Ta=�5°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Ope�ating Voltage (HIRC) — fSYS=8�Hz �.� — 5.5 V

IDD Ope�ating Cu��ent (HIRC on)
�V

No load� fSYS=8�Hz
— 1.� 1.8 mA

5V — �.4 �.6 mA

ISTB1 Standby Cu��ent (LIRC on)
�V

No load� system HALT
— — 5 μA

5V — — 10 μA

ISTB� Standby Cu��ent (LIRC off)
�V

No load� system HALT
— — 1 μA

5V — — � μA

VIL1
Input Low Voltage fo� I/O Po�ts�
T�Rn and INT pin

5V
—

0 — 1.5 V
— 0 — 0.�VDD V

VIH1
Input Hig� Voltage fo� I/O Po�ts�
T�Rn and INT pin

5V
—

�.5 — 5 V
— 0.8VDD — VDD V

VIL� Input Low Voltage (RES) — — 0 — 0.4VDD V
VIH� Input Hig� Voltage (RES) — — 0.9VDD — VDD V
VLVR Low Voltage Reset Voltage — LVR Enable� voltage sele�t �.1V �.0 �.1 �.� V

IOH1

I/O Sou��e Cu��ent
(PA� PB� PC� ex�ept PA� fo�
HT48R004; PB� PC�~PC0 fo�
HT48R008)

�V VOH=0.9VDD� PXPS[n+1:n] = 00B
(n=0� �� 4)

-0.6� -1.�� — mA
5V -1.�4 -�.6� — mA
�V VOH=0.9VDD� PXPS[n+1:n] = 01B

(n=0� �� 4)
-1 -� — mA

5V -� -4 — mA
�V VOH=0.9VDD� PXPS[n+1:n] = 10B

(n=0� �� 4)
-1.�4 -�.6� — mA

5V -�.65 -5.� — mA
�V VOH=0.9VDD� PXPS[n+1:n] = 11B

(n=0� �� 4)
-4 -8 — mA

5V -8 -16 — mA

IOH�

I/O Sou��e Cu��ent
(PA� PC5~PC4� ex�ept PA� fo�
HT48R008)

�V
VOH=0.9VDD

-4 -8 — mA

5V -8 -16 — mA

IOL1
I/O Sink Cu��ent
(I/O Po�ts ex�ept PA� pin)

�V
VOL=0.1VDD

8 16 — mA
5V 16 �� — mA

IOL� PA� Sink Cu��ent 5V VOL=0.1VDD � � — mA

RPH
Pull-�ig� Resistan�e fo� I/O
Po�ts

�V — �0 60 100 kΩ
5V — 10 �0 50 kΩ

Rev. 1.40 10 �a��� �1� �01� Rev. 1.40 11 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

A.C. Characteristics
Ta=�5°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System Clo�k �.�V~5.5V — 8 8 8 �Hz

fHIRC System Clo�k (HIRC)

�V/5V — -�% 8 +�% �Hz
�V/5V Ta = 0°C~�0°C -5% 8 +5% �Hz

�.0V~5.5V Ta = 0°C~�0°C -8% 8 +8% �Hz
�.0V~5.5V Ta = -40°C~85°C -1�% 8 +1�% �Hz

fTI�ER Time� I/P F�equen�y (T�Rn) �.�V~5.5V — 0 — 8 �Hz

tWDTOSC Wat��dog os�illato� pe�iod
�V — 45 90 180 μs
5V — �� 65 1�0 μs

tRES Exte�nal �eset low pulse widt� — — 1 — — μs

tRESF
Exte�nal �eset low pulse widt�
(with filter) — — — 150 — ns

tSST System sta�t-up time� pe�iod — Wake-up f�om HALT — 16 — tSYS

tLVR Low Voltage Widt� to Reset — — 0.�5 1 � ms

tRSTD
System Reset Delay Time
(All Reset) — — �5 50 100 ms

Note:	1.	tSYS=	1/fSYS

2.	To	maintain	the	accuracy	of	the	internal	HIRC	oscillator	frequency,	a	0.1μF	decoupling	capacitor	should	
be	connected	between	VDD	and	VSS	and	located	as	close	to	the	devices	as	possible.

Power-on Reset Characteristics
Ta=�5°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VPOR VDD Sta�t Voltage to Ensu�e Powe�-on Reset — — — — 100 mV
RRVDD VDD Raising Rate to Ensu�e Powe�-on Reset — — 0.0�5 — — V/ms

tPOR
�inimum Time fo� VDD Stays at VPOR to Ensu�e
Powe�-on Reset — — 1 — — ms

VDD

tPOR RRVDD

VPOR
Time

Rev. 1.40 10 �a��� �1� �01� Rev. 1.40 11 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

System Architecture
A	key	factor	in	the	high-performance	features	of	the	Holtek	range	of	microcontrollers	is	attributed	
to	the	internal	system	architecture.	These	devices	take	advantage	of	the	usual	features	found	within	
RISC	microcontrollers	providing	 increased	speed	of	operation	and	enhanced	performance.	The	
pipelining	scheme	is	implemented	in	such	a	way	that	instruction	fetching	and	instruction	execution	
are	overlapped,	hence	instructions	are	effectively	executed	in	one	cycle,	with	the	exception	of	branch	
or	call	instructions.	An	8-bit	wide	ALU	is	used	in	practically	all	operations	of	the	instruction	set.	It	
carries	out	arithmetic	operations,	logic	operations,	rotation,	increment,	decrement,	branch	decisions,	
etc.	The	 internal	data	path	 is	simplified	by	moving	data	 through	the	Accumulator	and	the	ALU.	
Certain	 internal	registers	are	 implemented	 in	 the	Data	Memory	and	can	be	directly	or	 indirectly	
addressed.	The	simple	addressing	methods	of	 these	registers	along	with	additional	architectural	
features	ensure	 that	a	minimum	of	external	components	 is	 required	 to	provide	a	functional	 I/O	
system	with	maximum	reliability	and	flexibility.

Clocking and Pipelining
The	main	system	clock,	derived	from	HIRC	oscillator	is	subdivided	into	four	internally	generated	
non-overlapping	clocks,	T1~T4.The	Program	Counter	 is	 incremented	at	 the	beginning	of	 the	T1	
clock	during	which	time	a	new	instruction	is	fetched.	The	remaining	T2~T4	clocks	carry	out	 the	
decoding	and	execution	functions.	In	this	way,	one	T1~T4	clock	cycle	forms	one	instruction	cycle.	
Although	the	fetching	and	execution	of	instructions	takes	place	in	consecutive	instruction	cycles,	the	
pipelining	structure	of	the	microcontroller	ensures	that	instructions	are	effectively	executed	in	one	
instruction	cycle.	The	exception	to	this	are	instructions	where	the	contents	of	the	Program	Counter	
are	changed,	such	as	subroutine	calls	or	 jumps,	 in	which	case	the	instruction	will	 take	one	more	
instruction	cycle	to	execute.

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � �

 	 � 	
� 	 � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � �

System Clocking and Pipelining

Rev. 1.40 1� �a��� �1� �01� Rev. 1.40 1� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

For	instructions	involving	branches,	such	as	 jump	or	call	 instructions,	 two	instruction	cycles	are	
required	 to	complete	 instruction	execution.	An	extra	cycle	 is	 required	as	 the	program	takes	one	
cycle	to	firstly	obtain	the	actual	jump	or	call	address	and	then	another	cycle	to	actually	execute	the	
branch.	The	requirement	for	this	extra	cycle	should	be	taken	into	account	by	programmers	in	timing	
sensitive	applications.

� �
� � � � � � � � � � � � �

� � � � � � � � � � � � �

�
�
�
�

	 � � � � � �

� � � � � � � � � � �
� � � � � � � � � �
� � � � � � � � �
�
�
� � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � 	 � � � � � � � � � � � � � � 	
� � � � � � � � � � � �

Instruction Fetching

Program Counter – PC
During	program	execution,	 the	Program	Counter	 is	used	 to	keep	 track	of	 the	address	of	 the	
next	 instruction	 to	be	executed.	 It	 is	automatically	 incremented	by	one	each	 time	an	 instruction	
is	executed	except	 for	 instructions,	 such	as	“JMP”	or	“CALL”	 that	demand	a	 jump	 to	a	non-
consecutive	Program	Memory	address.	It	must	be	noted	that	only	the	lower	8	bits,	known	as	the	
Program	Counter	Low	Register,	are	directly	addressable	by	user.

When	executing	 instructions	 requiring	 jumping	 to	non-consecutive	addresses	such	as	a	 jump	
instruction,	a	subroutine	call,	 interrupt	or	reset,	etc,	 the	microcontroller	manages	program	control	
by	loading	the	required	address	into	the	Program	Counter.	For	conditional	skip	instructions,	once	
the	condition	has	been	met,	the	next	instruction,	which	has	already	been	fetched	during	the	present	
instruction	execution,	is	discarded	and	a	dummy	cycle	takes	its	place	while	the	correct	instruction	is	
obtained.

Device
Program Counter

High Byte of Program Low Byte of Program
HT48R004 PC10~PC8 PCL�~PCL0
HT48R008 PC11~PC8 PCL�~PCL0

The	lower	byte	of	 the	Program	Counter,	known	as	the	Program	Counter	Low	register	or	PCL,	is	
available	for	program	control	and	is	a	readable	and	writeable	register.	By	transferring	data	directly	
into	this	register,	a	short	program	jump	can	be	executed	directly.	However,	as	only	this	 low	byte	
is	available	for	manipulation,	 the	 jumps	are	 limited	 in	 the	present	page	of	memory,	which	have	
256	locations.	When	such	program	jumps	are	executed	it	should	also	be	noted	that	a	dummy	cycle	
will	be	inserted.	The	lower	byte	of	the	Program	Counter	is	fully	accessible	under	program	control.	
Manipulating	the	PCL	might	cause	program	branching,	so	an	extra	cycle	is	needed	to	pre-fetch.

Rev. 1.40 1� �a��� �1� �01� Rev. 1.40 1� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Stack
This	 is	a	special	part	of	 the	memory	which	is	used	to	save	the	contents	of	 the	Program	Counter	
only.	The	stack	has	multiple	 levels	and	is	neither	part	of	 the	data	nor	part	of	 the	program	space,	
and	is	neither	readable	nor	writeable.	The	activated	level	 is	 indexed	by	the	Stack	Pointer,	and	is	
neither	readable	nor	writeable.	At	a	subroutine	call	or	interrupt	acknowledge	signal,	the	contents	of	
the	Program	Counter	are	pushed	onto	the	stack.	At	the	end	of	a	subroutine	or	an	interrupt	routine,	
signaled	by	a	return	instruction,	RET	or	RETI,	the	Program	Counter	is	restored	to	its	previous	value	
from	the	stack.	After	a	device	reset,	the	Stack	Pointer	will	point	to	the	top	of	the	stack.

� � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � �
	 � � � � �

� � � � � � � � � � � �

� � � � �
� � � � � � �

� � � � � � � � � � � � � � �

If	the	stack	is	full	and	an	enabled	interrupt	takes	place,	the	interrupt	request	flag	will	be	recorded	but	
the	acknowledge	signal	will	be	inhibited.	When	the	Stack	Pointer	is	decremented,	by	RET	or	RETI,	
the	interrupt	will	be	serviced.	This	feature	prevents	stack	overflow	allowing	the	programmer	to	use	
the	structure	more	easily.	However,	when	the	stack	is	full,	a	CALL	subroutine	instruction	can	still	
be	executed	which	will	result	in	a	stack	overflow.	Precautions	should	be	taken	to	avoid	such	cases	
which	might	cause	unpredictable	program	branching.

Arithmetic and Logic Unit – ALU
The	arithmetic-logic	unit	or	ALU	is	a	critical	area	of	the	microcontroller	that	carries	out	arithmetic	
and	logic	operations	of	the	instruction	set.	Connected	to	the	main	microcontroller	data	bus,	the	ALU	
receives	related	instruction	codes	and	performs	the	required	arithmetic	or	 logical	operations	after	
which	the	result	will	be	placed	in	the	specified	register.	As	these	ALU	calculation	or	operations	may	
result	in	carry,	borrow	or	other	status	changes,	the	status	register	will	be	correspondingly	updated	to	
reflect	these	changes.	The	ALU	supports	the	following	functions:

•	 Arithmetic	operations:	ADD,	ADDM,	ADC,	ADCM,	SUB,	SUBM,	SBC,	SBCM,	DAA

•	 Logic	operations:	AND,	OR,	XOR,	ANDM,	ORM,	XORM,	CPL,	CPLA

•	 Rotation	RRA,	RR,	RRCA,	RRC,	RLA,	RL,	RLCA,	RLC

•	 Increment	and	Decrement	INCA,	INC,	DECA,	DEC

•	 Branch	decision,	JMP,	SZ,	SZA,	SNZ,	SIZ,	SDZ,	SIZA,	SDZA,	CALL,	RET,	RETI.

Rev. 1.40 14 �a��� �1� �01� Rev. 1.40 15 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Program Memory
The	Program	Memory	 is	 the	 location	where	 the	user	code	or	program	is	 stored.	The	series	of	
devices	are	supplied	with	One-Time	Programmable,	OTP,	memory	where	users	can	program	their	
application	code	into	the	device.	By	using	the	appropriate	programming	tools,	OTP	device	offers	
users	the	flexibility	to	freely	develop	their	applications	which	may	be	useful	during	debug	or	for	
products	requiring	frequent	upgrades	or	program	changes.

Structure
The	Program	Memory	has	a	capacity	of	2k×14	bits	to	4k×15	bits.	The	Program	Memory	is	addressed	
by	the	Program	Counter	and	also	contains	data,	table	information	and	interrupt	entries	information.	
Table	data	which	can	be	set	in	any	location	within	the	Program	Memory	is	addressed	by	separate	
table	pointer	registers.

Reset

FFFH

010H

15 bits

014H

Reset

Inte��upt
Ve�to� Inte��upt

Ve�to�

HT48R004 HT48R008

14 bits

000H

004H

�FFH

Program Memory Structure

Special Vectors
Within	the	Program	Memory,	certain	locations	are	reserved	for	the	reset	and	interrupts.	The	location	
000H	is	reserved	for	use	by	these	devices	reset	for	program	initialisation.	After	a	device	reset	 is	
initiated,	the	program	will	jump	to	this	location	and	begin	execution.

Look-up Table
Any	location	within	the	Program	Memory	can	be	defined	as	a	look-up	table	where	programmers	can	
store	fixed	data.	To	use	the	look-up	table,	the	table	pointer	must	first	be	set	by	placing	the	address	
of	the	look	up	data	to	be	retrieved	in	the	table	pointer	register,	TBLP.	This	register	defines	the	total	
address	of	the	look-up	table.	

After	 setting	up	 the	 table	pointer,	 the	 table	data	can	be	 retrieved	 from	 the	Program	Memory	
using	the	“TABRDC	[m]”	or	“TABRDL	[m]”	 instructions,	 respectively.	When	the	 instruction	 is	
executed,	 the	 lower	order	 table	byte	 from	the	Program	Memory	will	be	 transferred	 to	 the	user	
defined	Data	Memory	register	[m]	as	specified	in	the	instruction.	The	higher	order	table	data	byte	
from	the	Program	Memory	will	be	transferred	to	the	TBLH	special	register.	Any	unused	bits	in	this	
transferred	higher	order	byte	will	be	read	as	“0”.	

The	accompanying	diagram	illustrates	the	addressing	data	flow	of	the	look-up	table.

Rev. 1.40 14 �a��� �1� �01� Rev. 1.40 15 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� �
� � � � � � � �

� � � � � � � � � � � � � � �

� � �
 � � � � � � � � �

	 � � �

������� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

 � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �

 � � �
 � �

Table Program Example
The	accompanying	example	shows	how	the	table	pointer	and	table	data	is	defined	and	retrieved	from	
the	device.	This	example	uses	raw	table	data	located	in	the	last	page	which	is	stored	there	using	the	
ORG	statement.	The	value	at	this	ORG	statement	is	“0F00H”	which	refers	to	the	start	address	of	the	
last	page	within	the	4K	Program	Memory	of	the	microcontroller.

The	table	pointer	is	set	here	to	have	an	initial	value	of	“06H”.	This	will	ensure	that	the	first	data	read	
from	the	data	table	will	be	at	the	Program	Memory	address	“0F06H”	or	6	locations	after	the	start	
of	the	last	page.	Note	that	the	value	for	the	table	pointer	is	referenced	to	the	first	address	of	the	last	
page	if	the	“TABRDL	[m]”	instruction	is	being	used.	The	high	byte	of	the	table	data	which	in	this	
case	is	equal	 to	zero	will	be	transferred	to	the	TBLH	register	automatically	when	the	“TABRDL	
[m]”instruction	is	executed.	

Because	 the	TBLH	register	 is	a	read-only	register	and	cannot	be	restored,	care	should	be	 taken	
to	ensure	 its	protection	if	both	the	main	routine	and	Interrupt	Service	Routine	use	the	table	read	
instructions.	 If	using	 the	 table	read	 instructions,	 the	Interrupt	Service	Routines	may	change	 the	
value	of	TBLH	and	subsequently	cause	errors	 if	used	again	by	 the	main	routine.	As	a	rule	 it	 is	
recommended	that	simultaneous	use	of	the	table	read	instructions	should	be	avoided.	However,	 in	
situations	where	simultaneous	use	cannot	be	avoided,	the	interrupts	should	be	disabled	prior	to	the	
execution	of	any	main	routine	table-read	instructions.	Note	that	all	table	related	instructions	require	
two	instruction	cycles	to	complete	their	operation.

Rev. 1.40 16 �a��� �1� �01� Rev. 1.40 1� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Table Read Program Example

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2
 :
 :
mov a,06h ; initialize table pointer - note that this address
 ; is referenced
mov tblp, a ; to the last page or present page
 :
 :
tabrdl tempreg1 ; transfers value in table referenced by table pointer
 ; to tempreg1
 ; data at prog. memory address “0F06H” transferred to
 ; to tempreg1 and TBLH
dec tblp ; reduce value of table pointer by one
tabrdl tempreg2 ; transfers value in table referenced by table pointer
 ; to tempreg2
 ; data at prog. memory address “0F05H” transferred to
 ; tempreg2 and TBLH
 ; in this example the data “1AH” is transferred to
 ; tempreg1 and data “0FH” to register tempreg2
 ; the value “00H” will be transferred to the high byte
 ; register TBLH
 :
 :
org 0f00h ; sets initial address of last page

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
 :
 :

Rev. 1.40 16 �a��� �1� �01� Rev. 1.40 1� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Data Memory
The	Data	Memory	is	a	volatile	area	of	8-bit	wide	RAM	internal	memory	and	is	the	location	where	
temporary	information	is	stored.

Structure
Divided	into	two	sections,	the	first	of	these	is	an	area	of	RAM	where	special	function	registers	are	
located.	These	registers	have	fixed	locations	and	are	necessary	for	correct	operation	of	the	device.	
Many	of	these	registers	can	be	read	from	and	written	to	directly	under	program	control,	however,	
some	remain	protected	from	user	manipulation.	The	second	area	of	Data	Memory	is	reserved	for	
general	purpose	use.	All	 locations	within	 this	area	are	read	and	write	accessible	under	program	
control.

The	 two	sections	of	Data	Memory,	 the	Special	Purpose	and	General	Purpose	Data	Memory	are	
located	at	consecutive	locations.	All	are	implemented	in	RAM	and	are	8	bits	wide.	The	start	address	
of	the	Data	Memory	for	all	devices	is	the	address	“00H”.

All	microcontroller	programs	require	an	area	of	read/write	memory	where	temporary	data	can	be	
stored	and	retrieved	for	use	later.	It	is	this	area	of	RAM	memory	that	is	known	as	General	Purpose	
Data	Memory.	This	area	of	Data	Memory	is	fully	accessible	by	the	user	program	for	both	reading	
and	writing	operations.	By	using	the	“SET	[m].i”	and	“CLR	[m].i”	instructions	individual	bits	can	
be	set	or	reset	under	program	control	giving	the	user	a	large	range	of	flexibility	for	bit	manipulation	
in	the	Data	Memory.	

� � � � � � �
� � � � � � �
� � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � � � �

� �

� � �

 � �

	 � � �

� � �

� � �

� � �

�
 � � � � � �

� � �

� � �

	 � � �

� � �

	 � � �

� � �

� � � � � � � �

	 � � �

� � �

� � �

� � � � � � � � � � � � � � � �

Data Memory Structure

Note:	Most	of	the	Data	Memory	bits	can	be	directly	manipulated	using	the	“SET	[m].i”	and	
“CLR	[m].i”	with	the	exception	of	a	few	dedicated	bits.	The	Data	Memory	can	also	be	
accessed	via	the	memory	pointer	registers.

Special Purpose Data Memory
This	 area	 of	Data	Memory	 is	where	 registers,	 necessary	 for	 the	 correct	 operation	 of	 the	
microcontroller,	are	stored.	Most	of	 the	registers	are	both	readable	and	writeable	but	some	are	
protected	and	are	readable	only,	the	details	of	which	are	located	under	the	relevant	Special	Function	
Register	section.	Note	that	for	locations	that	are	unused,	any	read	instruction	to	these	addresses	will	
return	the	value	“00H”.

Rev. 1.40 18 �a��� �1� �01� Rev. 1.40 19 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

00H
01H
02H
03H

IAR0
MP0
IAR1
MP1

04H
ACC05H
PCL06H

TBLP07H
TBLH08H
WDTS09H

STATUS0AH
INTC00BH
TMR00CH

TMR0C0DH
TMR10EH

TMR1C0FH
PA10H

PAC11H
PAPU12H
PAWU13H

PC14H
PCC15H

PCPU16H
PB17H

PBC18H
PBPU19H
CTRL01AH
CTRL11BH

WDTLVRC1CH
INTC11DH
PXPS1EH

1FH
20H
21H
22H
23H
24H EXTRESB
25H

3FH

: unused, read as 00H

USR
UCR1
UCR2

TXR_RXR
BGR

I2CC0
I2CC1
I2CD
I2CA

I2CTOC

26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH

HT48R008
00H
01H
02H
03H

IAR0
MP0
IAR1
MP1

04H
ACC05H
PCL06H

TBLP07H
TBLH08H
WDTS09H

STATUS0AH
INTC00BH
TMR00CH

TMR0C0DH
TMR10EH

TMR1C0FH
PA10H

PAC11H
PAPU12H
PAWU13H

PC14H
PCC15H

PCPU16H
PB17H

PBC18H
PBPU19H
CTRL01AH
CTRL11BH

WDTLVRC1CH
INTC11DH
PXPC01EH
PXPC11FH

20H
21H
22H
23H
24H EXTRESB
25H

3FH

I2CC0
I2CC1
I2CD
I2CA

I2CTOC

26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH

HT48R004

Special Purpose Data Memory

Rev. 1.40 18 �a��� �1� �01� Rev. 1.40 19 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Special Function Registers
To	ensure	successful	operation	of	the	microcontroller,	certain	internal	registers	are	implemented	in	
the	Data	Memory	area.	These	registers	ensure	correct	operation	of	internal	functions	such	as	timer,	
interrupts,	etc.,	as	well	as	external	functions	such	as	I/O	data	control.	The	locations	of	these	registers	
within	 the	Data	Memory	begin	at	 the	address	of	“00H”.	Any	unused	Data	Memory	 locations	
between	these	special	function	registers	and	the	point	where	the	General	Purpose	Memory	begins	is	
reserved	and	attempting	to	read	data	from	these	locations	will	return	a	value	of	“00H”.

Indirect Addressing Registers – IAR0, IAR1
The	Indirect	Addressing	Registers,	IAR0	and	IAR1,	although	having	their	locations	in	normal	RAM	
register,	do	not	actually	physically	exist	as	normal	registers.	The	method	of	 indirect	addressing	
for	RAM	data	manipulation	is	using	these	Indirect	Addressing	Registers	and	Memory	Pointers,	in	
contrast	 to	direct	memory	addressing,	where	the	actual	memory	address	 is	specified.	Actions	on	
the	IAR0	and	IAR1	registers	will	result	 in	no	actual	read	or	write	operation	to	these	registers	but	
rather	to	the	memory	location	specified	by	their	corresponding	Memory	Pointers,	MP0	or	MP1.	As	
the	Indirect	Addressing	Registers	are	not	physically	implemented,	reading	the	Indirect	Addressing	
Registers	indirectly	will	return	a	result	of	“00H”	and	writing	to	the	registers	indirectly	will	result	in	
no	operation.

Memory Pointers – MP0, MP1
Two	Memory	Pointers,	 known	as	MP0	and	MP1	are	provided.	These	Memory	Pointers	 are	
physically	implemented	in	the	Data	Memory	and	can	be	manipulated	in	the	same	way	as	normal	
registers	providing	a	convenient	way	with	which	to	 indirectly	address	and	track	data.	When	any	
operation	to	the	relevant	Indirect	Addressing	Registers	is	carried	out,	the	actual	address	which	the	
microcontroller	is	directed	to	is	the	address	specified	by	the	related	Memory	Pointer.	Note	that	for	
these	devices,	the	Memory	Pointers,	MP0	and	MP1,	are	both	8-bit	registers	and	used	to	access	the	
Data	Memory	together	with	their	corresponding	indirect	addressing	registers	IAR0	and	IAR1.

The	following	example	shows	how	to	clear	a	section	of	four	Data	Memory	locations	already	defined	
as	locations	adres1	to	adres4.	

Indirect Addressing Program Example
data .section ‘data’
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?
code .section at 0 code
org 00h
start:
mov a,04h ; set size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp0,a ; set memory pointer with first RAM address
loop:
clr IAR0 ; clear the data at address defined by MP0
inc mp0 ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop
continue:

The	important	point	to	note	here	is	that	in	the	example	shown	above,	no	reference	is	made	to	specific	
Data	Memory	addresses.

Rev. 1.40 �0 �a��� �1� �01� Rev. 1.40 �1 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Accumulator – ACC
The	Accumulator	 is	central	 to	 the	operation	of	any	microcontroller	and	 is	closely	 related	with	
operations	carried	out	by	 the	ALU.	The	Accumulator	 is	 the	place	where	all	 intermediate	results	
from	the	ALU	are	stored.	Without	 the	Accumulator	 it	would	be	necessary	 to	write	 the	result	of	
each	calculation	or	logical	operation	such	as	addition,	subtraction,	shift,	etc.,	 to	the	Data	Memory	
resulting	in	higher	programming	and	timing	overheads.	Data	 transfer	operations	usually	 involve	
the	temporary	storage	function	of	the	Accumulator;	for	example,	when	transferring	data	between	
one	user-defined	register	and	another,	 it	 is	necessary	 to	do	 this	by	passing	 the	data	 through	the	
Accumulator	as	no	direct	transfer	between	two	registers	is	permitted.

Program Counter Low Register – PCL
To	provide	additional	program	control	functions,	 the	 low	byte	of	 the	Program	Counter	 is	made	
accessible	to	programmers	by	locating	it	within	the	Special	Purpose	area	of	the	Data	Memory.	By	
manipulating	this	register,	direct	jumps	to	other	program	locations	are	easily	implemented.	Loading	
a	value	directly	into	this	PCL	register	will	cause	a	jump	to	the	specified	Program	Memory	location,	
however	as	the	register	is	only	8-bit	wide	only	jumps	within	the	current	Program	Memory	page	are	
permitted.	When	such	operations	are	used,	note	that	a	dummy	cycle	will	be	inserted.

Status Register – STATUS
This	8-bit	register	contains	the	zero	flag	(Z),	carry	flag	(C),	auxiliary	carry	flag	(AC),	overflow	flag	
(OV),	power	down	flag	(PDF),	and	watchdog	time-out	flag	(TO).	These	arithmetic/logical	operation	
and	system	management	flags	are	used	to	record	the	status	and	operation	of	the	microcontroller.	

With	the	exception	of	the	TO	and	PDF	flags,	bits	in	the	status	register	can	be	altered	by	instructions	
like	most	other	registers.	Any	data	written	into	the	status	register	will	not	change	the	TO	or	PDF	flag.	
In	addition,	operations	related	to	the	status	register	may	give	different	results	due	to	the	different	
instruction	operations.	The	TO	flag	can	be	affected	only	by	a	system	power-up,	a	WDT	time-out	or	
by	executing	the	“CLR	WDT”	or		“HALT”	instruction.	The	PDF	flag	is	affected	only	by	executing	
the	“HALT”	or	“CLR	WDT”	instruction	or	during	a	system	power-up.

The	Z,	OV,	AC	and	C	flags	generally	reflect	the	status	of	the	latest	operations.

In	addition,	on	entering	an	interrupt	sequence	or	executing	a	subroutine	call,	the	status	register	will	
not	be	pushed	onto	the	stack	automatically.	If	the	contents	of	the	status	registers	are	important	and	
if	the	subroutine	can	corrupt	the	status	register,	precautions	must	be	taken	to	correctly	save	it.	Note	
that	bits	0~3	of	the	STATUS	register	are	both	readable	and	writeable	bits.

Rev. 1.40 �0 �a��� �1� �01� Rev. 1.40 �1 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

STATUS Register

Bit 7 6 5 4 3 2 1 0
Name — — TO PDF OV Z AC C
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 x x x x

“x”: unknown
Bit	7~6	 Unimplemented,	read	as	“0”
Bit	5 TO:	Watchdog	Time-Out	flag

0:	After	power	up	or	executing	the	“CLR	WDT”	or	“HALT”	instruction
1:	A	watchdog	time-out	occurred.

Bit	4 PDF:	Power	down	flag
0:	After	power	up	or	executing	the	“CLR	WDT”	instruction
1:	By	executing	the	“HALT”	instruction

Bit	3 OV:	Overflow	flag
0:	No	overflow
1:	An	operation	results	in	a	carry	into	the	highest-order	bit	but	not	a	carry	out	of	the	
highest-order	bit	or	vice	versa.

Bit	2 Z:	Zero	flag
0:	The	result	of	an	arithmetic	or	logical	operation	is	not	zero
1:	The	result	of	an	arithmetic	or	logical	operation	is	zero

Bit	1 AC:	Auxiliary	flag
0:	No	auxiliary	carry
1:	An	operation	results	in	a	carry	out	of	the	low	nibbles	in	addition,	or	no	borrow	
from	the	high	nibble	into	the	low	nibble	in	subtraction

Bit	0 C:	Carry	flag
0:	No	carry	out
1:	An	operation	results	in	a	carry	during	an	addition	operation	or	if	a	borrow	does	
not	take	place	during	a	subtraction	operation

C	is	also	affected	by	a	rotate	through	carry	instruction

Rev. 1.40 �� �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

System Control Registers – CTRL0, CTRL1
These	registers	are	used	to	provide	control	internal	functions	such	as	the	PFD	function	and	external	
interrupt	edge	trigger	type	selection.

CTRL0 Register

Bit 7 6 5 4 3 2 1 0
Name — — — — — PFDC — —
R/W — — — — — R/W — —
POR — — — — — 0 — —

Bit	7~3	 Unimplemented,	read	as	"0"
Bit	2 PFDC:	PA6/PFD	selection

0:	PA6
1:	PFD

Bit	1~0	 Unimplemented,	read	as	“0”

CTRL1 Register

Bit 7 6 5 4 3 2 1 0
Name INTES1 INTES0 — — — — — —
R/W R/W R/W — — — — — —
POR 1 0 — — — — — —

Bit	7~6 INTES1~INTES0:	External	interrupt	edge	type	selection
00:	Disable
01:	Rising	edge	trigger
10:	Falling	edge	trigger
11:	Dual	edge	trigger

Bit	5~0	 Unimplemented,	read	as	"0"

Rev. 1.40 �� �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Oscillator
Various	oscillator	options	offer	 the	user	a	wide	 range	of	 functions	according	 to	 their	various	
application	 requirements.	The	 flexible	 features	of	 the	oscillator	 functions	ensure	 that	 the	best	
optimization	can	be	achieved	in	terms	of	speed	and	power	saving.

System Oscillator Overview
In	addition	to	being	the	source	of	the	main	system	clock	the	oscillators	also	provide	clock	sources	
for	the	Watchdog	Timer	function	and	Timer/Event	counter.

Type Name Freq.
Inte�nal Hig� Speed RC HIRC 8�Hz
Inte�nal Low Speed RC LIRC 1�kHz

Oscillator Types

System Clock Configurations
There	is	one	system	oscillator	implemented	in	the	device,	internal	8MHz	RC,	HIRC.	Also	there	is	an	
internal	12kHz	RC	oscillator	LIRC	used	as	the	clock	source	for	the	WDT	function	and	Timer/Event	
counter.	More	details	are	described	in	the	accompany	sections.

Internal RC Oscillator – HIRC
The	internal	RC	oscillator	is	a	fully	integrated	system	oscillator	requiring	no	external	components.	
The	internal	RC	oscillator	has	the	frequency	of	8MHz	.Device	trimming	during	the	manufacturing	
process	and	 the	 inclusion	of	 internal	 frequency	compensation	circuit	 is	used	 to	ensure	 that	 the	
influence	of	 the	power	 supply	voltage,	 temperature	and	process	variations	on	 the	oscillation	
frequency	are	minimized.	Note	that	this	internal	system	clock	option	requires	no	external	pins	for	its	
operation.	Refer	to	the	A.C.	Characteristics	for	more	frequency	accuracy	details.

Internal 12kHz Oscillator – LIRC
The	LIRC	is	a	fully	self-contained	free	running	on-chip	RC	oscillator	with	a	typical	frequency	of	
12kHz	at	5V,	requiring	no	external	components	for	its	implementation.	When	the	devices	enter	the	
Sleep	Mode,	the	system	clock	will	stop	running	but	the	LIRC	oscillator	continues	to	free-run	and	to	
keep	the	watchdog	and	timer	active.	However,	to	preserve	power	in	certain	applications	the	LIRC	
can	be	disabled	by	disabling	the	WDT	function	and	Timer/Event	counter	in	the	HALT	mode.

Rev. 1.40 �4 �a��� �1� �01� Rev. 1.40 �5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Power Down Mode and Wake-up

Power Down Mode
All	of	the	Holtek	microcontrollers	have	the	ability	to	enter	a	Power	Down	Mode,	also	known	as	the	
HALT	Mode	or	Sleep	Mode.	When	the	devices	enter	this	mode,	the	normal	operating	current	will	
be	reduced	to	an	extremely	low	standby	current	level.	This	occurs	because	when	the	devices	enter	
the	Power	Down	Mode,	the	system	oscillator	is	stopped	which	reduces	the	power	consumption	to	
extremely	low	levels.	However,	as	these	devices	maintain	their	present	internal	condition,	they	can	
be	woken	up	at	a	 later	stage	and	continue	running,	without	requiring	a	full	reset.	This	feature	 is	
extremely	important	in	application	areas	where	the	MCUs	must	have	their	power	supply	constantly	
maintained	to	keep	the	devices	in	a	known	condition.

Entering the Power Down Mode
There	is	only	one	way	for	 the	devices	to	enter	 the	Power	Down	Mode	and	that	 is	 to	execute	the	
“HALT”	instruction	in	the	application	program.	When	this	instruction	is	executed,	the	following	will	
occur:

•	 The	system	oscillator	will	stop	running	and	the	application	program	will	stop	at	 the	“HALT”	
instruction.

•	 The	Data	Memory	contents	and	registers	will	maintain	their	present	condition.

•	 The	WDT	will	be	cleared	and	resume	counting	 if	 the	WDT	clock	source	comes	from	LIRC	
oscillator.

•	 The	I/O	ports	will	maintain	their	present	condition.

•	 In	the	status	register,	the	Power	Down	flag,	PDF,	will	be	set	and	the	Watchdog	time-out	flag,	TO,	
will	be	cleared.

Standby Current Considerations
As	 the	main	 reason	 for	 entering	 the	Sleep	Mode	 is	 to	keep	 the	 current	 consumption	of	 the	
MCU	to	as	 low	a	value	as	possible,	perhaps	only	 in	 the	order	of	several	micro-amps,	 there	are	
other	considerations	which	must	also	be	 taken	into	account	by	 the	circuit	designer	 if	 the	power	
consumption	is	to	be	minimized.

Special	attention	must	be	made	to	 the	I/O	pins	on	these	devices.	All	high-impedance	input	pins	
must	be	connected	to	either	a	fixed	high	or	low	level	as	any	floating	input	pins	could	create	internal	
oscillations	and	result	 in	 increased	current	consumption.	Care	must	also	be	taken	with	the	loads,	
which	are	connected	to	I/O	pins,	which	are	set	as	outputs.	These	should	be	placed	in	a	condition	in	
which	minimum	current	 is	drawn	or	connected	only	to	external	circuits	 that	do	not	draw	current,	
such	as	other	CMOS	inputs.

Rev. 1.40 �4 �a��� �1� �01� Rev. 1.40 �5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Wake-up
After	the	system	enters	the	Sleep	Mode,	it	can	be	woken	up	from	one	of	various	sources	listed	as	
follows:

•	 An	external	reset

•	 An	external	falling	edge	on	Port	A

•	 A	system	interrupt

•	 A	WDT	overflow

If	 the	system	is	woken	up	by	an	external	 reset,	 the	devices	will	experience	a	full	system	reset,	
however,	if	the	devices	are	woken	up	by	a	WDT	overflow,	a	Watchdog	Timer	reset	will	be	initiated.	
Although	both	of	 these	wake-up	methods	will	 initiate	a	reset	operation,	 the	actual	source	of	 the	
wake-up	can	be	determined	by	examining	the	TO	and	PDF	flags.	The	PDF	flag	 is	cleared	by	a	
system	power-up	or	executing	the	clear	Watchdog	Timer	instructions	and	is	set	when	executing	the	
“HALT”	instruction.	The	TO	flag	is	set	if	a	WDT	time-out	occurs,	and	causes	a	wake-up	that	only	
resets	the	Program	Counter	and	Stack	Pointer,	the	other	flags	remain	in	their	original	status.

Pins	PA7~PA0	in	 the	HT48R004	and	pins	PA5,	PA2~PA0	in	 the	HT48R008	can	be	set	via	 the	
PAWU	register	 to	permit	a	negative	transition	on	the	pin	to	wake-up	the	system.	When	a	Port	A	
pin	wake-up	occurs,	 the	program	will	resume	execution	at	 the	instruction	following	the	“HALT”	
instruction.

If	the	system	is	woken	up	by	an	interrupt,	then	two	possible	situations	may	occur.	The	first	is	where	
the	related	interrupt	 is	disabled	or	 the	interrupt	 is	enabled	but	 the	stack	is	full,	 in	which	case	the	
program	will	resume	execution	at	the	instruction	following	the	“HALT”	instruction.	In	this	situation,	
the	interrupt	which	woke-up	the	devices	will	not	be	immediately	serviced,	but	will	rather	be	serviced	
later	when	the	related	 interrupt	 is	finally	enabled	or	when	a	stack	level	becomes	free.	The	other	
situation	is	where	the	related	interrupt	is	enabled	and	the	stack	is	not	full,	in	which	case	the	regular	
interrupt	response	takes	place.	If	an	interrupt	request	flag	is	set	high	before	entering	the	Sleep	Mode,	
the	wake-up	function	of	the	related	interrupt	will	be	ignored.

No	matter	what	the	source	of	the	wake-up	event	is,	once	a	wake-up	event	occurs,	 there	will	be	a	
time	delay	before	normal	program	execution	resumes.	Consult	the	table	for	the	related	time

Wake-up Source
Oscillator Type

HIRC, LIRC
Exte�nal RES tRSTD + tSST

PA Po�t
tSSTInte��upt

WDT Overflow

Note:	1.	tRSTD	(reset	delay	time),	tSYS	(system	clock)
2.	tRSTD	is	power-on	delay,	typical	time	=	50ms
3.	tSST	=	16tSYS

4.	PA7~PA0	for	HT48R004;	PA5,	PA2~PA0	for	HT48R008

Wake-up Delay Time

Rev. 1.40 �6 �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Watchdog Timer
The	Watchdog	Timer,	also	known	as	 the	WDT,	 is	provided	to	prevent	program	malfunctions	or	
sequences	from	jumping	to	unknown	locations,	due	to	certain	uncontrollable	external	events	such	as	
electrical	noise.

Watchdog Timer Clock Source
The	Watchdog	Timer	clock	source	is	provided	by	the	LIRC,	the	system	clock	fSYS	or	fSYS/4	which	is	
sourced	from	the	HIRC	oscillator.	The	Watchdog	Timer	source	clock	is	then	subdivided	by	a	ratio	
of	28	to	215	to	give	longer	timeouts,	the	actual	value	being	chosen	using	the	WS2~WS0	bits	in	the	
WDTS	register.	The	LIRC	internal	oscillator	has	an	approximate	period	frequency	of	12kHz	at	a	
supply	voltage	of	5V.	However,	it	should	be	noted	that	this	specified	internal	clock	period	can	vary	
with	VDD,	temperature	and	process	variations.

Watchdog Timer Control Registers

WDTS Register

Bit 7 6 5 4 3 2 1 0
Name — — — — — WS� WS1 WS0
R/W — — — — — R/W R/W R/W
POR — — — — — 1 1 1

Bit	7~3	 Unimplemented,	read	as	“0”
Bit	2~0 WS2~WS0:	WDT	Time-out	period	selection

000:	28/fS

001:	29/fS

010:	210/fS

011:	211/fS

100:	212/fS

101:	213/fS

110:	214/fS

111:	215/fS

These	 three	bits	determine	 the	division	ratio	of	 the	Watchdog	Timer	source	clock,	
which	in	turn	determines	the	timeout	period.

WDTLVRC Register

Bit 7 6 5 4 3 2 1 0
Name WDTCLS1 WDTCLS0 LVREN� LVREN1 LVREN0 WDTEN� WDTEN1 WDTEN0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7~6 WDTCLS1~WDTCLS0:	WDT/Timer	clock	source
00:	fLIRC
01:	fSYS/4
10:	fSYS

11:	fSYS

Bit	5~3	 Described	in	other	section.
Bit	2~0 WDTEN2~WDTEN0:	WDT	enable	control

000:	Enable
101:	Disable
Other	values:	MCU	reset	(reset	will	be	active	after	2~3	LIRC	clock	for	debounce	time)

Rev. 1.40 �6 �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Watchdog Timer Operation
The	Watchdog	Timer	operates	by	providing	a	device	reset	when	its	 timer	overflows.	This	means	
that	in	the	application	program	and	during	normal	operation	the	user	has	to	strategically	clear	the	
Watchdog	Timer	before	it	overflows	to	prevent	the	Watchdog	Timer	from	executing	a	reset.	This	is	
done	using	the	clear	watchdog	instruction.	Note	that	if	the	Watchdog	Timer	function	is	not	enabled,	
then	any	instruction	related	to	the	Watchdog	Timer	will	result	in	no	operation.

Setting	the	various	Watchdog	Timer	options	are	controlled	via	 the	 internal	registers	WDTLVRC	
and	WDTS.	Enabling	the	Watchdog	Timer	can	be	controlled	by	the	WDTEN	bits	 in	 the	internal	
WDTLVRC	register	in	the	Data	Memory.

The	Watchdog	Timer	will	be	disabled	if	bits	WDTEN2~WDTEN0	in	the	WDTLVRC	register	are	
written	with	the	binary	value	101B	while	the	WDT	Timer	will	be	enabled	if	these	bits	are	written	
with	the	binary	value	000B.	If	these	bits	are	written	with	the	other	values	except	000	and	101,	the	
MCU	will	be	reset.

The	Watchdog	Timer	 clock	 can	 emanate	 from	 three	 different	 sources,	 selected	 by	 the	
WDTCLS1~WDTCLS0	bits	in	the	WDTLVRC	register.	These	sources	are	fSYS,	fSYS/4	or	LIRC.	It	
is	 important	to	note	that	when	the	system	enters	the	Sleep	Mode	the	instruction	clock	is	stopped,	
therefore	if	it	has	selected	fSYS	or	fSYS/4	as	the	Watchdog	Timer	clock	source,	the	Watchdog	Timer	
will	stop.	For	systems	that	operate	 in	noisy	environments,	 it’s	recommended	to	use	the	LIRC	as	
the	clock	source.	The	division	ratio	of	the	prescaler	is	determined	by	bits	0,	1	and	2	of	the	WDTS	
register,	known	as	WS0,	WS1	and	WS2.	If	the	Watchdog	Timer	internal	clock	source	is	selected	and	
with	the	WS0,	WS1	and	WS2	bits	of	the	WDTS	register	all	set	high,	the	prescaler	division	ratio	will	
be	1:32768,	which	will	give	a	maximum	time-out	period.

Under	normal	program	operation,	a	Watchdog	Timer	 time-out	will	 initialize	a	device	reset	and	
set	the	status	bit	TO.	However,	if	the	system	is	in	the	Sleep	Mode,	when	a	Watchdog	Timer	time-
out	occurs,	the	devices	will	be	woken	up,	the	TO	bit	in	the	status	register	will	be	set	and	only	the	
Program	Counter	and	Stack	Pointer	will	be	reset.	Four	methods	can	be	adopted	to	clear	the	contents	
of	 the	Watchdog	Timer.	The	first	 is	an	external	hardware	reset,	which	means	a	 low	level	on	the	
external	reset	pin,	 the	second	is	a	WDT	software	reset,	which	means	a	certain	value	except	000B	
and	101B	written	 into	 the	WDTEN	field,	 the	 third	 is	using	 the	Clear	Watchdog	Timer	software	
instructions	and	the	fourth	is	via	a	“HALT”	instruction.	

There	is	only	one	method	of	using	software	instruction	to	clear	the	Watchdog	Timer.	That	is	to	use	
the	“CLR	WDT”	instruction	to	clear	the	WDT.

“CLR WDT”Inst�u�tion

8-stage Divide� WDT P�es�ale�

WDTEN�~WDTEN0
bits

WDTLVRC
Registe�

Reset �CU

S/W
Cont�ol

fS fS/�8

8-to-1 �UX

CLR

WS�~WS0
(fS/�8 ~ fS/�15)

WDT Time-out
(�8/fS ~ �15/fS)

fSYS/4
fSYS

fLIRC

WDTCLS1~WDTCLS0

Watchdog Timer

Rev. 1.40 �8 �a��� �1� �01� Rev. 1.40 �9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Reset and Initialization
A	reset	function	is	a	fundamental	part	of	any	microcontroller	ensuring	that	the	devices	can	be	set	
to	some	predetermined	condition	 irrespective	of	outside	parameters.	The	most	 important	 reset	
condition	is	after	power	is	first	applied	to	the	microcontroller.	In	this	case,	 internal	circuitry	will	
ensure	 that	 the	microcontroller,	after	a	short	delay,	will	be	 in	a	well	defined	state	and	ready	 to	
execute	the	first	program	instruction.	After	this	power-on	reset,	certain	important	internal	registers	
will	be	set	to	defined	states	before	the	program	commences.	One	of	these	registers	is	the	Program	
Counter,	which	will	be	reset	to	zero	forcing	the	microcontroller	to	begin	program	execution	from	the	
lowest	Program	Memory	address.

In	addition	to	the	power-on	reset,	situations	may	arise	where	it	 is	necessary	to	forcefully	apply	a	
reset	condition	when	the	microcontroller	is	running.	One	example	of	this	is	where	after	power	has	
been	applied	and	the	microcontroller	is	already	running,	the	RES	line	is	forcefully	pulled	low.	In	such	
a	case,	known	as	a	normal	operation	reset,	some	of	the	microcontroller	registers	remain	unchanged	
allowing	the	microcontroller	to	deal	with	normal	operation	after	the	reset	line	is	allowed	to	return	
high.	Another	type	of	reset	is	when	the	Watchdog	Timer	overflows	and	resets	the	microcontroller.	
All	types	of	reset	operations	result	in	different	register	conditions	being	set.

Another	reset	exists	in	the	form	of	a	Low	Voltage	Reset,	LVR,	where	a	full	reset,	similar	to	the	RES	
reset	is	implemented	in	situations	where	the	power	supply	voltage	falls	below	a	certain	threshold.

Reset Functions
There	are	 five	ways	 in	which	a	microcontroller	 reset	can	occur,	 through	events	occurring	both	
internally	and	externally:	

Power-on Reset
The	most	fundamental	and	unavoidable	reset	 is	 the	one	that	occurs	after	power	is	first	applied	to	
the	microcontroller.	As	well	as	ensuring	that	the	Program	Memory	begins	execution	from	the	first	
memory	address,	a	power-on	reset	also	ensures	 that	certain	other	 registers	are	preset	 to	known	
conditions.	All	the	I/O	port	and	port	control	registers	will	power	up	in	a	high	condition	ensuring	that	
all	pins	will	be	first	set	to	inputs.

� � �

� � � � � � � � � � � � � �

� � � � � � �

� � � � � � � � � � �

� � �

Note:	tRSTD	is	power-on	delay,	typical	time=50ms
Power-On Reset Timing Chart

RES Pin Reset
Although	the	microcontroller	has	an	internal	RC	reset	function,	if	the	VDD	power	supply	rise	time	
is	not	 fast	enough	or	does	not	stabilize	quickly	at	power-on,	 the	 internal	reset	 function	may	be	
incapable	of	providing	proper	reset	operation.	For	this	reason	it	 is	recommended	that	an	external	
RC	network	is	connected	to	the	RES	pin,	whose	additional	time	delay	will	ensure	that	the	RES	pin	
remains	low	for	an	extended	period	to	allow	the	power	supply	to	stabilize.	During	this	time	delay,	
normal	operation	of	 the	microcontroller	will	be	 inhibited.	After	 the	RES	 line	 reaches	a	certain	
voltage	value,	the	reset	delay	time	tRSTD	is	invoked	to	provide	an	extra	delay	time	after	which	the	
microcontroller	will	begin	normal	operation.	The	abbreviation	SST	in	the	figures	stands	for	System	
Start-up	Timer.

Rev. 1.40 �8 �a��� �1� �01� Rev. 1.40 �9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

For	most	applications	a	resistor	connected	between	VDD	and	the	RES	pin	and	a	capacitor	connected	
between	VSS	and	the	RES	pin	will	provide	a	suitable	external	reset	circuit.	Any	wiring	connected	to	
the	RES	pin	should	be	kept	as	short	as	possible	to	minimize	any	stray	noise	interference.

For	applications	that	operate	within	an	environment	where	more	noise	is	present	 the	reset	circuit	
shown	is	recommended.

� � � � � � �

� � � � � � �

� � � � �
� � � � �

� � �

� � �

� � � � � � � �
� � �

� � � � � �

� � � � �

Note:	“*”	It	is	recommended	that	this	component	is	added	for	added	ESD	protection.

“**”	It	is	recommended	that	this	component	is	added	in	environments	where	power	line	noise	
is	significant.

External RES Circuit

More	information	regarding	external	reset	circuits	is	located	in	Application	Note	HA0075E	on	the	
Holtek	website.

As	 the	 reset	 pin	 is	 shared	with	 the	PA7	pin,	 the	 reset	 function	must	 be	 selected	using	 the	
RESBEN2~RESBEN0	bits	in	the	EXTRESB	control	register.

This	type	of	reset	occurs	when	the	microcontroller	is	already	running	and	the	RES	pin	is	forcefully	
pulled	low	by	external	hardware	such	as	an	external	switch.	In	this	case	as	in	the	case	of	other	reset,	
the	Program	Counter	will	reset	to	zero	and	program	execution	initiated	from	this	point.

� � �

� � � � � � � � � � � � � �

� � � � � � �
� � � � � � �

� � � � � � � � � �

Note:	tRSTD	is	power-on	delay,	typical	time=50ms
RES Reset Timing Chart

• EXTRESB Register

Bit 7 6 5 4 3 2 1 0
Name — — — — — RESBEN� RESBEN1 RESBEN0
R/W — — — — — R/W R/W R/W
POR — — — — — 0 0 0

Bit	7~3	 Unimplemented,	read	as	"0"
Bit	2~0 RESBEN2~RESBEN0:	PA7/RES	selection

000:	PA7
101:	RES
Other	values:	MCU	reset

Rev. 1.40 �0 �a��� �1� �01� Rev. 1.40 �1 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Low Voltage Reset – LVR
The	microcontroller	contains	a	low	voltage	reset	circuit	 in	order	to	monitor	the	supply	voltage	of	
the	device.	The	LVR	function	is	enabled/disabled	by	the	LVREN2~LVREN0	bits	in	the	WDTLVRC	
register.	This	voltage	is	fixed	at	2.1V	(VLVR).	If	the	supply	voltage	of	the	devices	drops	to	within	a	
range	of	0.9V~VLVR	such	as	might	occur	when	changing	a	battery,	the	LVR	will	automatically	reset	
the	devices	internally.

The	LVR	includes	the	following	specifications:	For	a	valid	LVR	signal,	a	low	voltage,	i.e.,	a	voltage	
in	 the	range	between	0.9V~VLVR	must	exist	 for	greater	 than	 the	value	 tLVR	specified	 in	 the	A.C.	
characteristics.	If	 the	low	voltage	state	does	not	exceed	tLVR,	 the	LVR	will	 ignore	it	and	will	not	
perform	a	reset	function.

� � �

� � � � � � � � � � � � � �

� � � � � � � � � � � �

Note:	tRSTD	is	power-on	delay,	typical	time=50ms
Low Voltage Reset Timing Chart

• WDTLVRC Register

Bit 7 6 5 4 3 2 1 0
Name WDTCLS1 WDTCLS0 LVREN� LVREN1 LVREN0 WDTEN� WDTEN1 WDTEN0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7~6	 Described	in	other	section.
Bit	5~3 LVREN2~LVREN0:	LVR	enable	control

000:	Enable
101:	Disable
Other	values:	MCU	reset	(reset	will	be	active	after	2~3	LIRC	clock	for	debounce	time)

Bit	2~0	 Described	in	other	section.

Watchdog Time-out Reset during Normal Operation
The	Watchdog	time-out	Reset	during	normal	operation	 is	 the	same	as	a	hardware	RES	pin	reset	
except	that	the	Watchdog	time-out	flag	TO	will	be	set	to	“1”.

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

Note:	tRSTD	is	power-on	delay,	typical	time=50ms
WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during Sleep Mode
The	Watchdog	time-out	Reset	during	Sleep	Mode	is	a	little	different	from	other	kinds	of	reset.	Most	
of	the	conditions	remain	unchanged	except	that	the	Program	Counter	and	the	Stack	Pointer	will	be	
cleared	to	“0”	and	the	TO	flag	will	be	set	to	“1”.	Refer	to	the	A.C.	Characteristics	for	tSST	details.

� � � �

� � � � � � � � � � � �

� � � � � � � � � � � � �

Note:	tSST	is	16	clock	cycles	for	the	system	clock	source	is	provided	by	HIRC.
WDT Time-out Reset during Sleep Timing Chart

Rev. 1.40 �0 �a��� �1� �01� Rev. 1.40 �1 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Reset Initial Conditions
The	different	 types	of	reset	described	affect	 the	reset	flags	in	different	ways.	These	flags,	known	
as	PDF	and	TO	are	 located	 in	 the	status	 register	and	are	controlled	by	various	microcontroller	
operations,	such	as	the	Sleep	Mode	function	or	Watchdog	Timer.	The	reset	flags	are	shown	in	the	
table:

TO PDF RESET Conditions
0 0 Powe�-on �eset
u u RES o� LVR �eset du�ing NOR�AL �ode ope�ation
1 u WDT time-out �eset du�ing NOR�AL �ode ope�ation
1 1 WDT time-out �eset du�ing Sleep �ode ope�ation

Note: “u” stands fo� un��anged
The	following	table	indicates	the	way	in	which	the	various	components	of	the	microcontroller	are	
affected	after	a	power-on	reset	occurs.

Item Condition After RESET
P�og�am Counte� Reset to ze�o
Inte��upts All inte��upts will be disabled
WDT Clea� afte� �eset� WDT begins �ounting
Time�/Event Counte� Time� Counte� will be tu�ned off
Input/Output Po�ts I/O po�ts will be set as inputs
Sta�k Pointe� Sta�k Pointe� will point to t�e top of t�e sta�k

The	different	kinds	of	resets	all	affect	the	internal	registers	of	the	microcontroller	in	different	ways.	
To	ensure	reliable	continuation	of	normal	program	execution	after	a	reset	occurs,	it	is	important	to	
know	what	condition	the	microcontroller	is	 in	after	a	particular	reset	occurs.	The	following	table	
describes	how	each	type	of	reset	affects	the	microcontroller	internal	registers.

Rev. 1.40 �� �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004

Register Reset
(Power On)

RES Reset
(Normal Operation)

RES Reset
(HALT)

WDT Time-out
(Normal Operation)

WDT Time-out
(HALT)

PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IAR0 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
�P0 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u
IAR1 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
�P1 1 x x x x x x x 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u 1 u u u u u u u
ACC x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TBLP x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBLH - - x x x x x x - - u u u u u u - - u u u u u u - - u u u u u u - - u u u u u u
WDTS - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - u u u
STATUS - - 0 0 x x x x - - u u u u u u - - 0 1 u u u u - - 1 u u u u u - - 1 1 u u u u
INTC0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
INTC1 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - u - - - u
T�R0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
T�R0C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
T�R1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
T�R1C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAWU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PAPU - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
PB - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - u u - - u u
PBC - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - 1 1 - - u u - - u u
PBPU - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - u u - - u u
PC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCPU - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
CTRL0 - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - - 0 - - - - - - - u - -
CTRL1 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - u u - - - - - -
WDTLVRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EXTRESB - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u
I�CC0 - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u -
I�CC1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 u u u u u u u u
I�CD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
I�CA 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u -
I�CTOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
PXPC0 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - u u u u u u
PXPC1 - - - - 0 1 0 1 - - - - 0 1 0 1 - - - - 0 1 0 1 - - - - 0 1 0 1 - - - - u u u u

Note:	“u”	stands	for	unchanged
“x”	stands	for	unknown
“-”	stands	for	unimplemented

Rev. 1.40 �� �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R008

Register Power-on Reset RES Reset
(Normal operation)

RES Reset
(HALT)

WDT Time-out
(Normal Operation)

WDT Time-out
(HALT)

PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�P0 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
�P1 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
ACC x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBLP x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
TBLH - - x x x x x x - - u u u u u u - - u u u u u u - - u u u u u u - - u u u u u u
WDTS - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - 1 1 1 - - - - - u u u
STATUS - - 0 0 x x x x - - u u u u u u - - 0 1 u u u u - - 1 u u u u u - - 1 1 u u u u
INTC0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
INTC1 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u
T�R0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
T�R0C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
T�R1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
T�R1C 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 0 0 - 0 1 0 0 0 u u - u u u
PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PAWU - - 0 - - 0 0 0 - - 0 - - 0 0 0 - - 0 - - 0 0 0 - - 0 - - 0 0 0 - - u - - u u u
PAPU - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u
PB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PBC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u
PBPU 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 u u u u u - u u
PC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCC - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 - - u u u u u u
PCPU - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - u u u u u u
CTRL0 - - - - - 0 - - - - - - - 0 - - - - - - - 0 - - - - - - - - 0 - - - - - - - u - -
CTRL1 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - 1 0 - - - - - - u u - - - - - -
WDTLVRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PXPS - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - 0 1 0 1 0 1 - - u u u u u u
USR 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 0 0 0 0 1 0 11 u u u u u u u u
UCR1 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x 0 u u u u u u u u
UCR� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u
TXR_RXR x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
BRG x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
EXTRESB - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u
I�CC0 - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - 0 0 0 - - - - - u u u -
I�CC1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 u u u u u u u u
I�CD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u
I�CA 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - u u u u u u u -
I�CTOC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

Note:	“u”	stands	for	unchanged
“x”	stands	for	unknown
“-”	stands	for	unimplemented

Rev. 1.40 �4 �a��� �1� �01� Rev. 1.40 �5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Input/Output Ports
Holtek	microcontrollers	offer	considerable	flexibility	on	their	I/O	ports.	Most	pins	can	have	either	an	
input	or	output	designation	under	user	program	control.	Additionally,	as	there	are	pull-high	resistors	
and	wake-up	software	configurations,	the	user	is	provided	with	an	I/O	structure	to	meet	the	needs	of	
a	wide	range	of	application	possibilities.

These	devices	provide	bidirectional	input/output	lines	labeled	with	port	names	PA~PC.	These	I/O	
ports	are	mapped	to	the	RAM	Data	Memory	with	specific	addresses	as	shown	in	the	Special	Purpose	
Data	Memory	table.	All	of	 these	I/O	ports	can	be	used	for	input	and	output	operations.	For	input	
operation,	these	ports	are	non-latching,	which	means	the	inputs	must	be	ready	at	the	T2	rising	edge	
of	instruction	“MOV	A,	[m]”,	where	m	denotes	the	port	address.	For	output	operation,	all	the	data	is	
latched	and	remains	unchanged	until	the	output	latch	is	rewritten.

Register
Name

Bit

7 6 5 4 3 2 1 0
PA PA� PA6 PA5 PA4 PA� PA� PA1 PA0

PAC PAC� PAC6 PAC5 PAC4 PAC� PAC� PAC1 PAC0
PAPU — PAPU6 PAPU5 PAPU4 PAPU� PAPU� PAPU1 PAPU0
PAWU PAWU� PAWU6 PAWU5 PAWU4 PAWU� PAWU� PAWU1 PAWU0

PB — — PB5 PB4 — — PB1 PB0
PBC — — PBC5 PBC4 — — PBC1 PBC0

PBPU — — PBPU5 PBPU4 — — PBPU1 PBPU0
PC — — PC5 PC4 PC� PC� PC1 PC0

PCC — — PCC5 PCC4 PCC� PCC� PCC1 PCC0
PCPU — — PCPU5 PCPU4 PCPU� PCPU� PCPU1 PCPU0

I/O Register List – HT48R004

Register
Name

Bit

7 6 5 4 3 2 1 0
PA PA� PA6 PA5 PA4 PA� PA� PA1 PA0

PAC PAC� PAC6 PAC5 PAC4 PAC� PAC� PAC1 PAC0
PAPU — PAPU6 PAPU5 PAPU4 PAPU� PAPU� PAPU1 PAPU0
PAWU — — PAWU5 — — PAWU� PAWU1 PAWU0

PB PB� PB6 PB5 PB4 PB� PB� PB1 PB0
PBC PBC� PBC6 PBC5 PBC4 PBC� PBC� PBC1 PBC0

PBPU PBPU� PBPU6 PBPU5 PBPU4 PBPU� PBPU� PBPU1 PBPU0
PC — — PC5 PC4 PC� PC� PC1 PC0

PCC — — PCC5 PCC4 PCC� PCC� PCC1 PCC0
PCPU — — PCPU5 PCPU4 PCPU� PCPU� PCPU1 PCPU0

I/O Register List – HT48R008

Rev. 1.40 �4 �a��� �1� �01� Rev. 1.40 �5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Pull-high Resistors
Many	product	applications	require	pull-high	resistors	for	their	switch	inputs	usually	requiring	the	
use	of	an	external	 resistor.	To	eliminate	 the	need	for	 these	external	 resistors,	all	 I/O	pins,	when	
configured	as	an	input	have	the	capability	of	being	connected	to	an	internal	pull-high	resistor.	These	
pull-high	resistors	are	selected	using	the	registers	PAPU~PCPU	located	in	the	Data	Memory.	The	
pull-high	resistors	are	implemented	using	weak	PMOS	transistors.	Note	that	pin	PA7	does	not	have	
a	pull-high	resistor	selection.

PAPU Register

Bit 7 6 5 4 3 2 1 0
Name — PAPU6 PAPU5 PAPU4 PAPU� PAPU� PAPU1 PAPU0
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit	7	 Unimplemented,	read	as	"0"
Bit	6~0 PAPU6~PAPU0:	Port	A	bit	6~bit	0	pull-high	control

0:	Disable
1:	Enable

PBPU Register
• HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — PBPU5 PBPU4 — — PBPU1 PBPU0
R/W — — R/W R/W — — R/W R/W
POR — — 0 0 — — 0 0

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5~4 PBPU5~PBPU4:	Port	B	bit	5~bit	4	pull-high	control

0:	Disable
1:	Enable

Bit	3~2	 Unimplemented,	read	as	“0”
Bit	1~0 PBPU1~PBPU0:	Port	B	bit	1~bit	0	pull-high	control

0:	Disable
1:	Enable

• HT48R008

Bit 7 6 5 4 3 2 1 0
Name PBPU� PBPU6 PBPU5 PBPU4 PBPU� PBPU� PBPU1 PBPU0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7~0 PBPU7~PBPU0:	Port	B	bit	7~bit	0	pull-high	control
0:	Disable
1:	Enable

Rev. 1.40 �6 �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

PCPU Register

Bit 7 6 5 4 3 2 1 0
Name — — PCPU5 PCPU4 PCPU� PCPU� PCPU1 PCPU0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 0 0 0 0

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5~0 PCPU5~PCPU0:	Port	C	bit	5~bit	0	pull-high	control

0:	Disable
1:	Enable

Port A Wake-up
If	the	HALT	instruction	is	executed,	the	devices	will	enter	the	Sleep	Mode,	where	the	system	clock	
will	stop	resulting	in	power	being	conserved,	a	feature	that	is	important	for	battery	and	other	low-
power	applications.	Various	methods	exist	to	wake-up	the	microcontroller,	one	of	which	is	to	change	
the	logic	condition	on	one	of	the	Port	A	pins	from	high	to	low.	After	a	HALT	instruction	forces	the	
microcontroller	into	entering	the	Sleep	Mode,	the	processor	will	remain	in	a	low-power	state	until	
the	logic	condition	of	the	selected	wake-up	pin	on	Port	A	changes	from	high	to	low.	This	function	
is	especially	suitable	for	applications	that	can	be	woken	up	via	external	switches.	Note	that	each	
of	pins	PA7~PA0	in	 the	HT48R004	and	pins	PA5,	PA2~PA0	in	 the	HT48R008	can	be	selected	
individually	to	have	this	wake-up	feature	using	an	internal	register	known	as	PAWU,	located	in	the	
Data	Memory.

PAWU Register
• HT48R004

Bit 7 6 5 4 3 2 1 0
Name PAWU� PAWU6 PAWU5 PAWU4 PAWU� PAWU� PAWU1 PAWU0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7~0 PAWU7~PAWU0:	Port	A	bit	7~bit	0	wake-up	control
0:	Disable
1:	Enable

• HT48R008

Bit 7 6 5 4 3 2 1 0
Name — — PAWU5 — — PAWU� PAWU1 PAWU0
R/W — — R/W — — R/W R/W R/W
POR — — 0 — — 0 0 0

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5 PAWU5:	Port	A	bit	5	wake-up	control

0:	Disable
1:	Enable

Bit	4~3	 Unimplemented,	read	as	“0”
Bit	2~0 PAWU2~PAWU0:	Port	A	bit	2~bit	0	wake-up	control

0:	Disable
1:	Enable

Rev. 1.40 �6 �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I/O Port Control Registers
Each	port	has	 its	own	control	 register	known	as	PAC~PCC,	which	 control	 the	 input/output	
configuration.	With	 this	control	register,	each	I/O	pin	with	or	without	pull-high	resistors	can	be	
reconfigured	dynamically	under	 software	control.	For	 the	 I/O	pin	 to	 function	as	an	 input,	 the	
corresponding	bit	of	 the	control	register	must	be	written	as	a	“1”.	This	will	 then	allow	the	logic	
state	of	the	input	pin	to	be	directly	read	by	instructions.	When	the	corresponding	bit	of	the	control	
register	is	written	as	a	“0”,	the	I/O	pin	will	be	set	as	a	CMOS	output.	If	the	pin	is	currently	set	as	an	
output,	instructions	can	still	be	used	to	read	the	output	register.	However,	it	should	be	noted	that	the	
program	will	in	fact	only	read	the	status	of	the	output	data	latch	and	not	the	actual	logic	status	of	the	
output	pin.

PAC Register

Bit 7 6 5 4 3 2 1 0
Name PAC� PAC6 PAC5 PAC4 PAC� PAC� PAC1 PAC0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit	7~0 PAC7~PAC0:	Port	A	bit	7~bit	0	Input/Output	control
0:	Output
1:	Input

PBC Register
• HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — PBC5 PBC4 — — PBC1 PBC0
R/W — — R/W R/W — — R/W R/W
POR — — 1 1 — — 1 1

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5~4 PBC5~PBC4:	Port	B	bit	5~bit	4	Input/Output	control

0:	Output
1:	Input

Bit	3~2	 Unimplemented,	read	as	“0”
Bit	1~0 PBC1~PBC0:	Port	B	bit	1~bit	0	Input/Output	control

0:	Output
1:	Input

• HT48R008

Bit 7 6 5 4 3 2 1 0
Name PBC� PBC6 PBC5 PBC4 PBC� PBC� PBC1 PBC0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit	7~0 PBC7~PBC0:	Port	B	bit	7~bit	0	Input/Output	control
0:	Output
1:	Input

Rev. 1.40 �8 �a��� �1� �01� Rev. 1.40 �9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

PCC Register

Bit 7 6 5 4 3 2 1 0
Name — — PCC5 PCC4 PCC� PCC� PCC1 PCC0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 1 1 1 1 1 1

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5~0 PCC5~PCC0:	Port	C	bit	5~	bit	0	Input/Output	control

0:	Output
1:	Input

Source Current Selection Registers
To	enhance	 the	 I/O	driving	 ability,	 PA0~PA6,	PB0~PB1,	PB4~PB5,	PC0~PC5	pins	 in	 the	
HT48R004	and	PB0~PB7,	PC0~PC3	pins	in	the	HT48R008	can	be	setup	to	have	a	choice	of	various	
source	current	using	specific	registers,	which	are	the	PXPC0,	PXPC1	registers	for	the	HT48R004	
and	the	PXPS	register	for	the	HT48R008.

PXPC0 Register — HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — PBPS1 PBPS0 PAPS� PAPS� PAPS1 PAPS0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 1 0 1 0 1

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5~4 PBPS1~PBPS0:	PB5~PB4,	PB1~PB0	source	current	select	

00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Bit	3~2 PAPS3~PAPS2:	PA6~PA4	source	current	select	
00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Bit	1~0 PAPS1~PAPS0:	PA3~PA0	source	current	select	
00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Note:	Users	should	refer	to	the	D.C.	Characteristirs	section	to	obtain	the	exact	value	
for	different	applications.

Rev. 1.40 �8 �a��� �1� �01� Rev. 1.40 �9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

PXPC1 Register — HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — — — PCPS� PCPS� PCPS1 PCPS0
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 1 0 1

Bit	7~4	 Unimplemented,	read	as	"0"
Bit	3~2 PCPS3~PCPS2:	PC5~PC4	source	current	select	

00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Bit	1~0 PCPS1~PCPS0:	PC3~PC0	source	current	select
00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Note:	Users	should	refer	to	the	D.C.	Characteristirs	section	to	obtain	the	exact	value	
for	different	applications.

PXPS Register — HT48R008

Bit 7 6 5 4 3 2 1 0
Name — — PXPS5 PXPS4 PXPS� PXPS� PXPS1 PXPS0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 1 0 1 0 1

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5~4 PXPS5~PXPS4:	PC3~PC0	source	current	selection

00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Bit	3~2 PXPS3~PXPS2:	PB7~PB4	source	current	selection
00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Bit	1~0 PXPS1~PXPS0:	PB3~PB0	source	current	selection
00:	Source	current	=	Level	0	(min.)
01:	Source	current	=	Level	1
10:	Source	current	=	Level	2
11:	Source	current	=	Level	3(max.)

Note:	Users	should	refer	to	the	D.C.	Characteristirs	section	to	obtain	the	exact	value	
for	different	applications.

Rev. 1.40 40 �a��� �1� �01� Rev. 1.40 41 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Pin-shared Functions
The	flexibility	of	the	microcontroller	range	is	greatly	enhanced	by	the	use	of	pins	that	have	more	
than	one	function.	Limited	numbers	of	pins	can	force	serious	design	constraints	on	designers	but	by	
supplying	pins	with	multi-functions,	many	of	these	difficulties	can	be	overcome.	For	some	pins,	the	
chosen	function	of	the	multi-function	I/O	pins	is	set	by	application	program	control.

External Interrupt Input
The	external	interrupt	pin,	INT,	is	pin-shared	with	an	I/O	pin.	To	use	the	pin	as	an	external	interrupt	
input	the	correct	bits	 in	the	INTC0	register	must	be	programmed.	The	pin	must	also	be	set	as	an	
input	by	setting	 the	corresponding	bit	 in	 the	Port	Control	Register.	A	pull-high	resistor	can	also	
be	selected	via	the	appropriate	port	pull-high	resistor	register.	Note	that	even	if	the	pin	is	set	as	an	
external	interrupt	input	the	I/O	function	still	remains.

External Timer/Event Counter Input
The	Timer/Event	Counter	pins	are	pin-shared	with	I/O	pins.	For	 these	shared	pins	 to	be	used	as	
Timer/Event	Counter	input,	the	Timer/Event	Counter	must	be	configured	to	be	in	the	Event	Counters	
or	Pulse	Width	Capture	Mode.	This	is	achieved	by	setting	the	appropriate	bits	in	the	Timer/Event	
Counter	Control	Register.	The	pin	must	also	be	set	as	input	by	setting	the	appropriate	bit	in	the	Port	
Control	Register.	Pull-high	resistor	options	can	also	be	selected	using	the	port	pull-high	resistor	
registers.	Note	that	even	if	the	pin	is	set	as	an	external	timer	input	the	I/O	function	still	remains.

PFD Output
The	PFD	function	output	is	pin-shared	with	an	I/O	pin.	The	output	function	of	this	pin	is	chosen	
using	the	CTRL0	register.	Note	that	the	corresponding	bit	of	the	port	control	register	must	be	set	
the	pin	as	an	output	to	enable	the	PFD	output.	If	the	port	control	register	has	set	the	pin	as	an	input,	
then	the	pin	will	function	as	a	normal	logic	input	with	the	usual	pull-high	selection,	even	if	the	PFD	
function	has	been	selected.

I/O Pin Structures
The	 accompanying	diagrams	 illustrate	 the	 I/O	pin	 internal	 structures.	As	 the	 exact	 logical	
construction	of	 the	I/O	pin	may	differ	from	these	drawings,	 they	are	supplied	as	a	guide	only	to	
assist	with	the	functional	understanding	of	the	I/O	pins.

� � �

�
�
�

� � � � � � � � � � � � � �� � � � � � � � � � � � �

� � �
 � � � � � � � � 	 � � � �

� �

� �
�

� �

� �
�

� � � � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � � � � 	 � � � �

� � � � � � � � �

� � �
 � � � � � � � � � � � 	 � � � �

� � � � � � � � � � � � � 	 � � � �

� � � � � � � �

� � � � � � �

�

�

� �

� � � �
� � � � � � �

� � � � � � 	 �
� � 	 � � � �
� � � � � �

Generic Input/Output Ports

Rev. 1.40 40 �a��� �1� �01� Rev. 1.40 41 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

�
�
�� � � � � � � � � � � � � � � � � �

� �

� � �

� �

� � �

� � � � � �
 � �
� � � � �
 	 �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � �
 � �

� � � � � � �

�

�

� � � � � 	 � � � 	 � � � � �� � � � � � � � � � � � 	 �

� � �

PA7 NMOS Input/Output Port

Programming Considerations
Within	the	user	program,	one	of	the	things	first	 to	consider	is	port	 initialization.	After	a	reset,	all	
of	 the	I/O	data	and	port	control	registers	will	be	set	 to	high.	This	means	that	all	I/O	pins	will	be	
defaulted	to	an	input	state,	the	level	of	which	depends	on	the	other	connected	circuitry	and	whether	
pull-high	selections	have	been	chosen.	If	the	port	control	registers	are	then	programmed	to	set	some	
pins	as	outputs,	 these	output	pins	will	have	an	initial	high	output	value	unless	the	associated	port	
data	registers	are	first	programmed.	Selecting	which	pins	are	inputs	and	which	are	outputs	can	be	
achieved	byte-wide	by	loading	the	correct	values	 into	 the	appropriate	port	control	register	or	by	
programming	individual	bits	 in	 the	port	control	register	using	the	“SET	[m].i”	and	“CLR	[m].i”	
instructions.	Note	that	when	using	these	bit	control	instructions,	a	read-modify-write	operation	takes	
place.	The	microcontroller	must	first	read	in	the	data	on	the	entire	port,	modify	it	to	the	required	new	
bit	values	and	then	rewrite	this	data	back	to	the	output	ports.

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � � �

 � � � � � �
 	 � � �

� � � � � � � � �

Read Modify Write Timing

Each	of	pins	PA7~PA0	in	the	HT48R004	and	pins	PA5,	PA2~PA0	in	the	HT48R008	has	wake-up	
function,	selected	via	the	PAWU	register.	When	the	devices	are	in	the	Sleep	Mode,	various	methods	
are	available	to	wake	these	devices	up.	One	of	these	is	a	high	to	low	transition	of	any	pins.	Single	or	
multiple	pins	on	Port	A	can	be	set	to	have	this	function.

Rev. 1.40 4� �a��� �1� �01� Rev. 1.40 4� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Timer/Event Counters
The	provision	of	timers	form	an	important	part	of	any	microcontroller,	giving	the	designer	a	means	
of	carrying	out	time	related	functions.	The	series	of	devices	contain	two	8-bit	count-up	timers.	As	
the	timers	have	three	different	operating	modes,	they	can	be	configured	to	operate	as	a	general	timer,	
an	external	event	counter	or	as	a	pulse	width	capture	device.	The	provision	of	an	internal	prescaler	
to	the	clock	circuitry	on	gives	added	range	to	the	timers.

There	are	two	types	of	registers	related	to	the	Timer/Event	Counters.	The	first	is	the	registers	that	
contain	the	actual	value	of	the	timer	and	into	which	an	initial	value	can	be	preloaded,	TMR0	and	
TMR1.	Reading	from	these	registers	retrieves	the	contents	of	the	Timer/Event	Counter.	The	second	
type	of	associated	registers	 is	 the	Timer	Control	Register	which	defines	 the	 timer	options	and	
determines	how	the	timer	is	to	be	used.	The	devices	can	have	the	timer	clock	configured	to	come	
from	the	internal	clock	source.	In	addition,	the	timer	clock	source	can	also	be	configured	to	come	
from	an	external	timer	pin.

Configuring the Timer/Event Counter Input Clock Source
The	Timer/Event	Counter	clock	source	can	originate	from	various	sources,	an	 internal	clock	or	
an	external	pin.	The	 internal	clock	source	 is	used	when	the	 timer	 is	 in	 the	 timer	mode.	For	 the	
Timer/Event	Counter	0/1,	 this	 internal	clock	source	 is	 first	divided	by	a	prescaler,	 the	division	
ratio	of	which	is	conditioned	by	the	Timer	Control	Register	bits	TnPSC2~TnPSC0.	The	internal	
clock	source	can	be	derived	from	the	system	clock	fSYS	or	from	the	instruction	clock	fSYS/4	or	the	
internal	 low	speed	oscillator	LIRC	for	Timer/Event	Counter	selected	by	the	clock	selection	bits	
WDTCLS1~WDTCLS0	in	the	register	WDTLVRC.

An	external	clock	source	is	used	when	the	Timer/Event	Counter	is	in	the	event	counting	mode,	the	
clock	source	being	provided	on	an	external	timer	pin.	Depending	upon	the	condition	of	the	TnEG	
bit,	each	high	to	low,	or	low	to	high	transition	on	the	external	timer	pin	will	increment	the	counter	
by	one.

� �
� � � �

� � � � �

� � � � � � � � � � �

� � � � � � � � � �

� � �
 	 � � � � � � � � 	 � � � � � � � � � � � � � �
 � � � � � � � �

��
�� �� �� � � � � � � �

� � � � � � � � � � � � � � �
 � � � 	 � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � �

�

� �

� � � � � � �

� � � � � � � � �

�

Clock Source for Timer/WDT

� � � �

� � � � � � � � � � � � � � � �

� � � � �
 � � �

	 � � � � � � �

� � 	��
� � � �

� � � �

� � � � � � �
 � � � �
� � � � � � � � �
 � � �
 � � � � � � � �

� � � � � � �

� � � � � �
� � � �
 � � � � � �

� � � � � � � � � �

� � � �

8-bit Timer/Event Counter 0 Structure

Rev. 1.40 4� �a��� �1� �01� Rev. 1.40 4� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � �

� � � � � � � � � � � � � � � �

� � � � �
 � � �

	 � � � � � � �

� � � �

� � � �

� � � � � � �
 � � � �
� � � � � � � � �
 � � �
 � � � � � � � �

� � � � � � �

� � � � � � � �
� � � �
 � � � � � �

� � � � � � � �

8-bit Timer/Event Counter 1 Structure

Timer Register – TMR0, TMR1
The	timer	registers	are	special	function	registers	located	in	the	Special	Purpose	Data	Memory	and	
is	 the	place	where	 the	actual	 timer	value	 is	stored.	The	register	 is	known	as	TMR0	and	TMR1.	
The	value	in	 the	timer	register	 increases	by	one	each	time	an	internal	clock	pulse	 is	received	or	
an	external	transition	occurs	on	the	external	timer	pin.	The	timer	will	count	from	the	initial	value	
loaded	by	the	preload	register	to	the	full	count	of	FFH	at	which	point	the	timer	overflows	and	an	
internal	interrupt	signal	is	generated.	The	timer	value	will	then	reset	with	the	initial	preload	register	
value	and	continue	counting.

Note	that	to	achieve	a	maximum	full	range	count	of	FFH,	the	preload	register	must	first	be	cleared.	
It	should	be	noted	that	after	power-on,	the	preload	register	will	be	in	an	unknown	condition.	Note	
that	 if	 the	Timer/Event	Counter	is	 in	an	OFF	condition	and	data	is	written	to	its	preload	register,	
this	data	will	be	immediately	written	into	the	actual	counter.	However,	if	the	counter	is	enabled	and	
counting,	any	new	data	written	into	the	preload	data	register	during	this	period	will	remain	in	the	
preload	register	and	will	only	be	written	into	the	actual	counter	the	next	time	an	overflow	occurs.

Timer Control Register – TMR0C, TMR1C
The	flexible	features	of	the	Holtek	microcontroller	Timer/Event	Counters	enable	them	to	operate	in	
three	different	modes,	the	options	of	which	are	determined	by	the	contents	of	their	respective	control	
register.

The	Timer	Control	Register	 is	known	as	TMRnC.	It	 is	 the	Timer	Control	Register	 together	with	
its	corresponding	timer	register	that	controls	the	full	operation	of	the	Timer/Event	Counter.	Before	
the	timer	can	be	used,	it	 is	essential	that	the	Timer	Control	Register	is	fully	programmed	with	the	
right	data	 to	ensure	 its	correct	operation,	a	process	 that	 is	normally	carried	out	during	program	
initialization.

To	choose	which	of	the	three	modes	the	timer	is	to	operate	in,	either	in	the	timer	mode,	the	event	
counting	mode	or	the	pulse	width	capture	mode,	bits	7	and	6	of	the	Timer	Control	Register,	which	
are	known	as	the	bit	pair	TnM1/TnM0,	must	be	set	to	the	required	logic	levels.	The	timer-on	bit,	
which	is	bit	4	of	the	Timer	Control	Register	and	known	as	TnON,	provides	the	basic	on/off	control	
of	the	respective	timer.	Setting	the	bit	to	high	allows	the	counter	to	run.	Clearing	the	bit	stops	the	
counter.	Bits	0~2	of	 the	Timer	Control	Register	determine	 the	division	ratio	of	 the	 input	clock	
prescaler.	The	prescaler	bit	settings	have	no	effect	if	an	external	clock	source	is	used.	If	the	timer	is	
in	the	event	count	or	pulse	width	capture	mode,	the	active	transition	edge	level	type	is	selected	by	
the	logic	level	of	bit	3	of	the	Timer	Control	Register	which	is	known	as	TnEG.

Rev. 1.40 44 �a��� �1� �01� Rev. 1.40 45 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

TMR0C Register

Bit 7 6 5 4 3 2 1 0
Name T0�1 T0�0 — T0ON T0EG T0PSC� T0PSC1 T0PSC0
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 0 0 — 0 1 0 0 0

Bit	7~6 T0M1~T0M0:	Timer	operation	mode	selection
00:	No	mode	available
01:	Event	counter	mode	
10:	Timer	mode
11:	Pulse	width	capture	mode	

Bit	5	 Unimplemented,	read	as	“0”
Bit	4 T0ON:	Timer/event	counter	counting	enable

0:	Disable
1:	Enable

Bit	3 T0EG:	Timer/Event	Counter	active	edge	selection
In	event	counter	mode	(T0M1~T0M0	=	01)
0:	Count	on	rising	edge
1:	Count	on	falling	edge

In	pulse	width	measurement	mode	(T0M1~T0M0	=	11)
0:	Start	counting	on	falling	edge,	stop	on	the	rising	edge
1:	Start	counting	on	rising	edge,	stop	on	the	falling	edge

Bit	2~0 T0PSC2~T0PSC0:	Timer	prescalar	rate	selection
000:	fS

001:	fS/2
010:	fS/4
011:	fS/8
100:	fS/16
101:	fS/32
110:	fS/64
111:	fS/128

TMR1C Register

Bit 7 6 5 4 3 2 1 0
Name T1�1 T1�0 — T1ON T1EG T1PSC� T1PSC1 T1PSC0
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 0 0 — 0 1 0 0 0

Bit	7~6 T1M1~T1M0:	Timer	operation	mode	selection
00:	No	mode	available
01:	Event	counter	mode	
10:	Timer	mode
11:	Pulse	width	capture	mode	

Bit	5	 Unimplemented,	read	as	“0”
Bit	4 T1ON:	Timer/event	counter	counting	enable

0:	Disable
1:	Enable

Bit	3 T1EG:	Timer/Event	Counter	active	edge	selection
In	event	counter	mode	(T1M1~T1M0	=	01)
0:	Count	on	rising	edge
1:	Count	on	falling	edge

In	pulse	width	measurement	mode	(T1M1~T1M0	=	11)
0:	Start	counting	on	falling	edge,	stop	on	the	rising	edge
1:	Start	counting	on	rising	edge,	stop	on	the	falling	edge

Rev. 1.40 44 �a��� �1� �01� Rev. 1.40 45 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Bit	2~0 T1PSC2~T1PSC0:	Timer	prescalar	rate	selection
000:	fS

001:	fS/2
010:	fS/4
011:	fS/8
100:	fS/16
101:	fS/32
110:	fS/64
111:	fS/128

Timer Mode
In	this	mode,	 the	Timer/Event	Counter	can	be	utilized	to	measure	fixed	time	intervals,	providing	
an	internal	interrupt	signal	each	time	the	Timer/Event	Counter	overflows.	To	operate	in	this	mode,	
the	Operating	Mode	Select	bit	pair,	TnM1/TnM0,	in	the	Timer	Control	Register	must	be	set	to	the	
correct	value	as	shown.

Bit7 Bit6
1 0

Control Register Operating Mode Select Bits for the Timer Mode

In	this	mode	the	internal	clock	is	used	as	the	timer	clock.	The	timer	input	clock	source	is	fSYS	or	fSYS/4.	
However,	this	timer	clock	source	is	further	divided	by	a	prescaler,	the	value	of	which	is	determined	by	
the	bits	TnPSC2~TnPSC0	in	the	Timer	Control	Register.	The	timer-on	bit,	TnON	must	be	set	high	to	
enable	the	timer	to	run.	Each	time	an	internal	clock	high	to	low	transition	occurs,	the	timer	increments	
by	one.	When	the	timer	is	full	and	overflows,	an	interrupt	signal	is	generated	and	the	timer	will	reload	
the	value	already	loaded	into	the	preload	register	and	continue	counting.	A	timer	overflow	condition	
and	corresponding	internal	interrupts	are	two	of	the	wake-up	sources.	However,	the	internal	interrupts	
can	be	disabled	by	ensuring	that	the	TnE	bits	of	the	INTC0	register	are	reset	to	zero.

� � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
 � � � � � � � � 	 � � � � � � � � 	 � � � �

Timer Mode Timing Chart

Event Counter Mode
In	this	mode,	a	number	of	externally	changing	logic	events,	occurring	on	the	external	timer	TMRn	pin,	
can	be	recorded	by	the	Timer/Event	Counter.	To	operate	in	this	mode,	the	Operating	Mode	Select	bit	
pair,	TnM1/TnM0,	in	the	Timer	Control	Register	must	be	set	to	the	correct	value	as	shown.

Bit7 Bit6
0 1

Control Register Operating Mode Select Bits for the Timer Mode

In	 this	mode,	 the	external	 timer	TMRn	pin	 is	used	as	 the	Timer/Event	Counter	clock	source,	
however	it	is	not	divided	by	the	internal	prescaler.	After	the	other	bits	in	the	Timer	Control	Register	
have	been	set,	the	enable	bit	TnON,	which	is	bit	4	of	the	Timer	Control	Register,	can	be	set	high	to	
enable	the	Timer/Event	Counter	to	run.	If	the	Active	Edge	Select	bit,	TnEG,	which	is	bit	3	of	the	
Timer	Control	Register,	is	low,	the	Timer/Event	Counter	will	increment	each	time	the	external	timer	
pin	receives	a	low	to	high	transition.	If	the	TnEG	is	high,	the	counter	will	increment	each	time	the	
external	timer	pin	receives	a	high	to	low	transition.	When	it	is	full	and	overflows,	an	interrupt	signal	
is	generated	and	 the	Timer/Event	Counter	will	 reload	 the	value	already	 loaded	 into	 the	preload	

Rev. 1.40 46 �a��� �1� �01� Rev. 1.40 4� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

register	and	continue	counting.	The	 interrupt	can	be	disabled	by	ensuring	 that	 the	Timer/Event	
Counter	Interrupt	Enable	bit	in	the	corresponding	Interrupt	Control	Register.	It	is	reset	to	zero.	

As	the	external	timer	pin	is	shared	with	an	I/O	pin,	to	ensure	that	the	pin	is	configured	to	operate	as	
an	event	counter	input	pin,	two	things	have	to	happen.	The	first	is	to	ensure	that	the	Operating	Mode	
Select	bits	 in	 the	Timer	Control	Register	place	 the	Timer/Event	Counter	 in	 the	Event	Counting	
Mode.	The	second	is	to	ensure	that	the	port	control	register	configures	the	pin	as	an	input.	It	should	
be	noted	 that	 in	 the	event	counting	mode,	even	if	 the	microcontroller	 is	 in	 the	Sleep	Mode,	 the	
Timer/Event	Counter	will	continue	to	record	externally	changing	logic	events	on	the	timer	 input	
TMRn	pin.	As	a	result	when	the	timer	overflows	it	will	generate	a	timer	interrupt	and	corresponding	
wake-up	source.

� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � � � � � � � � � � � � � �� � � � � �

Event Counter Mode Timing Chart (TnEG=1)

Pulse Width Capture Mode
In	 this	mode,	 the	Timer/Event	Counter	can	be	utilised	 to	measure	 the	width	of	external	pulses	
applied	to	the	external	timer	pin.	To	operate	in	this	mode,	the	Operating	Mode	Select	bit	pair,	TnM1/
TnM0,	in	the	Timer	Control	Register	must	be	set	to	the	correct	value	as	shown.

Bit7 Bit6
1 1

Control Register Operating Mode Select Bits for the Pulse Width Capture Mode

In	this	mode	the	internal	clock,	fSYS,	fSYS/4	or	fLIRC	is	used	as	the	internal	clock	for	the	8-bit	Timer/
Event	Counter.	However,	the	clock	source,	fS,	for	the	8-bit	 timer	is	further	divided	by	a	prescaler,	
the	value	of	which	is	determined	by	the	Prescaler	Rate	Select	bits	TnPSC2~TnPSC0,	which	are	bit	
2~0	of	the	Timer	Control	Register,	After	other	bits	in	the	Timer	Control	Register	have	been	set,	the	
enable	bit	TnON,	which	is	bit	4	of	the	Timer	Control	Register,	can	be	set	high	to	enable	the	Timer/
Event	Counter,	however	it	will	not	actually	start	counting	until	an	active	edge	is	received	on	the	
external	timer	pin.

If	the	Active	Edge	Select	bit	TnEG	which	is	bit	3	of	the	Timer	Control	Register	is	low,	once	a	high	
to	low	transition	has	been	received	on	the	external	 timer	pin,	 the	Timer/Event	Counter	will	start	
counting	until	the	external	timer	pin	returns	to	its	original	high	level.	At	this	point	the	enable	bit	will	
be	automatically	reset	to	zero	and	the	Timer/Event	Counter	will	stop	counting.	If	the	Active	Edge	
Select	bit	 is	high,	the	Timer/Event	Counter	will	begin	counting	once	a	low	to	high	transition	has	
been	received	on	the	external	timer	pin	and	stop	counting	when	the	external	timer	pin	returns	to	its	
original	low	level.	As	before,	the	enable	bit	will	be	automatically	reset	to	zero	and	the	Timer/Event	
Counter	will	stop	counting.	It	is	important	to	note	that	in	the	pulse	width	capture	mode,	the	enable	
bit	is	automatically	reset	to	zero	when	the	external	control	signal	on	the	external	timer	pin	returns	
to	its	original	level,	whereas	in	the	other	two	modes	the	enable	bit	can	only	be	reset	to	zero	under	
program	control.

The	residual	value	in	the	Timer/Event	Counter,	which	can	now	be	read	by	the	program,	therefore	
represents	the	length	of	the	pulse	received	on	the	TMRn	pin.	As	the	enable	bit	has	now	been	reset,	
any	further	 transitions	on	the	external	 timer	pin	will	be	 ignored.	The	timer	cannot	begin	further	
pulse	width	capture	until	 the	enable	bit	 is	set	high	again	by	the	program.	In	this	way,	single	shot	
pulse	measurements	can	be	easily	made.	 It	 should	be	noted	 that	 in	 this	mode	 the	Timer/Event	
Counter	 is	controlled	by	logical	 transitions	on	 the	external	 timer	pin	and	not	by	 the	 logic	 level.	

Rev. 1.40 46 �a��� �1� �01� Rev. 1.40 4� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

When	the	Timer/Event	Counter	is	full	and	overflows,	an	interrupt	signal	is	generated	and	the	Timer/
Event	Counter	will	reload	the	value	already	loaded	into	the	preload	register	and	continue	counting.	
The	interrupt	can	be	disabled	by	ensuring	that	the	Timer/Event	Counter	Interrupt	Enable	bit	in	the	
corresponding	Interrupt	Control	Register,	it	is	reset	to	zero.	As	the	TMRn	pin	is	shared	with	an	I/O		
pin,	to	ensure	that	the	pin	is	configured	to	operate	as	a	pulse	width	capture	pin,	two	things	have	to	be	
implemented.	The	first	is	to	ensure	that	the	Operating	Mode	Select	bits	in	the	Timer	Control	Register	
place	the	Timer/Event	Counter	in	the	pulse	width	capture	mode,	the	second	is	to	ensure	that	the	port	
control	register	configure	the	pin	as	an	input.

� � � � � � � �� � � � �

� � � � � � � � � � � �
� � � � � �
 	 �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � 	 �
 	 �

� � � � � � � � �
� � � � � � � � 	 � � � �

� � � � � � � � � � � 	 �
 	 � � � � � � � �
 � � � � � � � � � � �

Pulse Width Capture Mode Timing Chart (TnEG=0)

Prescaler
Bits	TnPSC2~TnPSC0	of	the	TMRnC	register	can	be	used	to	define	a	division	ratio	for	the	internal	
clock	source	of	the	Timer/Event	Counter	enabling	longer	time	out	periods	to	be	set.

PFD Function
The	Programmable	Frequency	Divider	provides	a	means	of	producing	a	variable	frequency	output	
suitable	for	application,	such	as	some	interfaces	requiring	a	precise	frequency	generator.	

The	Timer/Event	Counter	overflow	signal	 is	 the	clock	source	 for	 the	PFD	function,	which	 is	
controlled	by	PFDC	bit	in	CTRL0.	For	these	devices	the	clock	source	can	come	from	Timer/Event	
Counter	0.	The	output	frequency	is	controlled	by	loading	the	required	values	into	the	timer	prescaler	
and	timer	registers	to	give	the	required	division	ratio.	The	counter	will	begin	to	count-up	from	this	
preload	register	value	until	full,	at	which	point	an	overflow	signal	is	generated,	causing	both	the	PFD	
outputs	to	change	state.	Then	the	counter	will	be	automatically	reloaded	with	the	preload	register	
value	and	continue	counting-up.	If	the	CTRL0	register	has	selected	the	PFD	function,	then	for	PFD	
output	to	operate,	it	is	essential	for	the	Port	A	control	register	PAC	to	set	the	PFD	pins	as	outputs.	
PA6	must	be	set	high	to	activate	the	PFD.	The	output	data	bits	can	be	used	as	the	on/off	control	bit	
for	the	PFD	outputs.	Note	that	 the	PFD	outputs	will	all	be	low	if	 the	output	data	bit	 is	cleared	to	
zero.	

� � � � � � � � � � � � � �

� � � � � � � � �

� � � � �
 �

� � � � � 	
 � 	
 � �
 � � �

PFD Function

Rev. 1.40 48 �a��� �1� �01� Rev. 1.40 49 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I/O Interfacing
The	Timer/Event	Counter,	when	configured	 to	 run	 in	 the	event	counter	or	pulse	width	capture	
mode,	requires	the	use	of	an	external	timer	pin	for	its	operation.	As	this	pin	is	a	shared	pin	it	must	
be	configured	correctly	to	ensure	that	it	 is	set	for	use	as	a	Timer/Event	Counter	input	pin.	This	is	
achieved	by	ensuring	that	the	mode	selects	bits	in	the	Timer/Event	Counter	control	register,	either	
the	event	counter	or	pulse	width	capture	mode.	Additionally	the	corresponding	Port	Control	Register	
bit	must	be	set	high	to	ensure	that	the	pin	is	set	as	an	input.	Any	pull-high	resistor	connected	to	this	
pin	will	remain	valid	even	if	the	pin	is	used	as	a	Timer/Event	Counter	input.

Programming Considerations
When	running	in	the	timer	mode,	the	internal	system	clock	is	used	as	the	timer	clock	source	and	
is	 therefore	synchronised	with	 the	overall	operation	of	 the	microcontroller.	 In	 this	mode	when	
the	appropriate	timer	register	 is	full,	 the	microcontroller	will	generate	an	internal	 interrupt	signal	
directing	the	program	flow	to	the	respective	internal	 interrupt	vector.	For	the	pulse	width	capture	
mode,	the	internal	system	clock	is	also	used	as	the	timer	clock	source	but	the	timer	will	only	run	
when	 the	correct	 logic	condition	appears	on	 the	external	 timer	 input	pin.	As	 this	 is	an	external	
event	and	not	synchronised	with	 the	 internal	 timer	clock,	 the	microcontroller	will	only	see	 this	
external	event	when	the	next	timer	clock	pulse	arrives.	As	a	result,	there	may	be	small	differences	
in	measured	values	requiring	programmers	to	take	this	into	account	during	programming.	The	same	
applies	if	the	timer	is	configured	to	be	in	the	event	counting	mode,	which	again	is	an	external	event	
and	not	synchronised	with	the	internal	system	or	timer	clock.

When	the	Timer/Event	Counter	 is	 read,	or	 if	data	 is	written	 to	 the	preload	register,	 the	clock	 is	
inhibited	to	avoid	errors,	however	as	this	may	result	in	a	counting	error,	this	should	be	taken	into	
account	by	the	programmer.	Care	must	be	taken	to	ensure	that	 the	timers	are	properly	initialised	
before	using	 them	for	 the	 first	 time.	The	associated	 timer	enable	bits	 in	 the	 interrupt	control	
register	must	be	properly	set	otherwise	the	internal	interrupt	associated	with	the	timer	will	remain	
inactive.	The	edge	select,	 timer	mode	and	clock	source	control	bits	 in	timer	control	register	must	
also	be	correctly	set	 to	ensure	 the	timer	 is	properly	configured	for	 the	required	application.	It	 is	
also	important	to	ensure	that	an	initial	value	is	first	loaded	into	the	timer	registers	before	the	timer	
is	switched	on;	this	is	because	after	power-on	the	initial	values	of	the	timer	registers	are	unknown.	
After	the	timer	has	been	initialised	the	timer	can	be	turned	on	and	off	by	controlling	the	enable	bit	in	
the	timer	control	register.	

When	the	Timer/Event	Counter	overflows,	its	corresponding	interrupt	request	flag	in	the	interrupt	
control	register	will	be	set.	If	the	Timer/Event	Counter	interrupt	is	enabled	this	will	in	turn	generate	
an	interrupt	signal.	However	irrespective	of	whether	the	interrupts	are	enabled	or	not,	a	Timer/Event	
Counter	overflow	will	also	generate	a	wake-up	signal	if	the	devices	are	in	a	Power-down	condition.	
This	situation	may	occur	if	the	Timer/Event	Counter	is	in	the	Event	Counting	Mode	and	if	the	external	
signal	continues	 to	change	state.	In	such	a	case,	 the	Timer/Event	Counter	will	continue	to	count	
these	external	events	and	if	an	overflow	occurs	the	devices	will	be	woken	up	from	its	Power-down		
condition.	To	prevent	such	a	wake-up	from	occurring,	the	timer	interrupt	request	flag	should	first	be	
set	high	before	issuing	the	“HALT”	instruction	to	enter	the	Sleep	Mode.

Rev. 1.40 48 �a��� �1� �01� Rev. 1.40 49 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Timer Program Example
The	program	shows	how	the	Timer/Event	Counter	registers	are	set	along	with	how	the	interrupts	are	
enabled	and	managed.	Note	how	the	Timer/Event	Counter	is	turned	on,	by	setting	bit	4	of	the	Timer	
Control	Register.	The	Timer/Event	Counter	can	be	turned	off	in	a	similar	way	by	clearing	the	same	
bit.	This	example	program	sets	the	Timer/Event	Counters	to	be	in	the	timer	mode,	which	uses	the	
internal	system	clock	as	their	clock	source.

PFD Programming Example
org 04h ; external interrupt vector
org 08h ; Timer Counter 0 interrupt vector
jmp tmr0int ; jump here when Timer 0 overflows
 :
 :
org 20h ; main program
 :
 :
 ; internal Timer 0 interrupt routine
tmr0int:
 :
 ; Timer 0 main program placed here
 :
 :
begin:
 ; set Timer 0 registers
mov a,09bh ; set Timer 0 preload value
mov tmr0,a
mov a,081h ; set Timer 0 control register
mov tmr0c,a ; timer mode and prescaler set to /2 set interrupt register
mov a, 0c0H ; select fSYS for the TMR0 clock source
mov wdtlvrc, a
mov a,05h ; enable master interrupt and both timer interrupts
mov intc0,a
 :
 :
set tmr0c.4 ; start Timer 0
 :
 :

Rev. 1.40 50 �a��� �1� �01� Rev. 1.40 51 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Interface
The	 I2C	 interface	 is	used	 to	 communicate	with	 external	peripheral	devices	 such	as	 sensors,	
EEPROM	memory	etc.	Originally	developed	by	Philips,	it	 is	a	two	line	low	speed	serial	interface	
for	synchronous	serial	data	transfer.	The	advantage	of	only	two	lines	for	communication,	relatively	
simple	communication	protocol	and	the	ability	to	accommodate	multiple	devices	on	the	same	bus	
has	made	it	an	extremely	popular	interface	type	for	many	applications.

� � � � � �
� � � � �

� � � � � �
� � � � � �

� � � � � �
� � � � �

� � �

� � �
� � �

I2C Master/Slave Bus Connection

I2C Interface Operation
The	I2C	serial	interface	is	a	two	line	interface,	a	serial	data	line,	SDA,	and	serial	clock	line,	SCL.	As	
many	devices	may	be	connected	together	on	the	same	bus,	their	outputs	are	both	open	drain	types.	
For	this	reason	it	is	necessary	that	external	pull-high	resistors	are	connected	to	these	outputs.	Note	
that	no	chip	select	line	exists,	as	each	device	on	the	I2C	bus	is	identified	by	a	unique	address	which	
will	be	transmitted	and	received	on	the	I2C	bus.	

When	two	devices	communicate	with	each	other	on	the	bidirectional	I2C	bus,	one	is	known	as	the	
master	device	and	one	as	 the	slave	device.	Both	master	and	slave	can	transmit	and	receive	data.	
However,	 it	 is	 the	master	device	 that	has	overall	control	of	 the	bus.	For	 this	device,	which	only	
operates	in	slave	mode,	there	are	two	methods	of	transferring	data	on	the	I2C	bus,	the	slave	transmit	
mode	and	the	slave	receive	mode.	

It	 is	suggested	 that	 the	user	shall	not	enter	 the	micro	processor	 to	HALT	mode	by	application	
program	during	processing	I2C	communication.

� � � � � � � � � � � � � � � � �
� � � � � �

� � � � � � � � � � � � � � � � � � � � �
� � � � �

� � �
 � � � � � � � � � �

� � � � 	 � � � � � � � � � � � �

�
�
�

 � � � � � � � � � � 	 �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � 	 � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � 	 � � � � � � � � � � � � � � �

� � � � � � � �

 � � � � � �
� � � � � � � � � �

� � � � � � �

� �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � 	 �
� � � 	 � � � � �

� � � � � � �
� � � � � �

 � � �

� � � � � � �
�

� � � � � � �

� � � � � � � � �

� � � � � � �
� � � � � � � � � � � � �

 � � � � � � � � � � 	 �

� � � � � � �

 � � � �

I2C Block Diagram

Rev. 1.40 50 �a��� �1� �01� Rev. 1.40 51 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � �
 � 	 � � � � � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � 	 � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �

I2C Registers
There	are	four	control	registers	associated	with	the	I2C	bus,	I2CC0,	I2CC1,	I2CA	and	I2CTOC	and	
one	data	register,	I2CD.	The	I2CD	register	is	used	to	store	the	data	being	transmitted	and	received	
on	the	I2C	bus.	Before	the	microcontroller	writes	data	to	the	I2C	bus,	the	actual	data	to	be	transmitted	
must	be	placed	in	the	I2CD	register.	After	the	data	is	received	from	the	I2C	bus,	the	microcontroller	
can	read	it	from	the	I2CD	register.	Any	transmission	or	reception	of	data	from	the	I2C	bus	must	be	
made	via	the	I2CD	register.

Register
Name

Bit

7 6 5 4 3 2 1 0
I�CC0 — — — — I�CDBNC1 I�CDBNC0 I�CEN —
I�CC1 HCF HAAS HBB HTX TXAK SRW IA�WU RXAK
I�CD D� D6 D5 D4 D� D� D1 D0
I�CA A6 A5 A4 A� A� A1 A0 —

I�CTOC I�CTOEN I�CTOF I�CTOS5 I�CTOS4 I�CTOS� I�CTOS� I�CTOS1 I�CTOS0

I2C Registers List

I2CC0 Register

Bit 7 6 5 4 3 2 1 0
Name — — — — I�CDBC1 I�CDBC0 I�CEN —
R/W — — — — R/W R/W R/W —
POR — — — — 0 0 0 —

Bit	7~4	 Unimplemented,	read	as	“0”
Bit	3~2 I2CDBC1~I2CDBC0:	I2C	Debounce	Time	Selection

00:	No	debounce	
01:	2	system	clock	debounce
10:	4	system	clock	debounce
11:	4	system	clock	debounce

Bit	1	 I2CEN:	I2C	enable
0:	Disable
1:	Enable

Bit	0	 Unimplemented,	read	as	“0”

Rev. 1.40 5� �a��� �1� �01� Rev. 1.40 5� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2CC1 Register

Bit 7 6 5 4 3 2 1 0
Name HCF HAAS HBB HTX TXAK SRW IA�WU RXAK
R/W R R R R/W R/W R R/W R
POR 1 0 0 0 0 0 0 1

Bit	7	 HCF:	I2C	Bus	data	transfer	completion	flag
0:	Data	is	being	transferred
1:	Completion	of	an	8-bit	data	transfer

The	HCF	flag	 is	 the	data	 transfer	 flag.	This	 flag	will	be	zero	when	data	 is	being	
transferred.	Upon	completion	of	an	8-bit	data	 transfer	 the	flag	will	go	high	and	an	
interrupt	will	be	generated.
Below	is	an	example	of	the	flow	of	a	two-byte	I2C	data	transfer.
First,	 I2C	slave	device	receive	a	start	signal	 from	I2C	master	and	 then	HCF	bit	 is	
automatically	cleared	to	zero.
Second,	 I2C	slave	device	 finish	 receiving	 the	1st	data	byte	and	 then	HCF	bit	 is	
automatically	set	to	one.
Third,	user	read	the	1st	data	byte	from	I2CD	register	by	the	application	program	and	
then	HCF	bit	is	automatically	cleared	to	zero.
Fourth,	 I2C	slave	device	 finish	 receiving	 the	2nd	data	byte	and	 then	HCF	bit	 is	
automatically	set	to	one	and	so	on.
Finally,	I2C	slave	device	receive	a	stop	signal	from	I2C	master	and	then	HCF	bit	 is	
automatically	set	to	one.

Bit	6 HAAS:	I2C	Bus	address	match	flag
0:	Not	address	match
1:	Address	match

The	HAAS	flag	is	the	address	match	flag.	This	flag	is	used	to	determine	if	the	slave	
device	address	is	the	same	as	the	master	transmit	address.	If	the	addresses	match	then	
this	bit	will	be	high,	if	there	is	no	match	then	the	flag	will	be	low.

Bit	5 HBB:	I2C	Bus	busy	flag
0:	I2C	Bus	is	not	busy
1:	I2C	Bus	is	busy

The	HBB	flag	is	 the	I2C	busy	flag.	This	flag	will	be	“1”	when	the	I2C	bus	 is	busy	
which	will	occur	when	a	START	signal	is	detected.	The	flag	will	be	set	to	“0”	when	
the	bus	is	free	which	will	occur	when	a	STOP	signal	is	detected.

Bit	4 HTX:	Select	I2C	slave	device	is	transmitter	or	receiver
0:	Slave	device	is	the	receiver
1:	Slave	device	is	the	transmitter

Bit	3 TXAK:	I2C	Bus	transmit	acknowledge	flag
0:	Slave	send	acknowledge	flag
1:	Slave	do	not	send	acknowledge	flag

The	TXAK	bit	is	the	transmit	acknowledge	flag.	After	the	slave	device	receipt	of	8-bits	
of	data,	this	bit	will	be	transmitted	to	the	bus	on	the	9th	clock	from	the	slave	device.	
The	slave	device	must	always	set	TXAK	bit	to	“0”	before	further	data	is	received.

Bit	2 SRW:	I2C	Slave	Read/Write	flag
0:	Slave	device	should	be	in	receive	mode
1:	Slave	device	should	be	in	transmit	mode

The	SRW	flag	 is	 the	 I2C	Slave	Read/Write	 flag.	This	 flag	determines	whether	
the	master	device	wishes	 to	 transmit	or	 receive	data	 from	the	 I2C	bus.	When	 the	
transmitted	address	and	slave	address	is	match,	that	is	when	the	HAAS	flag	is	set	high,	
the	slave	device	will	check	the	SRW	flag	to	determine	whether	it	should	be	in	transmit	
mode	or	receive	mode.	If	the	SRW	flag	is	high,	the	master	is	requesting	to	read	data	
from	the	bus,	so	 the	slave	device	should	be	 in	 transmit	mode.	When	the	SRW	flag	
is	zero,	the	master	will	write	data	to	the	bus,	therefore	the	slave	device	should	be	in	
receive	mode	to	read	this	data.

Rev. 1.40 5� �a��� �1� �01� Rev. 1.40 5� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Bit	1 IAMWU:	I2C	Address	Match	Wake-up	Control
0:	Disable
1:	Enable	–	must	be	cleared	by	the	application	program	after	wake-up

The	I2C	module	can	run	without	using	 internal	clock,	and	generate	an	 interrupt	 if	
the	I2C	interrupt	is	enabled,	which	can	be	used	in	SLEEP	Mode,	NORMAL(SLOW)	
Mode.	This	bit	should	be	set	 to	“1”	to	enable	 the	I2C	address	match	wake	up	from	
the	SLEEP	or	IDLE	Mode.	If	the	IAMWU	bit	has	been	set	before	entering	either	the	
SLEEP	or	IDLE	mode	to	enable	the	I2C	address	match	wake	up,	 then	this	bit	must	
be	cleared	by	 the	application	program	after	wake-up	 to	ensure	correction	device	
operation.	

Bit	0 RXAK:	I2C	Bus	Receive	acknowledge	flag
0:	Slave	receive	acknowledge	flag
1:	Slave	do	not	receive	acknowledge	flag

The	RXAK	flag	 is	 the	receiver	acknowledge	flag.	When	the	RXAK	flag	 is	“0”,	 it	
means	that	a	acknowledge	signal	has	been	received	at	the	9th	clock,	after	8	bits	of	data	
have	been	transmitted.	When	the	slave	device	in	the	transmit	mode,	the	slave	device	
checks	the	RXAK	flag	to	determine	if	the	master	receiver	wishes	to	receive	the	next	
byte.	The	slave	transmitter	will	 therefore	continue	sending	out	data	until	 the	RXAK	
flag	is	“1”.	When	this	occurs,	the	slave	transmitter	will	release	the	SDA	line	to	allow	
the	master	to	send	a	STOP	signal	to	release	the	I2C	Bus.

The	I2CD	register	is	used	to	store	the	data	being	transmitted	and	received.	The	same	register	is	used	
by	both	the	SPI	and	I2C	functions.	Before	the	device	writes	data	to	the	I2C	bus,	the	actual	data	to	
be	transmitted	must	be	placed	in	the	I2CD	register.	After	the	data	is	received	from	the	I2C	bus,	the	
device	can	read	it	from	the	I2CD	register.	Any	transmission	or	reception	of	data	from	the	I2C	bus	
must	be	made	via	the	I2CD	register.

I2CD Register

Bit 7 6 5 4 3 2 1 0
Name D� D6 D5 D4 D� D� D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x” unknown
Bit	7~0	 D7~D0:	I2C	Data	Buffer	bit	7~bit	0

I2CA Register

Bit 7 6 5 4 3 2 1 0
Name A6 A5 A4 A� A� A1 A0 —
R/W R/W R/W R/W R/W R/W R/W R/W —
POR x x x x x x x —

“x” unknown
Bit	7~1	 A6~A0:	I2C	slave	address

A6~	A0	is	the	I2C	slave	address	bit	6~bit	0.
The	I2CA	register	 is	 the	 location	where	 the	7-bit	slave	address	of	 the	slave	device	
is	stored.	Bits	7~	1	of	the	I2CA	register	define	the	device	slave	address.	Bit	0	is	not	
defined.
When	a	master	device,	which	is	connected	to	the	I2C	bus,	sends	out	an	address,	which	
matches	the	slave	address	in	the	I2CA	register,	the	slave	device	will	be	selected.

Bit	0	 Unimplemented,	read	as	“0”

Rev. 1.40 54 �a��� �1� �01� Rev. 1.40 55 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Bus Communication
Communication	on	the	I2C	bus	requires	four	separate	steps,	a	START	signal,	a	slave	device	address	
transmission,	a	data	transmission	and	finally	a	STOP	signal.	When	a	START	signal	is	placed	on	the	
I2C	bus,	all	devices	on	the	bus	will	receive	this	signal	and	be	notified	of	the	imminent	arrival	of	data	
on	the	bus.	The	first	seven	bits	of	the	data	will	be	the	slave	address	with	the	first	bit	being	the	MSB.	
If	the	address	of	the	slave	device	matches	that	of	the	transmitted	address,	the	HAAS	bit	in	the	I2CC1	
register	will	be	set	and	an	I2C	interrupt	will	be	generated.	After	entering	the	interrupt	service	routine,	
the	slave	device	must	first	check	the	condition	of	the	HAAS	bit	to	determine	whether	the	interrupt	
source	originates	from	an	address	match	or	from	the	completion	of	an	8-bit	data	transfer.	During	a	
data	transfer,	note	that	after	the	7-bit	slave	address	has	been	transmitted,	the	following	bit,	which	is	
the	8th	bit,	is	the	read/write	bit	whose	value	will	be	placed	in	the	SRW	bit.	This	bit	will	be	checked	
by	the	slave	device	to	determine	whether	to	go	into	transmit	or	receive	mode.	Before	any	transfer	
of	data	to	or	from	the	I2C	bus,	the	microcontroller	must	initialise	the	bus.	The	following	are	steps	to	
achieve	this:	

Step 1
Set	I2CEN	bit	in	the	I2CC0	register	to	“1”	to	enable	the	I2C	bus.

Step 2
Write	the	slave	address	of	the	device	to	the	I2C	bus	address	register	I2CA.

Step 3
Set	the	IICE	interrupt	enable	bit	of	the	interrupt	control	register	to	enable	the	I2C	interrupt.

� � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � �
 	 � � �

� � � � � � � � �

� � � � � � � � � �
� � � � � � � � � � �

�

� � �� �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

I2C Bus Initialisation Flow Chart

Rev. 1.40 54 �a��� �1� �01� Rev. 1.40 55 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Bus Start Signal
The	START	signal	can	only	be	generated	by	the	master	device	connected	to	the	I2C	bus	and	not	by	
the	slave	device.	This	START	signal	will	be	detected	by	all	devices	connected	to	the	I2C	bus.	When	
detected,	 this	 indicates	 that	 the	I2C	bus	 is	busy	and	therefore	 the	HBB	bit	will	be	set.	A	START	
condition	occurs	when	a	high	 to	 low	transition	on	 the	SDA	line	 takes	place	when	the	SCL	line	
remains	high.

Slave Address
The	transmission	of	a	START	signal	by	the	master	will	be	detected	by	all	devices	on	the	I2C	bus.	
To	determine	which	slave	device	the	master	wishes	to	communicate	with,	the	address	of	the	slave	
device	will	be	sent	out	immediately	following	the	START	signal.	All	slave	devices,	after	receiving	
this	7-bit	address	data,	will	compare	it	with	their	own	7-bit	slave	address.	If	the	address	sent	out	by	
the	master	matches	the	internal	address	of	the	microcontroller	slave	device,	then	an	internal	I2C	bus	
interrupt	signal	will	be	generated.	The	next	bit	following	the	address,	which	is	the	8th	bit,	defines	the	
read/write	status	and	will	be	saved	to	the	SRW	bit	of	the	I2CC1	register.	The	slave	device	will	then	
transmit	an	acknowledge	bit,	which	is	a	low	level,	as	the	9th	bit.	The	slave	device	will	also	set	the	
status	flag	HAAS	when	the	addresses	match.	

As	an	 I2C	bus	 interrupt	 can	come	 from	 two	 sources,	when	 the	program	enters	 the	 interrupt	
subroutine,	the	HAAS	bit	should	be	examined	to	see	whether	the	interrupt	source	has	come	from	
a	matching	slave	address	or	from	the	completion	of	a	data	byte	transfer.	When	a	slave	address	is	
matched,	 the	device	must	be	placed	in	either	 the	transmit	mode	and	then	write	data	 to	 the	I2CD	
register,	or	in	the	receive	mode	where	it	must	implement	a	dummy	read	from	the	I2CD	register	to	
release	the	SCL	line.

I2C Bus Read/Write Signal
The	SRW	bit	in	the	I2CC1	register	defines	whether	the	slave	device	wishes	to	read	data	from	the	I2C	
bus	or	write	data	to	the	I2C	bus.	The	slave	device	should	examine	this	bit	to	determine	if	it	is	to	be	a	
transmitter	or	a	receiver.	If	the	SRW	flag	is	“1”	then	this	indicates	that	the	master	device	wishes	to	
read	data	from	the	I2C	bus,	therefore	the	slave	device	must	be	setup	to	send	data	to	the	I2C	bus	as	a	
transmitter.	If	the	SRW	flag	is	“0”	then	this	indicates	that	the	master	wishes	to	send	data	to	the	I2C	
bus,	therefore	the	slave	device	must	be	setup	to	read	data	from	the	I2C	bus	as	a	receiver.

I2C Bus Slave Address Acknowledge Signal
After	 the	master	has	 transmitted	 a	 calling	 address,	 any	 slave	device	on	 the	 I2C	bus,	whose	
own	 internal	address	matches	 the	calling	address,	must	generate	an	acknowledge	signal.	The	
acknowledge	signal	will	inform	the	master	that	a	slave	device	has	accepted	its	calling	address.	If	no	
acknowledge	signal	is	received	by	the	master	then	a	STOP	signal	must	be	transmitted	by	the	master	
to	end	the	communication.	When	the	HAAS	flag	is	high,	the	addresses	have	matched	and	the	slave	
device	must	check	the	SRW	flag	to	determine	if	it	 is	to	be	a	transmitter	or	a	receiver.	If	the	SRW	
flag	is	high,	the	slave	device	should	be	setup	to	be	a	transmitter	so	the	HTX	bit	in	the	I2CC1	register	
should	be	set	to	“1”.	If	the	SRW	flag	is	low,	then	the	microcontroller	slave	device	should	be	setup	as	
a	receiver	and	the	HTX	bit	in	the	I2CC1	register	should	be	set	to	“0”.

Rev. 1.40 56 �a��� �1� �01� Rev. 1.40 5� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Bus Data and Acknowledge Signal
The	 transmitted	data	 is	8-bits	wide	and	 is	 transmitted	after	 the	slave	device	has	acknowledged	
receipt	of	its	slave	address.	The	order	of	serial	bit	transmission	is	the	MSB	first	and	the	LSB	last.	
After	receipt	of	8-bits	of	data,	the	receiver	must	transmit	an	acknowledge	signal,	 level	"0",	before	
it	can	receive	the	next	data	byte.	If	the	slave	transmitter	does	not	receive	an	acknowledge	bit	signal	
from	the	master	receiver,	 then	the	slave	transmitter	will	release	the	SDA	line	to	allow	the	master	
to	send	a	STOP	signal	 to	release	the	I2C	Bus.	The	corresponding	data	will	be	stored	in	the	I2CD	
register.	If	setup	as	a	transmitter,	the	slave	device	must	first	write	the	data	to	be	transmitted	into	the	
I2CD	register.	If	setup	as	a	receiver,	the	slave	device	must	read	the	transmitted	data	from	the	I2CD	
register.	

When	the	slave	receiver	 receives	 the	data	byte,	 it	must	generate	an	acknowledge	bit,	known	as	
TXAK,	on	the	9th	clock.	The	slave	device,	which	is	setup	as	a	transmitter	will	check	the	RXAK	bit	
in	the	I2CC1	register	to	determine	if	 it	 is	 to	send	another	data	byte,	 if	not	then	it	will	release	the	
SDA	line	and	await	the	receipt	of	a	STOP	signal	from	the	master.

� � � �

� � � � � � � � � �� � � � � � � � � � ��

� � � � � � �� �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � �
 � � � � � � � � � � � �
	 � � � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� �
 � � � � � � � � � � � �

� � �
� � � � �

� � �

� �
 � � �

� � � � � �
� � �

� � �

� � � � � � � � � � �

� � � � � 	 � � � � � � � � � 	 � � � �

I2C Communication Timing Diagram

Note:	*When	a	slave	address	is	matched,	the	device	must	be	placed	in	either	the	transmit	mode	and	
then	write	data	to	the	I2CD	register,	or	in	the	receive	mode	where	it	must	implement	a	dummy	
read	from	the	I2CD	register	to	release	the	I2C	SCL	line.

Rev. 1.40 56 �a��� �1� �01� Rev. 1.40 5� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � � �

� � � � � �
�

� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �

� � ��

� � � �

� � � � � � � �
�

� � �

�

�

� � � � �
 � 	
� � � � � � � � � � � � � �

� � � � � � � �

� � � �

� � �

� � 	 	 � � � � � � �
 � 	
� � � � � � � � � � � � � �

� � � � � � � �

� � � �

� � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � �

� � � � � � �
� � � � � � � �

� � 	 	 � � � � � � �
 � 	
� � � � � � � � � � � � � �

� � � � � � � �

� � � � � � �
� � � � � � � �

� � � �

I2C Bus ISR Flow Chart

I2C Time-out Control
In	order	to	reduce	the	problem	of	I2C	lockup	due	to	reception	of	erroneous	clock	sources,	a	time-out	
function	is	provided.	If	the	clock	source	to	the	I2C	is	not	received	then	after	a	fixed	time	period,	the	
I2C	circuitry	and	registers	will	be	reset.

The	time-out	counter	starts	counting	on	an	I2C	bus	“START”	&	“address	match”	condition,	and	
is	cleared	by	an	SCL	falling	edge.	Before	the	next	SCL	falling	edge	arrives,	if	the	time	elapsed	is	
greater	 than	the	time-out	setup	by	the	I2CTOC	register,	 then	a	time-out	condition	will	occur.	The	
time-out	function	will	stop	when	an	I2C	“STOP”	condition	occurs.

Rev. 1.40 58 �a��� �1� �01� Rev. 1.40 59 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

� � � � � � � � � � � �
� � � � � � � � � � � � �

� �
� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �� � � � � � � � � � ��

� � � � � � �� �

� � �
� � � � �

�
 	

� � � 	 � �

� � � �
� � �

�
 	

� � � � � 	 � � � � � �

�

�

I2C Time-out Control

When	an	I2C	time-out	counter	overflow	occurs,	 the	counter	will	stop	and	the	I2CTOEN	bit	will	
be	cleared	 to	zero	and	the	I2CTOF	bit	will	be	set	high	to	 indicate	 that	a	 time-out	condition	has	
occurred.	The	time-out	condition	will	also	generate	an	interrupt	which	uses	the	I2C	interrupt	vector.	
When	an	I2C	time-out	occurs,	the	I2C	internal	circuitry	will	be	reset	and	the	registers	will	be	reset	
into	the	following	condition:

Register After I2C Time-out
I�CD� I�CA� I�CC0 No ��ange
I�CC1 Reset to POR �ondition

I2C Registers after Time-out

The	I2CTOF	flag	can	be	cleared	by	the	application	program.	There	are	64	time-out	periods	which	
can	be	selected	using	bits	in	the	I2CTOC	register.	The	time-out	time	is	given	by	the	formula:

((1~64)	×	32)	/	fLIRC

This	gives	a	range	of	about	1ms	to	64ms.	Note	also	that	the	LIRC	oscillator	is	continuously	enabled.

I2CTOC Register

Bit 7 6 5 4 3 2 1 0
Name I�CTOEN I�CTOF I�CTOS5 I�CTOS4 I�CTOS� I�CTOS� I�CTOS1 I�CTOS0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7	 I2CTOEN:	I2C	Time-out	Control
0:	Disable
1:	Enable

Bit	6 I2CTOF:	Time-out	flag	(set	by	time-out	and	clear	by	software)
0:	No	time-out
1:	Time-out	occurred

Bit	5~0 I2CTOS5~I2CTOS0:	Time-out	Definition
I2C	time-out	clock	source	is	fLIRC/32.
I2C	time-out	time	is	given	by:	([I2CTOS5:	I2CTOS0]	+	1)	×	(32/fLIRC)

Rev. 1.40 58 �a��� �1� �01� Rev. 1.40 59 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UART Module Serial Interface
The	HT48R008	device	contains	an	 integrated	full-duplex	asynchronous	serial	communications	
UART	interface	that	enables	communication	with	external	devices	that	contain	a	serial	 interface.	
The	UART	function	has	many	features	and	can	transmit	and	receive	data	serially	by	transferring	
a	frame	of	data	with	eight	or	nine	data	bits	per	transmission	as	well	as	being	able	to	detect	errors	
when	the	data	is	overwritten	or	incorrectly	framed.	The	UART	function	possesses	its	own	internal	
interrupt	which	can	be	used	to	indicate	when	a	reception	occurs	or	when	a	transmission	terminates.

The	integrated	UART	function	contains	the	following	features:

•	 Full-duplex,	asynchronous	communication

•	 8	or	9	bits	character	length

•	 Even,	odd	or	no	parity	options

•	 One	or	two	stop	bits

•	 Baud	rate	generator	with	8-bit	prescaler

•	 Parity,	framing,	noise	and	overrun	error	detection

•	 Support	for	interrupt	on	address	detect	(last	character	bit=1)

•	 Separately	enabled	transmitter	and	receiver

•	 2-byte	Deep	FIFO	Receive	Data	Buffer

•	 Transmit	and	receive	interrupts

•	 Interrupts	can	be	initialized	by	the	following	conditions:
	♦ Transmitter	Empty
	♦ Transmitter	Idle
	♦ Receiver	Full
	♦ Receiver	Overrun
	♦ Address	Mode	Detect

UART External Pin Interfacing
To	communicate	with	an	external	serial	interface,	the	internal	UART	has	two	external	pins	known	
as	TX	and	RX.	The	TX	pin	is	the	UART	transmitter	pin,	which	can	be	used	as	a	general	purpose	I/
O	pin	if	the	pin	is	not	configured	as	a	UART	transmitter,	which	occurs	when	the	TXEN	bit	value	is	
equal	to	zero.	Similarly,	the	RX	pin	is	the	UART	receiver	pin,	which	can	also	be	used	as	a	general	
purpose	I/O	pin,	 if	 the	pin	 is	not	configured	as	a	receiver,	which	occurs	 if	 the	RXEN	bit	 in	 the	
UCR2	register	is	equal	to	zero.	Along	with	the	UARTEN	bit,	the	TXEN	and	RXEN	bits,	if	set,	will	
automatically	setup	these	I/O	pins	to	their	respective	TX	output	and	RX	input	conditions	and	disable	
any	pull-high	resistor	option	which	may	exist	on	the	RX	pin.

UART Data Transfer Scheme
The	following	block	diagram	shows	the	overall	data	transfer	structure	arrangement	for	the	UART.	
The	actual	data	 to	be	 transmitted	from	the	MCU	is	 first	 transferred	 to	 the	TXR	register	by	 the	
application	program.	The	data	will	then	be	transferred	to	the	Transmit	Shift	Register	from	where	it	
will	be	shifted	out,	LSB	first,	onto	the	TX	pin	at	a	rate	controlled	by	the	Baud	Rate	Generator.	Only	
the	TXR	register	is	mapped	onto	the	MCU	Data	Memory,	the	Transmit	Shift	Register	is	not	mapped	
and	is	therefore	inaccessible	to	the	application	program.

Rev. 1.40 60 �a��� �1� �01� Rev. 1.40 61 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Data	to	be	received	by	the	UART	is	accepted	on	the	external	RX	pin,	from	where	it	 is	shifted	in,	
LSB	first,	 to	 the	Receiver	Shift	Register	at	a	rate	controlled	by	the	Baud	Rate	Generator.	When	
the	shift	register	is	full,	the	data	will	then	be	transferred	from	the	shift	register	to	the	internal	RXR	
register,	where	it	 is	buffered	and	can	be	manipulated	by	the	application	program.	Only	the	RXR	
register	is	mapped	onto	the	MCU	Data	Memory,	the	Receiver	Shift	Register	is	not	mapped	and	is	
therefore	inaccessible	to	the	application	program.

It	should	be	noted	that	the	actual	register	for	data	transmission	and	reception,	although	referred	to	
in	the	text,	and	in	application	programs,	as	separate	TXR	and	RXR	registers,	only	exists	as	a	single	
shared	register	in	the	Data	Memory.	This	shared	register	known	as	the	TXR_RXR	register	is	used	
for	both	data	transmission	and	data	reception.

� �

� � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � �
 � � � � � � � � � � � � � � � � � �

� � � � � �

� � 	 � � � � � �
� � � � � � � � �

� � � � � �

� 	 � �

� � � � � � � � � � 	 �

UART Data Transfer Scheme

UART Status and Control Registers
There	are	four	control	registers	associated	with	the	UART	function.	The	USR,	UCR1	and	UCR2	
registers	control	the	overall	function	of	the	UART,	while	the	BRG	register	controls	the	Baud	rate.	
The	actual	data	to	be	transmitted	and	received	on	the	serial	interface	is	managed	through	the	TXR_
RXR	data	registers.

Register
Name

Bit

7 6 5 4 3 2 1 0
USR PERR NF FERR OERR RIDLE RXIF TIDLE TXIF

UCR1 UARTEN BNO PREN PRT STOPS TXBRK RX8 TX8
UCR� TXEN RXEN BRGH ADDEN WAKE RIE TIIE TEIE
TXR_
RXR TXRX� TXRX6 TXRX5 TXRX4 TXRX� TXRX� TXRX1 TXRX0

BRG BRG� BRG6 BRG5 BRG4 BRG� BRG� BRG1 BRG0

UART Registers Summary

Rev. 1.40 60 �a��� �1� �01� Rev. 1.40 61 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

USR Register
The	USR	register	is	the	status	register	for	the	UART,	which	can	be	read	by	the	program	to	determine	
the	UART	present	status.	All	flags	within	the	USR	register	are	read	only.	Further	explanation	on	
each	of	the	flags	is	given	below.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Name PERR NF FERR OERR RIDLE RXIF TIDLE TXIF
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit	7 PERR:	Parity	error	flag
0:	No	parity	error	is	detected
1:	Parity	error	is	detected

The	PERR	flag	is	the	parity	error	flag.	When	this	read	only	flag	is	“0”,	it	indicates	a	
parity	error	has	not	been	detected.	When	the	flag	is	“1”,	it	indicates	that	the	parity	of	
the	received	word	is	incorrect.	This	error	flag	is	applicable	only	if	Parity	mode	(odd	or	
even)	is	selected.	The	flag	can	also	be	cleared	by	a	software	sequence	which	involves	
a	read	to	the	status	register	USR	followed	by	an	access	to	the	RXR	data	register.

Bit	6 NF:	Noise	flag
0:	No	noise	is	detected
1:	Noise	is	detected

The	NF	flag	is	 the	noise	flag.	When	this	read	only	flag	is	“0”,	 it	 indicates	no	noise	
condition.	When	the	flag	is	“1”,	it	indicates	that	the	UART	has	detected	noise	on	the	
receiver	input.	The	NF	flag	is	set	during	the	same	cycle	as	the	RXIF	flag	but	will	not	
be	set	in	the	case	of	as	overrun.	The	NF	flag	can	be	cleared	by	a	software	sequence	
which	will	involve	a	read	to	the	status	register	USR	followed	by	an	access	to	the	RXR	
data	register.

Bit	5 FERR:	Framing	error	flag
0:	No	framing	error	is	detected
1:	Framing	error	is	detected

The	FERR	flag	is	the	framing	error	flag.	When	this	read	only	flag	is	“0”,	it	indicates	
that	 there	is	no	framing	error.	When	the	flag	is	“1”,	 it	 indicates	 that	a	framing	error	
has	been	detected	for	the	current	character.	The	flag	can	also	be	cleared	by	a	software	
sequence	which	will	involve	a	read	to	the	status	register	USR	followed	by	an	access	to	
the	RXR	data	register.

Bit	4 OERR:	Overrun	error	flag
0:	No	overrun	error	is	detected
1:	Overrun	error	is	detected

The	OERR	flag	is	the	overrun	error	flag	which	indicates	when	the	receiver	buffer	has	
overflowed.	When	this	read	only	flag	is	“0”,	it	indicates	that	there	is	no	overrun	error.	
When	the	flag	is	“1”,	it	indicates	that	an	overrun	error	occurs	which	will	inhibit	further	
transfers	to	the	RXR	receive	data	register.	The	flag	is	cleared	by	a	software	sequence,	
which	 is	a	 read	 to	 the	status	register	USR	followed	by	an	access	 to	 the	RXR	data	
register.

Bit	3 RIDLE:	Receiver	status	
0:	Data	reception	is	in	progress	(data	being	received)
1:	No	data	reception	is	in	progress	(receiver	is	idle)

The	RIDLE	flag	is	the	receiver	status	flag.	When	this	read	only	flag	is	“0”,	it	indicates	
that	the	receiver	is	between	the	initial	detection	of	the	start	bit	and	the	completion	of	
the	stop	bit.	When	the	flag	is	“1”,	 it	 indicates	 that	 the	receiver	 is	 idle.	Between	the	
completion	of	the	stop	bit	and	the	detection	of	the	next	start	bit,	the	RIDLE	bit	is	“1”	
indicating	that	the	UART	receiver	is	idle	and	the	RX	pin	stays	in	logic	high	condition.

Rev. 1.40 6� �a��� �1� �01� Rev. 1.40 6� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Bit	2 RXIF:	Receive	RXR	data	register	status
0:	RXR	data	register	is	empty
1:	RXR	data	register	has	available	data,	at	least	one	more	character	can	be	read.

The	RXIF	flag	is	the	receive	data	register	status	flag.	When	this	read	only	flag	is	“0”,	
it	indicates	that	the	RXR	read	data	register	is	empty.	When	the	flag	is	“1”,	it	indicates	
that	 the	RXR	read	data	register	contains	new	data.	When	 the	contents	of	 the	shift	
register	are	transferred	to	the	RXR	register,	an	interrupt	is	generated	if	RIE=1	in	the	
UCR2	register.	If	one	or	more	errors	are	detected	in	the	received	word,	the	appropriate	
receive-related	flags	NF,	FERR,	and/or	PERR	are	set	within	the	same	clock	cycle.	
The	RXIF	flag	is	cleared	when	the	USR	register	is	read	with	RXIF	set,	followed	by	a	
read	from	the	RXR	register,	and	if	the	RXR	register	has	no	data	available.

Bit	1 TIDLE:	Transmission	idle
0:	Data	transmission	is	in	progress	(data	being	transmitted)
1:	No	data	transmission	is	in	progress	(transmitter	is	idle)

The	TIDLE	flag	 is	known	as	 the	 transmission	complete	flag.	When	this	 read	only	
flag	is	“0”,	it	 indicates	that	a	transmission	is	in	progress.	This	flag	will	be	set	to	“1”	
when	the	TXIF	flag	is	“1”	and	when	there	is	no	transmit	data	or	break	character	being	
transmitted.	When	TIDLE	is	equal	to	“1”,	the	TX	pin	becomes	idle	with	the	pin	state	
in	logic	high	condition.	The	TIDLE	flag	is	cleared	by	reading	the	USR	register	with	
TIDLE	set	and	then	writing	to	the	TXR	register.	The	flag	is	not	generated	when	a	data	
character	or	a	break	is	queued	and	ready	to	be	sent.

Bit	0 TXIF:	Transmit	TXR	data	register	status
0:	Character	is	not	transferred	to	the	transmit	shift	register
1:	Character	has	transferred	to	the	transmit	shift	register	(TXR	data	register	is	empty)

The	TXIF	flag	is	the	transmit	data	register	empty	flag.	When	this	read	only	flag	is	“0”,	
it	indicates	that	the	character	is	not	transferred	to	the	transmitter	shift	register.	When	
the	flag	is	“1”,	it	 indicates	that	the	transmitter	shift	register	has	received	a	character	
from	the	TXR	data	register.	The	TXIF	flag	 is	cleared	by	reading	the	UART	status	
register	(USR)	with	TXIF	set	and	then	writing	 to	 the	TXR	data	register.	Note	 that	
when	the	TXEN	bit	 is	set,	 the	TXIF	flag	bit	will	also	be	set	since	the	transmit	data	
register	is	not	yet	full.

UCR1 Register
The	UCR1	register	together	with	the	UCR2	register	are	the	two	UART	control	registers	that	are	used	
to	set	the	various	options	for	the	UART	function,	such	as	overall	on/off	control,	parity	control,	data	
transfer	bit	length	etc.	Further	explanation	on	each	of	the	bits	is	given	below:

Bit 7 6 5 4 3 2 1 0
Name UARTEN BNO PREN PRT STOPS TXBRK RX8 TX8
R/W R/W R/W R/W R/W R/W R/W R W
POR 0 0 0 0 0 0 x 0

“x” unknown
Bit	7 UARTEN:	UART	function	enable	control

0:	Disable	UART.	TX	and	RX	pins	are	as	I/O	pins
1:	Enable	UART.	TX	and	RX	pins	function	as	UART	pins

The	UARTEN	bit	 is	 the	UART	enable	bit.	When	this	bit	 is	equal	to	“0”,	the	UART	
will	be	disabled	and	the	RX	pin	as	well	as	the	TX	pin	will	be	as	General	Purpose	I/O	
pins.	When	the	bit	is	equal	to	“1”,	the	UART	will	be	enabled	and	the	TX	and	RX	pins	
will	function	as	defined	by	the	TXEN	and	RXEN	enable	control	bits.	

Rev. 1.40 6� �a��� �1� �01� Rev. 1.40 6� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

When	the	UART	is	disabled,	 it	will	empty	the	buffer	so	any	character	remaining	in	
the	buffer	will	be	discarded.	In	addition,	 the	value	of	 the	baud	rate	counter	will	be	
reset.	If	the	UART	is	disabled,	all	error	and	status	flags	will	be	reset.	Also	the	TXEN,	
RXEN,	TXBRK,	RXIF,	OERR,	FERR,	PERR	and	NF	bits	will	be	cleared,	while	the	
TIDLE,	TXIF	and	RIDLE	bits	will	be	set.	Other	control	bits	 in	UCR1,	UCR2	and	
BRG	registers	will	remain	unaffected.	If	the	UART	is	active	and	the	UARTEN	bit	is	
cleared,	all	pending	transmissions	and	receptions	will	be	terminated	and	the	module	
will	be	reset	as	defined	above.	When	the	UART	is	re-enabled,	 it	will	 restart	 in	 the	
same	configuration.

Bit	6 BNO:	Number	of	data	transfer	bits	selection
0:	8-bit	data	transfer
1:	9-bit	data	transfer

This	bit	 is	used	to	select	 the	data	 length	format,	which	can	have	a	choice	of	either	
8-bit	or	9-bit	format.	When	this	bit	is	equal	to	“1”,	a	9-bit	data	length	format	will	be	
selected.	If	the	bit	is	equal	to	“0”,	then	an	8-bit	data	length	format	will	be	selected.	If	
9-bit	data	length	format	is	selected,	then	bits	RX8	and	TX8	will	be	used	to	store	the	9th	
bit	of	the	received	and	transmitted	data	respectively.

Bit	5 PREN:	Parity	function	enable	control
0:	Parity	function	is	disabled
1:	Parity	function	is	enabled

This	is	the	parity	enable	bit.	When	this	bit	is	equal	to	“1”,	the	parity	function	will	be	
enabled.	If	the	bit	is	equal	to	“0”,	then	the	parity	function	will	be	disabled.

Bit	4 PRT:	Parity	type	selection	bit
0:	Even	parity	for	parity	generator
1:	Odd	parity	for	parity	generator

This	bit	is	the	parity	type	selection	bit.	When	this	bit	is	equal	to	“1”,	odd	parity	type	
will	be	selected.	If	the	bit	is	equal	to	“0”,	then	even	parity	type	will	be	selected.

Bit	3 STOPS:	Number	of	Stop	bits	selection
0:	One	stop	bit	format	is	used
1:	Two	stop	bits	format	is	used

This	bit	determines	if	one	or	two	stop	bits	are	to	be	used.	When	this	bit	is	equal	to	“1”,	
two	stop	bits	are	used.	If	this	bit	is	equal	to	“0”,	then	only	one	stop	bit	is	used.

Bit	2 TXBRK:	Transmit	break	character
0:	No	break	character	is	transmitted
1:	Break	characters	transmit

The	TXBRK	bit	 is	 the	Transmit	Break	Character	bit.	When	this	bit	 is	“0”,	 there	are	
no	break	characters	and	the	TX	pin	operates	normally.	When	the	bit	is	“1”,	there	are	
transmit	break	characters	and	the	transmitter	will	send	logic	zeros.	When	this	bit	 is	
equal	to	“1”,	after	the	buffered	data	has	been	transmitted,	the	transmitter	output	is	held	
low	for	a	minimum	of	a	13-bit	length	and	until	the	TXBRK	bit	is	reset.

Bit	1 RX8:	Receive	data	bit	8	for	9-bit	data	transfer	format	(read	only)
This	bit	is	only	used	if	9-bit	data	transfers	are	used,	in	which	case	this	bit	location	will	
store	the	9th	bit	of	the	received	data	known	as	RX8.	The	BNO	bit	is	used	to	determine	
whether	data	transfers	are	in	8-bit	or	9-bit	format.

Bit	0 TX8:	Transmit	data	bit	8	for	9-bit	data	transfer	format	(write	only)
This	bit	 is	only	used	if	9-bit	data	 transfers	are	used,	 in	which	case	this	bit	 location	
will	store	the	9th	bit	of	 the	transmitted	data	known	as	TX8.	The	BNO	bit	 is	used	to	
determine	whether	data	transfers	are	in	8-bit	or	9-bit	format.

Rev. 1.40 64 �a��� �1� �01� Rev. 1.40 65 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UCR2 Register
The	UCR2	register	 is	 the	second	of	the	two	UART	control	registers	and	serves	several	purposes.	
One	of	its	main	functions	is	to	control	the	basic	enable/disable	operation	of	the	UART	Transmitter	
and	Receiver	as	well	as	enabling	the	various	UART	interrupts.	The	register	also	serves	to	control	the	
baud	rate	speed,	receiver	wake-up	enable	and	the	address	detect	enable.	Further	explanation	on	each	
of	the	bits	is	given	below:

Bit 7 6 5 4 3 2 1 0
Name TXEN RXEN BRGH ADDEN WAKE RIE TIIE TEIE
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit	7 TXEN:	UART	Transmitter	enabled	control
0:	UART	transmitter	is	disabled
1:	UART	transmitter	is	enabled

The	bit	named	TXEN	is	the	Transmitter	Enable	Bit.	When	this	bit	is	equal	to	“0”,	the	
transmitter	will	be	disabled	with	any	pending	data	 transmissions	being	aborted.	 In	
addition	the	buffers	will	be	reset.	In	this	situation	the	TX	pin	will	be	as	GPIO	PORT.	
If	 the	TXEN	bit	 is	 equal	 to	 “1”	and	 the	UARTEN	bit	 is	 also	 equal	 to	 “1”,	 the	
transmitter	will	be	enabled	and	the	TX	pin	will	be	controlled	by	the	UART.	Clearing	
the	TXEN	bit	during	a	transmission	will	cause	the	data	transmission	to	be	aborted	and	
will	reset	the	transmitter.	If	this	situation	occurs,	the	TX	pin	will	be	as	GPIO	PORT.

Bit	6 RXEN:	UART	Receiver	enabled	control
0:	UART	receiver	is	disabled
1:	UART	receiver	is	enabled

The	bit	named	RXEN	is	the	Receiver	Enable	Bit.	When	this	bit	 is	equal	to	“0”,	the	
receiver	will	be	disabled	with	any	pending	data	receptions	being	aborted.	In	addition	
the	receive	buffers	will	be	reset.	In	this	situation	the	RX	pin	will	be	as	GPIO	PORT.	
If	the	RXEN	bit	is	equal	to	“1”	and	the	UARTEN	bit	is	also	equal	to	“1”,	the	receiver	
will	be	enabled	and	the	RX	pin	will	be	controlled	by	the	UART.	Clearing	the	RXEN	
bit	during	a	reception	will	cause	the	data	reception	to	be	aborted	and	will	reset	 the	
receiver.	If	this	situation	occurs,	the	RX	pin	will	be	as	GPIO	PORT.

Bit	5 BRGH:	Baud	Rate	speed	selection
0:	Low	speed	baud	rate
1:	High	speed	baud	rate

The	bit	named	BRGH	selects	the	high	or	low	speed	mode	of	the	Baud	Rate	Generator.	
This	bit,	 together	with	 the	value	placed	in	the	baud	rate	register	BRG,	controls	 the	
Baud	Rate	of	the	UART.	If	this	bit	is	equal	to	“1”,	the	high	speed	mode	is	selected.	If	
the	bit	is	equal	to	“0”,	the	low	speed	mode	is	selected.

Bit	4 ADDEN:	Address	detect	function	enable	control
0:	Address	detect	function	is	disabled
1:	Address	detect	function	is	enabled

The	bit	named	ADDEN	is	the	address	detect	function	enable	control	bit.	When	this	
bit	 is	equal	 to	“1”,	 the	address	detect	function	is	enabled.	When	it	occurs,	 if	 the	8th	
bit,	which	corresponds	to	RX7	if	BNO=0	or	the	9th	bit,	which	corresponds	to	RX8	if	
BNO=1,	has	a	value	of	“1”,	then	the	received	word	will	be	identified	as	an	address,	
rather	than	data.	If	the	corresponding	interrupt	is	enabled,	an	interrupt	request	will	be	
generated	each	time	the	received	word	has	the	address	bit	set,	which	is	the	8th	or	9th	
bit	depending	on	the	value	of	BNO.	If	the	address	bit	known	as	the	8th	or	9th	bit	of	the	
received	word	is	“0”	with	the	address	detect	function	being	enabled,	an	interrupt	will	
not	be	generated	and	the	received	data	will	be	discarded.

Bit	3 WAKE:	RX	pin	falling	edge	wake-up	function	enable	control
0:	RX	pin	wake-up	function	is	disabled
1:	RX	pin	wake-up	function	is	enabled

Rev. 1.40 64 �a��� �1� �01� Rev. 1.40 65 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

This	bit	enables	or	disables	the	receiver	wake-up	function.	If	this	bit	 is	equal	to	“1”	
and	the	MCU	is	in	Power-down	mode,	a	falling	edge	on	the	RX	input	pin	will	wake-up		
the	device.	If	this	bit	is	equal	to	“0”	and	the	MCU	is	in	Power-down	mode,	any	edge	
transitions	on	the	RX	pin	will	not	wake-up	the	device.

Bit	2 RIE:	Receiver	interrupt	enable	control
0:	receiver	related	interrupt	is	disabled
1:	receiver	related	interrupt	is	enabled

This	bit	enables	or	disables	the	receiver	interrupt.	If	this	bit	is	equal	to	“1”	and	when	
the	receiver	overrun	flag	OERR	or	receive	data	available	flag	RXIF	is	set,	the	UART	
interrupt	request	flag	will	be	set.	If	this	bit	is	equal	to	“0”,	the	UART	interrupt	request	
flag	will	not	be	influenced	by	the	condition	of	the	OERR	or	RXIF	flags.

Bit	1 TIIE:	Transmitter	Idle	interrupt	enable	control
0:	Transmitter	idle	interrupt	is	disabled
1:	Transmitter	idle	interrupt	is	enabled

This	bit	enables	or	disables	the	transmitter	idle	interrupt.	If	this	bit	is	equal	to	“1”	and	
when	the	transmitter	 idle	flag	TIDLE	is	set,	due	to	a	 transmitter	 idle	condition,	 the	
UART	interrupt	request	flag	will	be	set.	If	this	bit	is	equal	to	“0”,	the	UART	interrupt	
request	flag	will	not	be	influenced	by	the	condition	of	the	TIDLE	flag.

Bit	0 TEIE:	Transmitter	Empty	interrupt	enable	control
0:	Transmitter	empty	interrupt	is	disabled
1:	Transmitter	empty	interrupt	is	enabled

his	bit	enables	or	disables	the	transmitter	empty	interrupt.	If	this	bit	is	equal	to	“1”	and	
when	the	transmitter	empty	flag	TXIF	is	set,	due	to	a	transmitter	empty	condition,	the	
UART	interrupt	request	flag	will	be	set.	If	this	bit	is	equal	to	“0”,	the	UART	interrupt	
request	flag	will	not	be	influenced	by	the	condition	of	the	TXIF	flag.

TXR_RXR Register

Bit 7 6 5 4 3 2 1 0
Name TXRX� TXRX6 TXRX5 TXRX4 TXRX� TXRX� TXRX1 TXRX0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x” means unknown
Bit	7~0 TXRX7~TXRX0:	UART	Transmit/receive	data	bit

Baud Rate Generator
To	setup	the	speed	of	the	serial	data	communication,	the	UART	function	contains	its	own	dedicated	
baud	rate	generator.	The	baud	rate	 is	controlled	by	its	own	internal	free	running	8-bit	 timer,	 the	
period	of	which	is	determined	by	two	factors.	The	first	of	these	is	the	value	placed	in	the	baud	rate	
register	BRG	and	the	second	is	 the	value	of	 the	BRGH	bit	with	 the	control	register	UCR2.	The	
BRGH	bit	decides	if	the	baud	rate	generator	is	to	be	used	in	a	high	speed	mode	or	low	speed	mode,	
which	in	turn	determines	the	formula	that	is	used	to	calculate	the	baud	rate.	The	value	N	in	the	BRG	
register	which	is	used	in	the	following	baud	rate	calculation	formula	determines	the	division	factor.	
Note	that	N	is	the	decimal	value	placed	in	the	BRG	register	and	has	a	range	of	between	0	and	255.

UCR2 BRGH Bit 0 1
Baud Rate (BR) fSYS / [64 (N+1)] fSYS / [16 (N+1)]

By	programming	the	BRGH	bit	which	allows	selection	of	the	related	formula	and	programming	the	
required	value	in	the	BRG	register,	the	required	baud	rate	can	be	setup.	Note	that	because	the	actual	
baud	rate	is	determined	using	a	discrete	value,	N,	placed	in	the	BRG	register,	there	will	be	an	error	
associated	between	the	actual	and	requested	value.	The	following	example	shows	how	the	BRG	
register	value	N	and	the	error	value	can	be	calculated.

Rev. 1.40 66 �a��� �1� �01� Rev. 1.40 6� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Calculating the baud rate and error values
For	a	clock	frequency	of	4	MHz,	and	with	BRGH	set	to	“0”	determine	the	BRG	register	value	N,	the	
actual	baud	rate	and	the	error	value	for	a	desired	baud	rate	of	4800.	

From	the	above	table	the	desired	baud	rate	BR	=	fSYS	/	[64	(N+1)]

Re-arranging	this	equation	gives	N	=	[fSYS	/	(BR×64)	/	64]	-	1

Giving	a	value	for	N	=	[(8000000	/	9600)	/	64]	-	1	=	12.0208

To	obtain	the	closest	value,	a	decimal	value	of	12	should	be	placed	into	the	BRG	register.	This	gives	
an	actual	or	calculated	baud	rate	value	of	BR	=	4000000	/	[64	(12	+	1)]	=	4808

Therefore	the	error	is	equal	to	(4808	-	4800)	/	4800	=	0.16%

The	following	tables	show	actual	values	of	baud	rate	and	error	values	for	the	two	values	of	BRGH.

Baud
Rate

K/BPS

Baud Rates for BRGH=0
fCLKI=4MHz fCLKI=3.579545MHz fCLKI=7.159MHz

BRG Kbaud Error(%) BRG Kbaud Error(%) BRG Kbaud Error(%)
0.� �0� 0.�00 0.16 185 0.�00 0.00 — — —
1.� 51 1.�0� 0.16 46 1.190 -0.8� 9� 1.�0� 0.��
�.4 �5 �.404 0.16 �� �.4�� 1.�� 46 �.�80 -0.8�
4.8 1� 4.808 0.16 11 4.661 -�.90 �� 4.86� 1.��
9.6 6 8.9�9 -6.99 5 9.��1 -�.90 11 9.��� -�.90

19.� � �0.8�� 8.51 � 18.64� -�.90 5 18.64� -�.90
�8.4 — — — — — — � ��.�86 -�.90
5�.6 0 6�.500 8.51 0 55.9�0 -�.90 1 55.9�0 -�.90
115.� — — — — — — 0 111.859 -�.90

Baud Rates and Error Values for BRGH = 0

Baud
Rate

K/BPS

Baud Rates for BRGH=1

fCLKI=4MHz fCLKI=3.579545MHz fCLKI=7.159MHz

BRG Kbaud Error(%) BRG Kbaud Error(%) BRG Kbaud Error(%)
0.� — — — — — — — — —
1.� �0� 1.�0� 0.16 185 1.�0� 0.�� — — —
�.4 10� �.404 0.16 9� �.406 0.�� 185 �.406 0.��
4.8 51 4.808 0.16 46 4.�6 -0.8� 9� 4.811 0.��
9.6 �5 9.615 0.16 �� 9.��� 1.�� 46 9.5�0 -0.8�

19.� 1� 19.��1 0.16 11 18.64� -�.90 �� 19.454 1.��
�8.4 6 �5.�14 -6.99 5 ��.�86 -�.90 11 ��.�86 -�.90
5�.6 � 6�.5 8.51 � 55.9�0 -�.90 � 55.9�0 -�.90
115.� 1 1�5 8.51 1 111.86 -�.90 � 111.86 -�.90
�50 0 �50 0 — — — — — —

Baud Rates and Error Values for BRGH = 1

Rev. 1.40 66 �a��� �1� �01� Rev. 1.40 6� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

BRG Register

Bit 7 6 5 4 3 2 1 0
Name BRG� BRG6 BRG5 BRG4 BRG� BRG� BRG1 BRG0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR x x x x x x x x

“x” means unknown
Bit	7~0 BRG7~BRG0:	Baud	Rate	values

By	programming	 the	BRGH	bit	 in	UCR2	Register	which	allows	selection	of	 the	
related	formula	described	above	and	programming	 the	required	value	 in	 the	BRG	
register,	the	required	baud	rate	can	be	setup.
Note:	Baud	rate=	fSYS/[64*(N+1)]	if	BRGH=0

Baud	rate=	fSYS/[16*(N+1)]	if	BRGH=1

UART Setup and Control
For	data	transfer,	the	UART	function	utilizes	a	non-return-to-zero,	more	commonly	known	as	NRZ,	
format.	This	is	composed	of	one	start	bit,	eight	or	nine	data	bits,	and	one	or	two	stop	bits.	Parity	
is	supported	by	the	UART	hardware,	and	can	be	setup	to	be	even,	odd	or	no	parity.	For	the	most	
common	data	format,	8	data	bits	along	with	no	parity	and	one	stop	bit,	denoted	as	8,	N,	1,	is	used	
as	the	default	setting,	which	is	the	setting	at	power-on.	The	number	of	data	bits	and	stop	bits,	along	
with	the	parity,	are	setup	by	programming	the	corresponding	BNO,	PRT,	PREN,	and	STOPS	bits	
in	 the	UCR1	register.	The	baud	rate	used	to	transmit	and	receive	data	 is	setup	using	the	internal	
8-bit	baud	rate	generator,	while	the	data	is	transmitted	and	received	LSB	first.	Although	the	UART	
transmitter	and	receiver	are	functionally	independent,	they	both	use	the	same	data	format	and	baud	
rate.	In	all	cases	stop	bits	will	be	used	for	data	transmission.

•	 Enabling/disabling	the	UART	interface
The	basic	on/off	function	of	the	internal	UART	function	is	controlled	using	the	UARTEN	bit	in	
the	UCR1	register.	As	the	UART	transmit	and	receive	pins,	TX	and	RX	respectively,	are	pin-
shared	with	normal	I/O	pins.	One	of	the	basic	functions	of	the	UARTEN	control	bit	is	to	control	
the	UART	function	of	these	two	pins.	If	the	UARTEN,	TXEN	and	RXEN	bits	are	set,	then	these	
two	I/O	pins	will	be	setup	as	a	TX	output	pin	and	an	RX	input	pin	respectively,	in	effect	disabling	
the	normal	I/O	pin	function.	If	no	data	is	being	transmitted	on	the	TX	pin	then	it	will	default	to	a	
logic	high	value.
Clearing	the	UARTEN	bit	will	disable	the	TX	and	RX	pins	and	allow	these	two	pins	to	be	used	
as	normal	I/O	pins.	When	the	UART	function	is	disabled	the	buffer	will	be	reset	 to	an	empty	
condition,	at	the	same	time	discarding	any	remaining	residual	data.	Disabling	the	UART	will	also	
reset	 the	error	and	status	flags	with	bits	TXEN,	RXEN,	TXBRK,	RXIF,	OERR,	FERR,	PERR	
and	NF	being	cleared	while	bits	TIDLE,	TXIF	and	RIDLE	will	be	set.	The	remaining	control	bits	
in	the	UCR1,	UCR2	and	BRG	registers	will	remain	unaffected.	If	the	UARTEN	bit	in	the	UCR1	
register	is	cleared	while	the	UART	is	active,	then	all	pending	transmissions	and	receptions	will	
be	immediately	suspended	and	the	UART	will	be	reset	 to	a	condition	as	defined	above.	If	 the	
UART	is	then	subsequently	re-enabled,	it	will	restart	again	in	the	same	configuration.

Rev. 1.40 68 �a��� �1� �01� Rev. 1.40 69 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

•	 Data,	parity	and	stop	bit	selection
The	format	of	the	data	to	be	transferred	is	composed	of	various	factors	such	as	data	bit	length,	
parity	on/off,	parity	type,	address	bits	and	the	number	of	stop	bits.	These	factors	are	determined	
by	the	setup	of	various	bits	within	the	UCR1	register.	The	BNO	bit	controls	the	number	of	data	
bits	which	can	be	set	to	either	8	or	9,	the	PRT	bit	controls	the	choice	of	odd	or	even	parity,	the	
PREN	bit	controls	the	parity	on/off	function	and	the	STOPS	bit	decides	whether	one	or	two	stop	
bits	are	to	be	used.	The	following	table	shows	various	formats	for	data	transmission.	The	address	
bit	identifies	the	frame	as	an	address	character.	The	number	of	stop	bits,	which	can	be	either	one	
or	two,	is	independent	of	the	data	length.

Start Bit Data Bits Address Bits Parity Bits Stop Bit
Example of 8-bit Data Formats

1 8 0 0 1
1 � 0 1 1
1 � 1 0 1

Example of 9-bit Data Formats
1 9 0 0 1
1 8 0 1 1
1 8 1 0 1

Transmitter Receiver Data Format

The	following	diagram	shows	 the	 transmit	and	receive	waveforms	for	both	8-bit	and	9-bit	data	
formats.

� �

� � �
� � � � �
� � �

� � � � �
 � � � �

� � � � � � � � � � � � � � � � �

� �

� � �
� � � � �
� � �

� � � � �
 � � � �

� � � � � � � � � � � � � � � � �

� � � � 	

UART Transmitter
Data	word	lengths	of	either	8	or	9	bits	can	be	selected	by	programming	the	BNO	bit	in	the	UCR1	
register.	When	BNO	bit	is	set,	the	word	length	will	be	set	to	9	bits.	In	this	case	the	9th	bit,	which	
is	the	MSB,	needs	to	be	stored	in	the	TX8	bit	in	the	UCR1	register.	At	the	transmitter	core	lies	the	
Transmitter	Shift	Register,	more	commonly	known	as	 the	TSR,	whose	data	 is	obtained	from	the	
transmit	data	register,	which	is	known	as	 the	TXR	register.	The	data	 to	be	 transmitted	is	 loaded	
into	this	TXR	register	by	the	application	program.	The	TSR	register	is	not	written	to	with	new	data	
until	the	stop	bit	from	the	previous	transmission	has	been	sent	out.	As	soon	as	this	stop	bit	has	been	
transmitted,	the	TSR	can	then	be	loaded	with	new	data	from	the	TXR	register,	 if	it	 is	available.	It	
should	be	noted	that	the	TSR	register,	unlike	many	other	registers,	 is	not	directly	mapped	into	the	
Data	Memory	area	and	as	such	 is	not	available	 to	 the	application	program	for	direct	 read/write	
operations.	An	actual	transmission	of	data	will	normally	be	enabled	when	the	TXEN	bit	is	set,	but	
the	data	will	not	be	transmitted	until	the	TXR	register	has	been	loaded	with	data	and	the	baud	rate	
generator	has	defined	a	shift	clock	source.	However,	the	transmission	can	also	be	initiated	by	first	
loading	data	into	the	TXR	register,	after	which	the	TXEN	bit	can	be	set.	When	a	transmission	of	
data	begins,	the	TSR	is	normally	empty,	in	which	case	a	transfer	to	the	TXR	register	will	result	in	
an	immediate	transfer	to	the	TSR.	If	during	a	transmission	the	TXEN	bit	is	cleared,	the	transmission	
will	 immediately	cease	and	 the	 transmitter	will	be	reset.	The	TX	output	pin	will	 then	return	 to	
having	a	normal	general	purpose	I/O	pin	function.

Rev. 1.40 68 �a��� �1� �01� Rev. 1.40 69 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

•	 Transmitting	data
When	the	UART	is	transmitting	data,	 the	data	is	shifted	on	the	TX	pin	from	the	shift	register,	
with	the	least	significant	bit	LSB	first.	In	 the	transmit	mode,	 the	TXR	register	forms	a	buffer	
between	the	internal	bus	and	the	transmitter	shift	register.	It	should	be	noted	that	 if	9-bit	data	
format	has	been	selected,	then	the	MSB	will	be	taken	from	the	TX8n	bit	in	the	UCR1	register.	
The	steps	to	initiate	a	data	transfer	can	be	summarized	as	follows:
	♦ Make	the	correct	selection	of	the	BNO,	PRT,	PREN	and	STOPS	bits	to	define	the	required	
word	length,	parity	type	and	number	of	stop	bits.

	♦ Setup	the	BRG	register	to	select	the	desired	baud	rate.
	♦ Set	the	TXEN	bit	to	ensure	that	the	UART	transmitter	is	enabled	and	the	TX	pin	is	used	as	a	
UART	transmitter	pin.

	♦ Access	the	USR	register	and	write	the	data	that	is	to	be	transmitted	into	the	TXR	register.	Note	
that	this	step	will	clear	the	TXIF	bit.

This	sequence	of	events	can	now	be	repeated	to	send	additional	data.	 It	should	be	noted	that	
when	TXIF=0,	data	will	be	inhibited	from	being	written	to	the	TXR	register.	Clearing	the	TXIF	
flag	is	always	achieved	using	the	following	software	sequence:
1.	A	USR	register	access
2.	A	TXR	register	write	execution
The	read-only	TXIF	flag	is	set	by	the	UART	hardware	and	if	set	indicates	that	the	TXR	register	
is	empty	and	that	other	data	can	now	be	written	into	the	TXR	register	without	overwriting	the	
previous	data.	If	the	TEIE	bit	is	set,	then	the	TXIF	flag	will	generate	an	interrupt.	During	a	data	
transmission,	a	write	instruction	to	the	TXR	register	will	place	the	data	into	the	TXR	register,	
which	will	be	copied	to	the	shift	register	at	the	end	of	the	present	transmission.	When	there	is	no	
data	transmission	in	progress,	a	write	instruction	to	the	TXR	register	will	place	the	data	directly	
into	 the	shift	 register,	 resulting	 in	 the	commencement	of	data	 transmission,	and	the	TXIF	bit	
being	immediately	set.	When	a	frame	transmission	is	complete,	which	happens	after	stop	bits	
are	sent	or	after	the	break	frame,	the	TIDLE	bit	will	be	set.	To	clear	the	TIDLE	bit	the	following	
software	sequence	is	used:
1.	A	USR	register	access
2.	A	TXR	register	write	execution
Note	that	both	the	TXIF	and	TIDLE	bits	are	cleared	by	the	same	software	sequence.

•	 Transmit	break
If	the	TXBRK	bit	is	set,	 then	the	break	characters	will	be	sent	on	the	next	transmission.	Break	
character	 transmission	consists	of	a	start	bit,	followed	by	13xN	“0”	bits,	where	N=1,	2,	etc.	 if	
a	break	character	 is	to	be	transmitted,	 then	the	TXBRK	bit	must	be	first	set	by	the	application	
program	and	 then	cleared	 to	generate	 the	stop	bits.	Transmitting	a	break	character	will	not	
generate	a	transmit	 interrupt.	Note	that	a	break	condition	length	is	at	 least	13	bits	 long.	If	 the	
TXBRK	bit	is	continually	kept	at	a	logic	high	level,	then	the	transmitter	circuitry	will	transmit	
continuous	break	characters.	After	 the	application	program	has	cleared	 the	TXBRK	bit,	 the	
transmitter	will	finish	transmitting	the	last	break	character	and	subsequently	send	out	one	or	two	
stop	bits.	The	automatic	logic	high	at	the	end	of	the	last	break	character	will	ensure	that	the	start	
bit	of	the	next	frame	is	recognized.

Rev. 1.40 �0 �a��� �1� �01� Rev. 1.40 �1 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

UART Receiver
The	UART	is	capable	of	receiving	word	lengths	of	either	8	or	9	bits	can	be	selected	by	programming	
the	BNO	bit	 in	the	UCR1	register.	When	BNO	bit	 is	set,	 the	word	length	will	be	set	 to	9	bits.	In	
this	case	the	9th	bit,	which	is	the	MSB,	will	be	stored	in	the	RX8	bit	in	the	UCR1	register.	At	the	
receiver	core	lines	the	Receiver	Shift	Register	more	commonly	known	as	the	RSR.	The	data	which	
is	received	on	the	RX	external	input	pin	is	sent	to	the	data	recovery	block.	The	data	recovery	block	
operating	speed	is	16	times	that	of	the	baud	rate,	while	the	main	receive	serial	shifter	operates	at	the	
baud	rate.	After	the	RX	pin	is	sampled	for	the	stop	bit,	the	received	data	in	RSR	is	transferred	to	the	
receive	data	register,	if	the	register	is	empty.	The	data	which	is	received	on	the	external	RX	input	pin	
is	sampled	three	times	by	a	majority	detect	circuit	to	determine	the	logic	level	that	has	been	placed	
onto	the	RX	pin.	It	should	be	noted	that	the	RSR	register,	unlike	many	other	registers,	is	not	directly	
mapped	into	the	Data	Memory	area	and	as	such	is	not	available	to	the	application	program	for	direct	
read/write	operations.

•	 Receiving	data
When	the	UART	receiver	is	receiving	data,	the	data	is	serially	shifted	in	on	the	external	RX	input	
pin	to	the	shift	register,	with	the	least	significant	bit	LSB	first.	The	RXR	register	is	a	two	byte	
deep	FIFO	data	buffer,	where	two	bytes	can	be	held	in	the	FIFO	while	the	third	byte	can	continue	
to	be	received.	Note	that	 the	application	program	must	ensure	that	 the	data	is	read	from	RXR	
before	the	third	byte	has	been	completely	shifted	in,	otherwise	the	third	byte	will	be	discarded	
and	an	overrun	error	OERR	will	be	subsequently	indicated.	The	steps	to	initiate	a	data	transfer	
can	be	summarized	as	follows:
	♦ Make	the	correct	selection	of	the	BNO,	PRT,	PREN	and	STOPS	bits	to	define	the	required	
word	length,	parity	type	and	number	of	stop	bits.

	♦ Setup	the	BRG	register	to	select	the	desired	baud	rate.
	♦ Set	the	RXEN	bit	to	ensure	that	the	UART	receiver	is	enabled	and	the	RX	pin	is	used	as	a	
UART	receiver	pin.

At	this	point	the	receiver	will	be	enabled	which	will	begin	to	look	for	a	start	bit.
When	a	character	is	received,	the	following	sequence	of	events	will	occur:
	♦ The	RXIF	bit	in	the	USR	register	will	be	set	then	RXR	register	has	data	available,	at	least	
three	more	character	can	be	read.

	♦ When	the	contents	of	the	shift	register	have	been	transferred	to	the	RXR	register	and	if	the	
RIE	bit	is	set,	then	an	interrupt	will	be	generated.

	♦ If	during	reception,	a	frame	error,	noise	error,	parity	error	or	an	overrun	error	has	been	
detected,	and	then	the	error	flags	can	be	set.

The	RXIF	bit	can	be	cleared	using	the	following	software	sequence:
1.	A	USR	register	access
2.	A	RXR	register	read	execution

•	 Receiving	break
Any	break	character	received	by	the	UART	will	be	managed	as	a	framing	error.	The	receiver	
will	count	and	expect	a	certain	number	of	bit	times	as	specified	by	the	values	programmed	into	
the	BNO	and	STOPS	bits.	If	 the	break	is	much	longer	than	13	bit	 times,	 the	reception	will	be	
considered	as	complete	after	the	number	of	bit	times	specified	by	BNO	and	STOPS.	The	RXIF	
bit	is	set,	FERR	is	set,	zeros	are	loaded	into	the	receive	data	register,	interrupts	are	generated	if	
appropriate	and	the	RIDLE	bit	is	set.	If	a	long	break	signal	has	been	detected	and	the	receiver	has	
received	a	start	bit,	the	data	bits	and	the	invalid	stop	bit,	which	sets	the	FERR	flag,	the	receiver	
must	wait	for	a	valid	stop	bit	before	looking	for	the	next	start	bit.	The	receiver	will	not	make	
the	assumption	that	the	break	condition	on	the	line	is	 the	next	start	bit.	A	break	is	regarded	as	
a	character	that	contains	only	zeros	with	the	FERR	flag	set.	The	break	character	will	be	loaded	

Rev. 1.40 �0 �a��� �1� �01� Rev. 1.40 �1 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

into	the	buffer	and	no	further	data	will	be	received	until	stop	bits	are	received.	It	should	be	noted	
that	the	RIDLE	read	only	flag	will	go	high	when	the	stop	bits	have	not	yet	been	received.	The	
reception	of	a	break	character	on	the	UART	registers	will	result	in	the	following:
	♦ The	framing	error	flag,	FERR,	will	be	set.
	♦ The	receive	data	register,	RXR,	will	be	cleared.
	♦ The	OERR,	NF,	PERR,	RIDLE	or	RXIF	flags	will	possibly	be	set.

•	 Idle	status
When	the	receiver	is	reading	data,	which	means	it	will	be	in	between	the	detection	of	a	start	bit	
and	the	reading	of	a	stop	bit,	the	receiver	status	flag	in	the	USR	register,	otherwise	known	as	the	
RIDLE	flag,	will	have	a	zero	value.	In	between	the	reception	of	a	stop	bit	and	the	detection	of	
the	next	start	bit,	the	RIDLE	flag	will	have	a	high	value,	which	indicates	the	receiver	is	in	an	idle	
condition.

•	 Receiver	interrupt
The	read	only	receive	interrupt	flag	RXIF	in	the	USR	register	 is	set	by	an	edge	generated	by	
the	receiver.	An	interrupt	 is	generated	if	RIE=1,	when	a	word	is	 transferred	from	the	Receive	
Shift	Register,	RSR,	to	the	Receive	Data	Register,	RXR.	An	overrun	error	can	also	generate	an	
interrupt	if	RIE=1.

Managing Receiver Errors
Several	types	of	reception	errors	can	occur	within	the	UART	module,	the	following	section	describes	
the	various	types	and	how	they	are	managed	by	the	UART.

•	 Overrun	Error	–	OERR
The	RXR	register	is	composed	of	a	two	byte	deep	FIFO	data	buffer,	where	two	bytes	can	be	held	
in	the	FIFO	register,	while	a	third	byte	can	continue	to	be	received.	Before	the	third	byte	has	been	
entirely	shifted	in,	the	data	should	be	read	from	the	RXR	register.	If	this	is	not	done,	the	overrun	
error	flag	OERR	will	be	consequently	indicated.
In	the	event	of	an	overrun	error	occurring,	the	following	will	happen:
	♦ The	OERR	flag	in	the	USR	register	will	be	set.
	♦ The	RXR	contents	will	not	be	lost.
	♦ The	shift	register	will	be	overwritten.
	♦ An	interrupt	will	be	generated	if	the	RIE	bit	is	set.
The	OERR	flag	can	be	cleared	by	an	access	to	the	USR	register	followed	by	a	read	to	the	RXR	
register.

•	 Noise	Error	–	NF	Flag
Over-sampling	is	used	for	data	recovery	to	identify	valid	incoming	data	and	noise.	If	noise	is	
detected	within	a	frame,	the	following	will	occur:
	♦ The	read	only	noise	flag,	NF,	in	the	USR	register	will	be	set	on	the	rising	edge	of	the	RXIF	bit.
	♦ Data	will	be	transferred	from	the	shift	register	to	the	RXR	register.
	♦ No	interrupt	will	be	generated.	However	this	bit	rises	at	the	same	time	as	the	RXIF	bit	which	
itself	generates	an	interrupt.

Note	that	the	NF	flag	is	reset	by	a	USR	register	read	operation	followed	by	an	RXR	register	read	
operation.

•	 Framing	Error	–	FERR
The	read	only	framing	error	flag,	FERR,	in	the	USR	register,	is	set	if	a	zero	is	detected	instead	of	
stop	bits.	If	two	stop	bits	are	selected,	both	stop	bits	must	be	high.	Otherwise	the	FERR	flag	will	
be	set.	The	FERR	flag	is	buffered	along	with	the	received	data	and	is	cleared	in	any	reset.

Rev. 1.40 �� �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

•	 Parity	Error	–	PERR
The	read	only	parity	error	flag,	PERR,	in	the	USR	register,	 is	set	 if	 the	parity	of	 the	received	
word	is	incorrect.	This	error	flag	is	only	applicable	if	the	parity	function	is	enabled,	PREN=1,	and	
if	the	parity	type,	odd	or	even,			is	selected.	The	read	only	PERR	flag	is	buffered	along	with	the	
received	data	bytes.	It	is	cleared	on	any	reset,	it	should	be	noted	that	the	FERR	and	PERR	flags	
are	buffered	along	with	the	corresponding	word	and	should	be	read	before	reading	the	data	word.

UART Interrupt Structure
Several	individual	UART	conditions	can	generate	a	UART	interrupt.	When	these	conditions	exist,	
a	 low	pulse	will	be	generated	to	get	 the	attention	of	 the	microcontroller.	These	conditions	are	a	
transmitter	data	register	empty,	 transmitter	 idle,	receiver	data	available,	receiver	overrun,	address	
detect	and	an	RX	pin	wake-up.	When	any	of	 these	conditions	are	created,	 if	 its	corresponding	
interrupt	control	 is	enabled	and	the	stack	is	not	full,	 the	program	will	 jump	to	 its	corresponding	
interrupt	vector	where	 it	can	be	serviced	before	 returning	 to	 the	main	program.	Four	of	 these	
conditions	have	the	corresponding	USR	register	flags	which	will	generate	a	UART	interrupt	if	 its	
associated	 interrupt	enable	control	bit	 in	 the	UCR2	register	 is	set.	The	 two	transmitter	 interrupt	
conditions	have	 their	own	corresponding	enable	control	bits,	while	 the	 two	 receiver	 interrupt	
conditions	have	a	shared	enable	control	bit.	These	enable	bits	can	be	used	to	mask	out	individual	
UART	interrupt	sources.

The	address	detect	condition,	which	is	also	a	UART	interrupt	source,	does	not	have	an	associated	
flag,	but	will	generate	a	UART	interrupt	when	an	address	detect	condition	occurs	 if	 its	function	
is	enabled	by	setting	the	ADDEN	bit	 in	 the	UCR2	register.	An	RX	pin	wake-up,	which	is	also	a	
UART	interrupt	source,	does	not	have	an	associated	flag,	but	will	generate	a	UART	interrupt	 if	
the	microcontroller	is	woken	up	by	a	falling	edge	on	the	RX	pin,	if	the	WAKE	and	RIE	bits	in	the	
UCR2	register	are	set.	Note	that	in	the	event	of	an	RX	wake-up	interrupt	occurring,	there	will	be	a	
certain	period	of	delay,	commonly	known	as	the	System	Start-up	Time,	for	the	oscillator	to	restart	
and	stabilize	before	the	system	resumes	normal	operation.

Note	 that	 the	USR	register	 flags	are	 read	only	and	cannot	be	cleared	or	set	by	 the	application	
program,	neither	will	 they	be	cleared	when	 the	program	jumps	 to	 the	corresponding	 interrupt	
servicing	 routine,	 as	 is	 the	 case	 for	 some	of	 the	other	 interrupts.	The	 flags	will	 be	 cleared	
automatically	when	certain	actions	are	 taken	by	the	UART,	the	details	of	which	are	given	in	the	
UART	register	section.	The	overall	UART	interrupt	can	be	disabled	or	enabled	by	 the	 related	
interrupt	enable	control	bits	in	the	interrupt	control	registers	of	the	microcontroller	to	decide	whether	
the	interrupt	requested	by	the	UART	module	is	masked	out	or	allowed.

T�ansmitte� Empty
Flag TXIF

USR Registe�

T�ansmitte� Idle
Flag TIDLE

Re�eive� Ove��un
Flag OERR

Re�eive� Data
Available RXIF

ADDEN

RX Pin
Wake-up

WAKE 0
1

0
1

0
1

RX� if BNO=0
RX8 if BNO=1UCR� Registe�

OR RIE 0
1

TIIE 0
1

TEIE 0
1

UART Inte��upt
Request Flag

UARTF

UCR� Registe�

UARTE

INTC1
Registe�

E�I

INTC0
Registe�

UART Interrupt Scheme

Rev. 1.40 �� �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Address Detect Mode
Setting	the	Address	Detect	function	enable	control	bit,	ADDEN,	in	the	UCR2	register,	enables	this	
special	function.	If	this	bit	is	set	to	1,	then	an	additional	qualifier	will	be	placed	on	the	generation	
of	a	Receiver	Data	Available	 interrupt,	which	 is	requested	by	the	RXIF	flag.	 If	 the	ADDEN	bit	
is	equal	 to	1,	 then	when	the	data	 is	available,	an	 interrupt	will	only	be	generated,	 if	 the	highest	
received	bit	has	a	high	value.	Note	that	the	related	interrupt	enable	control	bit	and	the	EMI	bit	of	the	
microcontroller	must	also	be	enabled	for	correct	interrupt	generation.	The	highest	address	bit	is	the	
9th	bit	if	the	bit	BNO=1	or	the	8th	bit	if	the	bit	BNO=0.	If	the	highest	bit	is	high,	then	the	received	
word	will	be	defined	as	an	address	rather	than	data.	A	Data	Available	interrupt	will	be	generated	
every	time	the	last	bit	of	the	received	word	is	set.	If	the	ADDEN	bit	is	equal	to	0,	then	a	Receive	
Data	Available	interrupt	will	be	generated	each	time	the	RXIF	flag	is	set,	irrespective	of	the	data	last	
bit	status.	The	address	detection	and	parity	functions	are	mutually	exclusive	functions.	Therefore,	if	
the	address	detect	function	is	enabled,	then	to	ensure	correct	operation,	the	parity	function	should	be	
disabled	by	resetting	the	parity	function	enable	bit	PREN	to	zero.

ADDEN Bit 9 if BNO=1,
Bit 8 if BNO=0

UART Interrupt
Generated

0
0 √
1 √

1
0 ×
1 √

ADDEN Bit Function

UART Power Down Mode and Wake-up
When	the	MCU	is	in	the	Power	Down	Mode,	the	UART	will	cease	to	function.	When	the	device	
enters	the	Power	Down	Mode,	all	clock	sources	to	the	module	are	shutdown.	If	the	MCU	enters	the	
Power	Down	Mode	while	a	transmission	is	still	 in	progress,	 then	the	transmission	will	be	paused	
until	the	UART	clock	source	derived	from	the	microcontroller	is	activated.	In	a	similar	way,	if	the	
MCU	enters	the	Power	Down	Mode	while	receiving	data,	then	the	reception	of	data	will	likewise	be	
paused.	When	the	MCU	enters	the	Power	Down	Mode,	note	that	the	USR,	UCR1,	UCR2,	transmit	
and	receive	registers,	as	well	as	the	BRG	register	will	not	be	affected.	It	is	recommended	to	make	
sure	first	that	the	UART	data	transmission	or	reception	has	been	finished	before	the	microcontroller	
enters	the	Power	Down	mode.

The	UART	function	contains	a	receiver	RX	pin	wake-up	function,	which	 is	enabled	or	disabled	
by	the	WAKE	bit	in	the	UCR2	register.	If	this	bit,	along	with	the	UART	enable	bit,	UARTEN,	the	
receiver	enable	bit,	RXEN	and	the	receiver	interrupt	bit,	RIE,	are	all	set	before	the	MCU	enters	
the	Power	Down	Mode,	then	a	falling	edge	on	the	RX	pin	will	wake	up	the	MCU	from	the	Power	
Down	Mode.	Note	 that	as	 it	 takes	certain	system	clock	cycles	after	a	wake-up,	before	normal	
microcontroller	operation	resumes,	any	data	received	during	this	time	on	the	RX	pin	will	be	ignored.

For	a	UART	wake-up	interrupt	to	occur,	in	addition	to	the	bits	for	the	wake-up	being	set,	the	global	
interrupt	enable	bit,	EMI,	and	the	UART	interrupt	enable	bit,	UARTE,	must	also	be	set.	If	these	two	
bits	are	not	set	then	only	a	wake	up	event	will	occur	and	no	interrupt	will	be	generated.	Note	also	
that	as	it	takes	certain	system	clock	cycles	after	a	wake-up	before	normal	microcontroller	resumes,	
the	UART	interrupt	will	not	be	generated	until	after	this	time	has	elapsed.

Rev. 1.40 �4 �a��� �1� �01� Rev. 1.40 �5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Interrupts
Interrupts	are	an	important	part	of	any	microcontroller	system.	When	an	external	event	or	an	internal	
function	such	as	a	Timer/Event	Counter	 requires	microcontroller	attention,	 their	corresponding	
interrupt	will	enforce	a	temporary	suspension	of	the	main	program	allowing	the	microcontroller	to	
direct	attention	to	their	respective	needs.

The	series	of	devices	contain	only	one	external	 interrupt	and	multiple	 internal	 interrupts.	The	
external	 interrupts	are	controlled	by	 the	action	of	 the	external	 interrupt	pin,	while	 the	 internal	
interrupt	is	controlled	by	the	Timer/Event	Counter.	

Interrupt Register
Overall	interrupt	control,	which	means	interrupt	enabling	and	request	flag	setting,	is	controlled	by	
using	the	registers,	INTC0	and	INTC1.	By	controlling	the	appropriate	enable	bits	in	the	register	each	
individual	 interrupt	can	be	enabled	or	disabled.	Also	when	an	interrupt	occurs,	 the	corresponding	
request	flag	will	be	set	by	the	microcontroller.	The	global	enable	flag	cleared	to	zero	will	disable	all	
interrupts.

Function Enable Bit Request Flag
Global E�I —
INT Pin INTE INTF
Time� 0 T0E T0F
Time� 1 T1E T1F

I�C IICE IICF
UART UARTE UARTF

Note:	The	UART	Interrupt	is	only	for	the	HT48R008	device.

INTC0 Register

Bit 7 6 5 4 3 2 1 0
Name — T1F T0F INTF T1E T0E INTE E�I
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 0 0 0 0 0 0

Bit	7	 Unimplemented,	read	as	"0"
Bit	6 T1F:	Timer/Event	Counter	1	request	flag

0:	No	request
1:	Interrupt	request

Bit	5 T0F:	Timer/Event	Counter	0	request	flag
0:	No	request
1:	Interrupt	request

Bit	4 INTF:	INT	pin	interrupt	request	flag
0:	No	request
1:	Interrupt	request

Bit	3	 Unimplemented,	read	as	“0”
Bit	2 T0E:	Timer/Event	Counter	0	interrupt	control

0:	Disable
1:	Enable

Bit	1 INTE:	INT	interrupt	control
0:	Disable
1:	Enable

Bit	0 EMI:	Global	interrupt	control
0:	Disable
1:	Enable

Rev. 1.40 �4 �a��� �1� �01� Rev. 1.40 �5 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

INTC1 Register
• HT48R004

Bit 7 6 5 4 3 2 1 0
Name — — — IICF — — — IICE
R/W — — — R/W — — — R/W
POR — — — 0 — — — 0

Bit	7~5	 Unimplemented,	read	as	"0"
Bit	4 IICF:	I2C	interrupt	request	flag

0:	No	request
1:	Interrupt	request

Bit	3~1	 Unimplemented,	read	as	“0”	
Bit	0 IICE:	I2C	interrupt	control

0:	Disable
1:	Enable

• HT48R008

Bit 7 6 5 4 3 2 1 0
Name — — UARTF IICF — — UARTE IICE
R/W — — R/W R/W — — R/W R/W
POR — — 0 0 — — 0 0

Bit	7~6	 Unimplemented,	read	as	"0"
Bit	5 UARTF:	UART	request	flag

0:	No	request
1:	Interrupt	request

Bit	4 IICF:	I2C	interrupt	request	flag
0:	No	request
1:	Interrupt	request

Bit	3~2	 Unimplemented,	read	as	“0”
Bit	1 UARTE:	UART	interrupt	control

0:	Disable
1:	Enable

Bit	0 IICE:	I2C	interrupt	control
0:	Disable
1:	Enable

Rev. 1.40 �6 �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Interrupt Operation
A	Timer/Event	Counter	overflow	or	an	active	edge	on	the	external	interrupt	pin	will	all	generate	an	
interrupt	request	by	setting	their	corresponding	request	flag,	if	their	appropriate	interrupt	enable	bit	
is	set.	When	this	happens,	the	Program	Counter,	which	stores	the	address	of	the	next	instruction	to	
be	executed,	will	be	transferred	onto	the	stack.	The	Program	Counter	will	then	be	loaded	with	a	new	
address	which	will	be	the	value	of	the	corresponding	interrupt	vector.	The	microcontroller	will	then	
fetch	its	next	instruction	from	this	interrupt	vector.	

The	instruction	at	 this	vector	will	usually	be	a	JMP	statement	which	will	 jump	to	another	section	
of	program	which	is	known	as	the	interrupt	service	routine.	Here	is	located	the	code	to	control	the	
appropriate	 interrupt.	The	 interrupt	service	routine	must	be	 terminated	with	a	RETI	 instruction,	
which	retrieves	the	original	Program	Counter	address	from	the	stack	and	allows	the	microcontroller	
to	continue	with	normal	execution	at	the	point	where	the	interrupt	occurred.

The	various	 interrupt	enable	bits,	 together	with	 their	associated	request	 flags,	are	shown	in	 the	
following	diagram	with	their	order	of	priority.	

04H

08H

0CH

Vector

Low

P�io�ity
Hig�

Request
Flags

Enable
Bits

�aste�
Enable

E�I auto disabled in ISR

Inte��upt
Name

E�I

E�I

E�IINTFINT Pin INTE

T0FTime� 0 T0E

T1FTime� 1 T1E

Legend

xxF Request Flag – auto �eset in ISR

xxE Enable Bit

10HE�IIICFI�C IICE

14HE�IUARTFUART UARTE

Only fo� HT48R008

Interrupt Scheme

Once	an	interrupt	subroutine	is	serviced,	all	the	other	interrupts	will	be	blocked,	as	the	EMI	bit	will	
be	cleared	automatically.	This	will	prevent	any	further	interrupt	nesting	from	occurring.	However,	
if	other	interrupt	requests	occur	during	this	interval,	although	the	interrupt	will	not	be	immediately	
serviced,	the	request	flag	will	still	be	recorded.	If	an	interrupt	requires	immediate	servicing	while	the	
program	is	already	in	another	interrupt	service	routine,	the	EMI	bit	should	be	set	after	entering	the	
routine,	to	allow	interrupt	nesting.	If	the	stack	is	full,	the	interrupt	request	will	not	be	acknowledged,	
even	if	the	related	interrupt	is	enabled,	until	the	Stack	Pointer	is	decremented.	If	immediate	service	
is	desired,	the	stack	must	be	prevented	from	becoming	full.

When	an	interrupt	request	is	generated	it	takes	2	or	3	instruction	cycles	before	the	program	jumps	to	
the	interrupt	vector.	If	the	devices	are	in	the	Sleep	Mode	and	are	woken	up	by	an	interrupt	request	
then	it	will	take	3	cycles	before	the	program	jumps	to	the	interrupt	vector.

Rev. 1.40 �6 �a��� �1� �01� Rev. 1.40 �� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

�ain
P�og�am

Enable bit set?

�ain
P�og�am

Automati�ally Disable Inte��upt
Clea� E�I & Request Flag

Wait fo� �~� Inst�u�tion Cy�les

ISR Ent�y
...
...

RETI
(it will set E�I automati�ally)

Inte��upt Request o�
Inte��upt Flag Set by Inst�u�tion

N

Y

Interrupt Flow

Interrupt Priority
Interrupts,	occurring	in	the	interval	between	the	rising	edges	of	two	consecutive	T2	pulses,	will	be	
serviced	on	the	latter	of	the	two	T2	pulses,	if	 the	corresponding	interrupts	are	enabled.	In	case	of	
simultaneous	requests,	the	following	table	shows	the	priority	that	is	applied.	These	can	be	masked	
by	resetting	the	EMI	bit.

Interrupt Source Priority Vector
Exte�nal inte��upt 1 04H
Timer/Event Counter 0 overflow � 08H
Timer/Event Counter 1 overflow � 0CH
I�C inte��upt 4 10H
UART inte��upt 5 14H

Note:	The	UART	Interrupt	is	only	for	the	HT48R008	device.

In	cases	where	both	external	and	internal	interrupts	are	enabled	and	where	an	external	and	internal	
interrupt	occur	simultaneously,	the	external	interrupt	will	always	have	priority	and	will	therefore	be	
serviced	first.	Suitable	masking	of	the	individual	interrupts	using	the	interrupt	registers	can	prevent	
simultaneous	occurrences.

Rev. 1.40 �8 �a��� �1� �01� Rev. 1.40 �9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

External Interrupt
For	an	external	interrupt	to	occur,	the	global	interrupt	enable	bit,	EMI,	and	external	interrupt	enable	
bit,	INTE,	must	first	be	set.	An	actual	external	interrupt	will	take	place	when	the	external	interrupt	
request	flag,	INTF	is	set,	a	situation	that	will	occur	when	an	edge	transition	appears	on	the	external	
INT	line.	The	type	of	transition	that	will	trigger	an	external	interrupt,	whether	high	to	low,	low	to	
high	or	both	is	determined	by	the	INTES0	and	INTES1	bits,	which	are	bits	6	and	7	respectively	in	
the	CTRL1	control	register.	These	two	bits	can	also	disable	the	external	interrupt	function.

INTES1 INTES0 Request Flag
0 0 Exte�nal inte��upt disable
0 1 Rising edge t�igge�
1 0 Falling edge t�igge�
1 1 Dual edge t�igge�

The	external	 interrupt	pin	is	pin-shared	with	the	I/O	pin	PA2	and	can	only	be	used	as	an	external	
interrupt	pin	if	 the	corresponding	external	 interrupt	enable	bit	 in	the	INTC0	register	has	been	set	
and	the	edge	trigger	type	has	been	selected	using	the	CTRL1	register.	The	pin	must	also	be	set	as	
an	input	by	setting	the	corresponding	PAC.2	bit	 in	the	port	control	register.	When	the	interrupt	is	
enabled,	 the	stack	 is	not	full	and	a	 transition	appears	on	 the	external	 interrupt	pin,	a	subroutine	
call	to	the	external	interrupt	vector	at	location	04H,	will	take	place.	When	the	interrupt	is	serviced,	
the	external	 interrupt	 request	 flag,	 INTF,	will	be	automatically	 reset	and	 the	EMI	bit	will	be	
automatically	cleared	to	disable	other	interrupts.	Note	that	any	pull-high	resistor	connections	on	this	
pin	will	remain	valid	even	if	the	pin	is	used	as	an	external	interrupt	input.

Timer/Event Counter Interrupt
For	 a	Timer/Event	Counter	 interrupt	 to	occur,	 the	global	 interrupt	 enable	bit,	EMI	and	 the	
corresponding	 timer	 interrupt	enable	bit	TnE	must	 first	be	set.	An	actual	Timer/Event	Counter	
interrupt	will	take	place	when	the	Timer/Event	Counter	request	flag	TnF	is	set,	a	situation	that	will	
occur	when	the	relevant	Timer/Event	Counter	overflows.	When	the	interrupt	is	enabled,	the	stack	is	
not	full	and	a	Timer/Event	Counter	overflow	occurs,	a	subroutine	call	to	the	relevant	timer	interrupt	
vector,	will	take	place.	When	the	interrupt	is	serviced,	the	timer	interrupt	request	flag	TnF	will	be	
automatically	reset	and	the	EMI	bit	will	be	automatically	cleared	to	disable	other	interrupts.

UART Interrupt
The	UART	interrupt	is	only	contained	in	the	HT48R008	device.	Several	individual	UART	conditions	
can	generate	a	UART	interrupt.	When	these	conditions	exist,	a	low	pulse	will	be	generated	to	get	the	
attention	of	the	microcontroller.	These	conditions	are	a	transmitter	data	register	empty,	transmitter	
idle,	receiver	data	available,	receiver	overrun,	address	detect	and	an	RX	pin	wake-up.	To	allow	the	
program	to	branch	to	the	respective	interrupt	vector	addresses,	the	global	interrupt	enable	bit,	EMI,	
and	UART	interrupt	enable	bit,	UARTE,	must	first	be	set.	When	the	interrupt	is	enabled,	the	stack	is	
not	full	and	any	of	these	conditions	are	created,	a	subroutine	call	to	the	UART	Interrupt	vector	will	
take	place.	When	the	interrupt	is	serviced,	the	UART	Interrupt	flag,	UARTF,	will	be	automatically	
cleared.	The	EMI	bit	will	also	be	automatically	cleared	to	disable	other	 interrupts.	However,	 the	
USR	register	flags	will	be	cleared	automatically	when	certain	actions	are	taken	by	the	UART,	the	
details	of	which	are	given	in	the	UART	section.

Rev. 1.40 �8 �a��� �1� �01� Rev. 1.40 �9 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

I2C Interrupt
An	I2C	Interrupt	request	will	 take	place	when	the	I2C	Interrupt	request	 flag,	 IICF,	 is	set,	which	
occurs	when	a	byte	of	data	has	been	received	or	transmitted	by	the	I2C	interface,	a	slave	address	is	
matched,	or	an	I2C	time-out	condition	has	occurred.	To	allow	the	program	to	branch	to	its	respective	
interrupt	vector	address,	 the	global	 interrupt	enable	bit,	EMI,	and	 the	Serial	 Interface	Interrupt	
enable	bit,	IICE,	must	first	be	set.	When	the	interrupt	is	enabled,	the	stack	is	not	full	and	any	of	these	
conditions	are	created,	a	subroutine	call	to	the	respective	Interrupt	vector,	will	take	place.	When	the	
I2C	Interface	Interrupt	is	serviced,	the	interrupt	request	flag,	IICF,	will	be	automatically	reset	and	the	
EMI	bit	will	be	cleared	to	disable	other	interrupts.

Interrupt Wake-up Function
Each	of	 the	 interrupt	functions	has	 the	capability	of	waking	up	the	microcontroller	when	in	 the	
Sleep	Mode.	A	wake-up	is	generated	when	an	interrupt	request	flag	changes	from	low	to	high	and	
is	 independent	of	whether	 the	interrupt	 is	enabled	or	not.	Therefore,	even	though	the	devices	are	
in	the	Sleep	Mode	and	its	system	oscillator	is	stopped,	situations	such	as	external	edge	transitions	
on	the	external	interrupt	pins	or	timer/event	counter	overflow	may	cause	their	respective	interrupt	
flag	to	be	set	high	and	consequently	generate	an	interrupt.	Care	must	therefore	be	taken	if	spurious	
wake-up	situations	are	 to	be	avoided.	If	an	interrupt	wake-up	function	is	 to	be	disabled	then	the	
corresponding	interrupt	request	flag	should	be	set	high	before	the	devices	enter	the	Sleep	Mode.	The	
interrupt	enable	bits	have	no	effect	on	the	interrupt	wake-up	function.

Programming Considerations
By	disabling	the	relevant	interrupt	enable	bits,	a	requested	interrupt	can	be	prevented	from	being	
serviced,	however,	once	an	 interrupt	 request	 flag	 is	 set,	 it	will	 remain	 in	 this	condition	 in	 the	
interrupt	register	until	the	corresponding	interrupt	is	serviced	or	until	the	request	flag	is	cleared	by	
the	application	program.

It	 is	recommended	that	programs	do	not	use	the	“CALL”	instruction	within	the	interrupt	service	
subroutine.	Interrupts	often	occur	in	an	unpredictable	manner	or	need	to	be	serviced	immediately.	
If	only	one	stack	is	left	and	the	interrupt	is	not	well	controlled,	the	original	control	sequence	will	be	
damaged	once	a	CALL	subroutine	is	executed	in	the	interrupt	subroutine.	

All	of	 these	 interrupts	have	 the	capability	of	waking	up	 the	microcontroller	when	it	 is	 in	Sleep	
Mode,	the	wake	up	being	generated	when	the	interrupt	request	flag	changes	from	low	to	high.	If	it	is	
required	to	prevent	a	certain	interrupt	from	waking	up	the	microcontroller	then	its	respective	request	
flag	should	be	first	set	high	before	entering	the	Sleep	Mode.

As	only	the	Program	Counter	is	pushed	onto	the	stack,	then	if	the	contents	of	the	accumulator,	status	
register	or	other	registers	are	altered	by	the	interrupt	service	program,	which	may	corrupt	the	desired	
control	sequence,	then	the	contents	should	be	saved	in	advance.

To	return	from	an	interrupt	subroutine,	either	a	RET	or	RETI	instruction	may	be	executed.	The	RETI	
instruction	in	addition	to	executing	a	return	to	the	main	program	also	automatically	sets	the	EMI	
bit	high	to	allow	further	interrupts.	The	RET	instruction	however	only	executes	a	return	to	the	main	
program	leaving	the	EMI	bit	in	its	present	zero	state	and	therefore	disabling	the	execution	of	further	
interrupts.

Rev. 1.40 80 �a��� �1� �01� Rev. 1.40 81 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Application Circuits

� � � � �

� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � �
� � � � �
� � � � � � �
� � � �
 � �
� � � �
 � 	

� �
 � � � �

� � �

�

� � �

� � � � �
� � � � � � �

� � � � � � �

� � � � �
� � � � �

� � � �

� � � � � �

� � � � � �

� � � � � � � �

� � � � �

� � � � � � � �
� � � � � � � �

� � � � � � �
� � �

� � � � � �

� � � � � � �
� � � � �
�
 � � �
 �
�
 � � 	 � �
�
 � � 	
 �

� � 	 � � � �

� � �

� 	 	

� � �

� � � � �
� � � � � � �

� � � � � � �

� � � � �
� � � � �

� � � �

� � � � � �

� � � � � �
� � � � � �

� � � � � � � �

Rev. 1.40 80 �a��� �1� �01� Rev. 1.40 81 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Instruction Set

Introduction
Central	 to	 the	successful	operation	of	any	microcontroller	 is	 its	 instruction	set,	which	is	a	set	of	
program	instruction	codes	that	directs	the	microcontroller	to	perform	certain	operations.	In	the	case	
of	Holtek	microcontroller,	a	comprehensive	and	flexible	set	of	over	60	instructions	is	provided	to	
enable	programmers	to	implement	their	application	with	the	minimum	of	programming	overheads.	

For	easier	understanding	of	the	various	instruction	codes,	 they	have	been	subdivided	into	several	
functional	groupings.

Instruction Timing
Most	instructions	are	implemented	within	one	instruction	cycle.	The	exceptions	to	this	are	branch,	
call,	or	 table	read	instructions	where	two	instruction	cycles	are	required.	One	instruction	cycle	is	
equal	to	4	system	clock	cycles,	therefore	in	the	case	of	an	8MHz	system	oscillator,	most	instructions	
would	be	implemented	within	0.5μs	and	branch	or	call	 instructions	would	be	implemented	within	
1μs.	Although	 instructions	which	require	one	more	cycle	 to	 implement	are	generally	 limited	 to	
the	JMP,	CALL,	RET,	RETI	and	table	read	instructions,	 it	 is	 important	 to	realize	 that	any	other	
instructions	which	involve	manipulation	of	the	Program	Counter	Low	register	or	PCL	will	also	take	
one	more	cycle	to	implement.	As	instructions	which	change	the	contents	of	the	PCL	will	 imply	a	
direct	 jump	to	that	new	address,	one	more	cycle	will	be	required.	Examples	of	such	instructions	
would	be	“CLR	PCL”	or	“MOV	PCL,	A”.	For	the	case	of	skip	instructions,	it	must	be	noted	that	if	
the	result	of	the	comparison	involves	a	skip	operation	then	this	will	also	take	one	more	cycle,	if	no	
skip	is	involved	then	only	one	cycle	is	required.

Moving and Transferring Data
The	 transfer	of	data	within	 the	microcontroller	program	 is	one	of	 the	most	 frequently	used	
operations.	Making	use	of	several	kinds	of	MOV	instructions,	data	can	be	transferred	from	registers	
to	the	Accumulator	and	vice-versa	as	well	as	being	able	to	move	specific	immediate	data	directly	
into	the	Accumulator.	One	of	the	most	important	data	transfer	applications	is	to	receive	data	from	
the	input	ports	and	transfer	data	to	the	output	ports.

Arithmetic Operations
The	ability	to	perform	certain	arithmetic	operations	and	data	manipulation	is	a	necessary	feature	of	
most	microcontroller	applications.	Within	the	Holtek	microcontroller	instruction	set	are	a	range	of	
add	and	subtract	 instruction	mnemonics	to	enable	the	necessary	arithmetic	to	be	carried	out.	Care	
must	be	 taken	 to	ensure	correct	handling	of	carry	and	borrow	data	when	results	exceed	255	for	
addition	and	less	 than	0	for	subtraction.	The	increment	and	decrement	 instructions	such	as	INC,	
INCA,	DEC	and	DECA	provide	a	simple	means	of	increasing	or	decreasing	by	a	value	of	one	of	the	
values	in	the	destination	specified.

Rev. 1.40 8� �a��� �1� �01� Rev. 1.40 8� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Logical and Rotate Operation
The	standard	logical	operations	such	as	AND,	OR,	XOR	and	CPL	all	have	their	own	instruction	
within	the	Holtek	microcontroller	 instruction	set.	As	with	the	case	of	most	 instructions	involving	
data	manipulation,	 data	must	 pass	 through	 the	Accumulator	which	may	 involve	 additional	
programming	steps.	 In	all	 logical	data	operations,	 the	zero	 flag	may	be	set	 if	 the	 result	of	 the	
operation	is	zero.	Another	form	of	logical	data	manipulation	comes	from	the	rotate	instructions	such	
as	RR,	RL,	RRC	and	RLC	which	provide	a	simple	means	of	rotating	one	bit	right	or	left.	Different	
rotate	instructions	exist	depending	on	program	requirements.	Rotate	instructions	are	useful	for	serial	
port	programming	applications	where	data	can	be	rotated	from	an	internal	register	 into	the	Carry	
bit	from	where	it	can	be	examined	and	the	necessary	serial	bit	set	high	or	low.	Another	application	
which	rotate	data	operations	are	used	is	to	implement	multiplication	and	division	calculations.

Branches and Control Transfer
Program	branching	takes	the	form	of	either	jumps	to	specified	locations	using	the	JMP	instruction	
or	 to	a	 subroutine	using	 the	CALL	 instruction.	They	differ	 in	 the	 sense	 that	 in	 the	case	of	a	
subroutine	call,	 the	program	must	return	 to	 the	 instruction	 immediately	when	the	subroutine	has	
been	carried	out.	This	is	done	by	placing	a	return	instruction	“RET”	in	the	subroutine	which	will	
cause	the	program	to	jump	back	to	the	address	right	after	the	CALL	instruction.	In	the	case	of	a	JMP	
instruction,	the	program	simply	jumps	to	the	desired	location.	There	is	no	requirement	to	jump	back	
to	the	original	jumping	off	point	as	in	the	case	of	the	CALL	instruction.	One	special	and	extremely	
useful	set	of	branch	instructions	are	the	conditional	branches.	Here	a	decision	is	first	made	regarding	
the	condition	of	a	certain	data	memory	or	 individual	bits.	Depending	upon	 the	conditions,	 the	
program	will	continue	with	the	next	instruction	or	skip	over	it	and	jump	to	the	following	instruction.	
These	 instructions	are	 the	key	 to	decision	making	and	branching	within	 the	program	perhaps	
determined	by	the	condition	of	certain	input	switches	or	by	the	condition	of	internal	data	bits.

Bit Operations
The	ability	to	provide	single	bit	operations	on	Data	Memory	is	an	extremely	flexible	feature	of	all	
Holtek	microcontrollers.	This	feature	 is	especially	useful	for	output	port	bit	programming	where	
individual	bits	or	port	pins	can	be	directly	set	high	or	low	using	either	the	“SET	[m].i”	or	“CLR	[m].i”	
instructions	respectively.	The	feature	removes	the	need	for	programmers	to	first	read	the	8-bit	output	
port,	manipulate	the	input	data	to	ensure	that	other	bits	are	not	changed	and	then	output	the	port	with	
the	correct	new	data.	This	read-modify-write	process	is	taken	care	of	automatically	when	these	bit	
operation	instructions	are	used.

Table Read Operations
Data	storage	 is	normally	 implemented	by	using	 registers.	However,	when	working	with	 large	
amounts	of	fixed	data,	 the	volume	involved	often	makes	it	 inconvenient	to	store	the	fixed	data	in	
the	Data	Memory.	To	overcome	this	problem,	Holtek	microcontrollers	allow	an	area	of	Program	
Memory	to	be	setup	as	a	table	where	data	can	be	directly	stored.	A	set	of	easy	to	use	instructions	
provides	 the	means	by	which	 this	 fixed	data	can	be	referenced	and	retrieved	from	the	Program	
Memory.

Other Operations
In	addition	 to	 the	above	functional	 instructions,	a	 range	of	other	 instructions	also	exist	such	as	
the	“HALT”	instruction	for	Power-down	operations	and	 instructions	 to	control	 the	operation	of	
the	Watchdog	Timer	for	 reliable	program	operations	under	extreme	electric	or	electromagnetic	
environments.	For	their	relevant	operations,	refer	to	the	functional	related	sections.

Rev. 1.40 8� �a��� �1� �01� Rev. 1.40 8� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Instruction Set Summary
The	following	table	depicts	a	summary	of	the	instruction	set	categorised	according	to	function	and	
can	be	consulted	as	a	basic	instruction	reference	using	the	following	listed	conventions.

Table Conventions
x:	Bits	immediate	data	
m:	Data	Memory	address	
A:	Accumulator	
i:	0~7	number	of	bits	
addr:	Program	memory	address

Mnemonic Description Cycles Flag Affected
Arithmetic
ADD A�[m] Add Data �emo�y to ACC 1 Z� C� AC� OV
ADD� A�[m] Add ACC to Data �emo�y 1Note Z� C� AC� OV
ADD A�x Add immediate data to ACC 1 Z� C� AC� OV
ADC A�[m] Add Data �emo�y to ACC wit� Ca��y 1 Z� C� AC� OV
ADC� A�[m] Add ACC to Data memo�y wit� Ca��y 1Note Z� C� AC� OV
SUB A�x Subt�a�t immediate data f�om t�e ACC 1 Z� C� AC� OV
SUB A�[m] Subt�a�t Data �emo�y f�om ACC 1 Z� C� AC� OV
SUB� A�[m] Subt�a�t Data �emo�y f�om ACC wit� �esult in Data �emo�y 1Note Z� C� AC� OV
SBC A�[m] Subt�a�t Data �emo�y f�om ACC wit� Ca��y 1 Z� C� AC� OV
SBC� A�[m] Subt�a�t Data �emo�y f�om ACC wit� Ca��y� �esult in Data �emo�y 1Note Z� C� AC� OV
DAA [m] De�imal adjust ACC fo� Addition wit� �esult in Data �emo�y 1Note C
Logic Operation
AND A�[m] Logi�al AND Data �emo�y to ACC 1 Z
OR A�[m] Logi�al OR Data �emo�y to ACC 1 Z
XOR A�[m] Logi�al XOR Data �emo�y to ACC 1 Z
AND� A�[m] Logi�al AND ACC to Data �emo�y 1Note Z
OR� A�[m] Logi�al OR ACC to Data �emo�y 1Note Z
XOR� A�[m] Logi�al XOR ACC to Data �emo�y 1Note Z
AND A�x Logi�al AND immediate Data to ACC 1 Z
OR A�x Logi�al OR immediate Data to ACC 1 Z
XOR A�x Logi�al XOR immediate Data to ACC 1 Z
CPL [m] Complement Data �emo�y 1Note Z
CPLA [m] Complement Data �emo�y wit� �esult in ACC 1 Z
Increment & Decrement
INCA [m] In��ement Data �emo�y wit� �esult in ACC 1 Z
INC [m] In��ement Data �emo�y 1Note Z
DECA [m] De��ement Data �emo�y wit� �esult in ACC 1 Z
DEC [m] De��ement Data �emo�y 1Note Z
Rotate
RRA [m] Rotate Data �emo�y �ig�t wit� �esult in ACC 1 None
RR [m] Rotate Data �emo�y �ig�t 1Note None
RRCA [m] Rotate Data �emo�y �ig�t t��oug� Ca��y wit� �esult in ACC 1 C
RRC [m] Rotate Data �emo�y �ig�t t��oug� Ca��y 1Note C
RLA [m] Rotate Data �emo�y left wit� �esult in ACC 1 None
RL [m] Rotate Data �emo�y left 1Note None
RLCA [m] Rotate Data �emo�y left t��oug� Ca��y wit� �esult in ACC 1 C
RLC [m] Rotate Data �emo�y left t��oug� Ca��y 1Note C

Rev. 1.40 84 �a��� �1� �01� Rev. 1.40 85 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Mnemonic Description Cycles Flag Affected
Data Move
�OV A�[m] �ove Data �emo�y to ACC 1 None
�OV [m]�A �ove ACC to Data �emo�y 1Note None
�OV A�x �ove immediate data to ACC 1 None
Bit Operation
CLR [m].i Clea� bit of Data �emo�y 1Note None
SET [m].i Set bit of Data �emo�y 1Note None
Branch
J�P add� Jump un�onditionally � None
SZ [m] Skip if Data �emo�y is ze�o 1Note None
SZA [m] Skip if Data �emo�y is ze�o wit� data movement to ACC 1Note None
SZ [m].i Skip if bit i of Data �emo�y is ze�o 1Note None
SNZ [m].i Skip if bit i of Data �emo�y is not ze�o 1Note None
SIZ [m] Skip if in��ement Data �emo�y is ze�o 1Note None
SDZ [m] Skip if de��ement Data �emo�y is ze�o 1Note None
SIZA [m] Skip if in��ement Data �emo�y is ze�o wit� �esult in ACC 1Note None
SDZA [m] Skip if de��ement Data �emo�y is ze�o wit� �esult in ACC 1Note None
CALL add� Sub�outine �all � None
RET Retu�n f�om sub�outine � None
RET A�x Retu�n f�om sub�outine and load immediate data to ACC � None
RETI Retu�n f�om inte��upt � None
Table Read
TABRD [m] Read table (specific page) to TBLH and Data Memory �Note None
TABRDC [m] Read table (�u��ent page) to TBLH and Data �emo�y �Note None
TABRDL [m] Read table (last page) to TBLH and Data �emo�y �Note None
Miscellaneous
NOP No ope�ation 1 None
CLR [m] Clea� Data �emo�y 1Note None
SET [m] Set Data �emo�y 1Note None
CLR WDT Clea� Wat��dog Time� 1 TO� PDF
CLR WDT1 P�e-�lea� Wat��dog Time� 1 TO� PDF
CLR WDT� P�e-�lea� Wat��dog Time� 1 TO� PDF
SWAP [m] Swap nibbles of Data �emo�y 1Note None
SWAPA [m] Swap nibbles of Data �emo�y wit� �esult in ACC 1 None
HALT Ente� powe� down mode 1 TO� PDF

Note:	1.	For	skip	instructions,	if	the	result	of	the	comparison	involves	a	skip	then	two	cycles	are	required,	if	no	
skip	takes	place	only	one	cycle	is	required.

2.	Any	instruction	which	changes	the	contents	of	the	PCL	will	also	require	2	cycles	for	execution.
3.	For	 the	“CLR	WDT1”	and	“CLR	WDT2”	instructions	the	TO	and	PDF	flags	may	be	affected	by	the	
execution	 status.	The	TO	and	PDF	flags	are	cleared	after	both	“CLR	WDT1”	and	“CLR	WDT2”	
instructions	are	consecutively	executed.	Otherwise	the	TO	and	PDF	flags	remain	unchanged.

Rev. 1.40 84 �a��� �1� �01� Rev. 1.40 85 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Instruction Definition

ADC A,[m]	 Add	Data	Memory	to	ACC	with	Carry
Description	 The	contents	of	the	specified	Data	Memory,	Accumulator	and	the	carry	flag	are	added.	
	 The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	+	[m]	+	C
Affected	flag(s)	 OV,	Z,	AC,	C

ADCM A,[m]	 Add	ACC	to	Data	Memory	with	Carry
Description	 The	contents	of	the	specified	Data	Memory,	Accumulator	and	the	carry	flag	are	added.		
	 The	result	is	stored	in	the	specified	Data	Memory.
Operation	 [m]	←	ACC	+	[m]	+	C
Affected	flag(s)	 OV,	Z,	AC,	C

ADD A,[m]	 Add	Data	Memory	to	ACC
Description	 The	contents	of	the	specified	Data	Memory	and	the	Accumulator	are	added.	
	 The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	+	[m]
Affected	flag(s)	 OV,	Z,	AC,	C

ADD A,x Add	immediate	data	to	ACC
Description	 The	contents	of	the	Accumulator	and	the	specified	immediate	data	are	added.		
	 The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	+	x
Affected	flag(s)	 OV,	Z,	AC,	C

ADDM A,[m]	 Add	ACC	to	Data	Memory
Description	 The	contents	of	the	specified	Data	Memory	and	the	Accumulator	are	added.		
	 The	result	is	stored	in	the	specified	Data	Memory.
Operation	 [m]	←	ACC	+	[m]
Affected	flag(s)	 OV,	Z,	AC,	C

AND A,[m]	 Logical	AND	Data	Memory	to	ACC
Description	 Data	in	the	Accumulator	and	the	specified	Data	Memory	perform	a	bitwise	logical	AND		
	 operation.	The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	″AND″	[m]
Affected	flag(s)	 Z

AND A,x Logical	AND	immediate	data	to	ACC
Description	 Data	in	the	Accumulator	and	the	specified	immediate	data	perform	a	bit	wise	logical	AND		
	 operation.	The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	″AND″	x
Affected	flag(s)	 Z

ANDM A,[m]	 Logical	AND	ACC	to	Data	Memory
Description	 Data	in	the	specified	Data	Memory	and	the	Accumulator	perform	a	bitwise	logical	AND	
	 operation.	The	result	is	stored	in	the	Data	Memory.
Operation	 [m]	←	ACC	″AND″	[m]
Affected	flag(s)	 Z

Rev. 1.40 86 �a��� �1� �01� Rev. 1.40 8� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

CALL addr	 Subroutine	call
Description	 Unconditionally	calls	a	subroutine	at	the	specified	address.	The	Program	Counter	then	
	 increments	by	1	to	obtain	the	address	of	the	next	instruction	which	is	then	pushed	onto	the	
	 stack.	The	specified	address	is	then	loaded	and	the	program	continues	execution	from	this	
	 new	address.	As	this	instruction	requires	an	additional	operation,	it	is	a	two	cycle	instruction.
Operation	 Stack	←	Program	Counter	+	1	
	 Program	Counter	←	addr
Affected	flag(s)	 None

CLR [m]	 Clear	Data	Memory
Description	 Each	bit	of	the	specified	Data	Memory	is	cleared	to	0.
Operation	 [m]	←	00H
Affected	flag(s)	 None

CLR [m].i Clear	bit	of	Data	Memory
Description	 Bit	i	of	the	specified	Data	Memory	is	cleared	to	0.
Operation	 [m].i	←	0
Affected	flag(s)	 None

CLR WDT	 Clear	Watchdog	Timer
Description	 The	TO,	PDF	flags	and	the	WDT	are	all	cleared.	
Operation	 WDT	cleared	
	 TO	←	0	
	 PDF	←	0
Affected	flag(s)	 TO,	PDF

CLR WDT1	 Pre-clear	Watchdog	Timer
Description	 The	TO,	PDF	flags	and	the	WDT	are	all	cleared.	Note	that	this	instruction	works	in	
	 conjunction	with	CLR	WDT2	and	must	be	executed	alternately	with	CLR	WDT2	to	have	
	 effect.	Repetitively	executing	this	instruction	without	alternately	executing	CLR	WDT2	will	
	 have	no	effect.
Operation	 WDT	cleared	
	 TO	←	0	
	 PDF	←	0	
Affected	flag(s)	 TO,	PDF

CLR WDT2	 Pre-clear	Watchdog	Timer
Description	 The	TO,	PDF	flags	and	the	WDT	are	all	cleared.	Note	that	this	instruction	works	in	conjunction		
	 with	CLR	WDT1	and	must	be	executed	alternately	with	CLR	WDT1	to	have	effect.	
		 Repetitively	executing	this	instruction	without	alternately	executing	CLR	WDT1	will	have	no	
	 effect.
Operation	 WDT	cleared	
	 TO	←	0	
	 PDF	←	0
Affected	flag(s)	 TO,	PDF

CPL [m] Complement	Data	Memory
Description	 Each	bit	of	the	specified	Data	Memory	is	logically	complemented	(1′s	complement).	Bits	which		
	 previously	contained	a	1	are	changed	to	0	and	vice	versa.
Operation	 [m]	←	[m]
Affected	flag(s)	 Z

Rev. 1.40 86 �a��� �1� �01� Rev. 1.40 8� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

CPLA [m]	 Complement	Data	Memory	with	result	in	ACC
Description	 Each	bit	of	the	specified	Data	Memory	is	logically	complemented	(1′s	complement).	Bits	which		
	 previously	contained	a	1	are	changed	to	0	and	vice	versa.	The	complemented	result	is	stored	in	
	 the	Accumulator	and	the	contents	of	the	Data	Memory	remain	unchanged.
Operation	 ACC	←	[m]
Affected	flag(s)	 Z

DAA [m] Decimal-Adjust	ACC	for	addition	with	result	in	Data	Memory
Description	 Convert	the	contents	of	the	Accumulator	value	to	a	BCD	(Binary	Coded	Decimal)	value	
	 resulting	from	the	previous	addition	of	two	BCD	variables.	If	the	low	nibble	is	greater	than	9	
	 or	if	AC	flag	is	set,	then	a	value	of	6	will	be	added	to	the	low	nibble.	Otherwise	the	low	nibble	
	 remains	unchanged.	If	the	high	nibble	is	greater	than	9	or	if	the	C	flag	is	set,	then	a	value	of	6	
	 will	be	added	to	the	high	nibble.	Essentially,	the	decimal	conversion	is	performed	by	adding	
	 00H,	06H,	60H	or	66H	depending	on	the	Accumulator	and	flag	conditions.	Only	the	C	flag	
	 may	be	affected	by	this	instruction	which	indicates	that	if	the	original	BCD	sum	is	greater	than		
	 100,	it	allows	multiple	precision	decimal	addition.
Operation	 [m]	←	ACC	+	00H	or	
	 [m]	←	ACC	+	06H	or		
	 [m]	←	ACC	+	60H	or	
	 [m]	←	ACC	+	66H
Affected	flag(s)	 C

DEC [m]	 Decrement	Data	Memory
Description	 Data	in	the	specified	Data	Memory	is	decremented	by	1.
Operation	 [m]	←	[m]	−	1
Affected	flag(s)	 Z

DECA	[m]	 Decrement	Data	Memory	with	result	in	ACC
Description	 Data	in	the	specified	Data	Memory	is	decremented	by	1.	The	result	is	stored	in	the	
	 Accumulator.	The	contents	of	the	Data	Memory	remain	unchanged.
Operation	 ACC	←	[m]	−	1
Affected	flag(s)	 Z

HALT	 Enter	power	down	mode
Description	 This	instruction	stops	the	program	execution	and	turns	off	the	system	clock.	The	contents	of		
	 the	Data	Memory	and	registers	are	retained.	The	WDT	and	prescaler	are	cleared.	The	power	
	 down	flag	PDF	is	set	and	the	WDT	time-out	flag	TO	is	cleared.
Operation	 TO	←	0	
	 PDF	←	1
Affected	flag(s)	 TO,	PDF

INC [m]	 Increment	Data	Memory	
Description	 Data	in	the	specified	Data	Memory	is	incremented	by	1.
Operation	 [m]	←	[m]	+	1
Affected	flag(s)	 Z

INCA [m] Increment	Data	Memory	with	result	in	ACC
Description	 Data	in	the	specified	Data	Memory	is	incremented	by	1.	The	result	is	stored	in	the	Accumulator.		
	 The	contents	of	the	Data	Memory	remain	unchanged.
Operation	 ACC	←	[m]	+	1
Affected	flag(s)	 Z

Rev. 1.40 88 �a��� �1� �01� Rev. 1.40 89 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

JMP addr Jump	unconditionally
Description	 The	contents	of	the	Program	Counter	are	replaced	with	the	specified	address.	Program	
	 execution	then	continues	from	this	new	address.	As	this	requires	the	insertion	of	a	dummy	
	 instruction	while	the	new	address	is	loaded,	it	is	a	two	cycle	instruction.
Operation	 Program	Counter	←	addr
Affected	flag(s)	 None

MOV A,[m]	 Move	Data	Memory	to	ACC
Description	 The	contents	of	the	specified	Data	Memory	are	copied	to	the	Accumulator.
Operation	 ACC	←	[m]
Affected	flag(s)	 None

MOV A,x Move	immediate	data	to	ACC
Description	 The	immediate	data	specified	is	loaded	into	the	Accumulator.
Operation	 ACC	←	x
Affected	flag(s)	 None

MOV [m],A	 Move	ACC	to	Data	Memory	
Description	 The	contents	of	the	Accumulator	are	copied	to	the	specified	Data	Memory.
Operation	 [m]	←	ACC
Affected	flag(s)	 None

NOP	 No	operation
Description	 No	operation	is	performed.	Execution	continues	with	the	next	instruction.
Operation	 No	operation
Affected	flag(s)	 None

OR A,[m] Logical	OR	Data	Memory	to	ACC
Description	 Data	in	the	Accumulator	and	the	specified	Data	Memory	perform	a	bitwise	
	 logical	OR	operation.	The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	″OR″	[m]
Affected	flag(s)	 Z

OR A,x	 Logical	OR	immediate	data	to	ACC
Description	 Data	in	the	Accumulator	and	the	specified	immediate	data	perform	a	bitwise	logical	OR		
	 operation.	The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	″OR″	x
Affected	flag(s)	 Z

ORM A,[m]	 Logical	OR	ACC	to	Data	Memory
Description	 Data	in	the	specified	Data	Memory	and	the	Accumulator	perform	a	bitwise	logical	OR		
	 operation.	The	result	is	stored	in	the	Data	Memory.
Operation	 [m]	←	ACC	″OR″	[m]
Affected	flag(s)	 Z

RET	 Return	from	subroutine
Description	 The	Program	Counter	is	restored	from	the	stack.	Program	execution	continues	at	the	restored	
	 address.
Operation	 Program	Counter	←	Stack
Affected	flag(s)	 None

Rev. 1.40 88 �a��� �1� �01� Rev. 1.40 89 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

RET A,x	 Return	from	subroutine	and	load	immediate	data	to	ACC
Description	 The	Program	Counter	is	restored	from	the	stack	and	the	Accumulator	loaded	with	the	specified		
	 immediate	data.	Program	execution	continues	at	the	restored	address.
Operation	 Program	Counter	←	Stack	
	 ACC	←	x
Affected	flag(s)	 None

RETI	 Return	from	interrupt
Description	 The	Program	Counter	is	restored	from	the	stack	and	the	interrupts	are	re-enabled	by	setting	the		
	 EMI	bit.	EMI	is	the	master	interrupt	global	enable	bit.	If	an	interrupt	was	pending	when	the		
	 RETI	instruction	is	executed,	the	pending	Interrupt	routine	will	be	processed	before	returning		
	 to	the	main	program.
Operation	 Program	Counter	←	Stack	
	 EMI	←	1
Affected	flag(s)	 None

RL [m]	 Rotate	Data	Memory	left
Description	 The	contents	of	the	specified	Data	Memory	are	rotated	left	by	1	bit	with	bit	7	rotated	into	bit	0.
Operation	 [m].(i+1)	←	[m].i;	(i=0~6)	
	 [m].0	←	[m].7
Affected	flag(s)	 None

RLA [m] Rotate	Data	Memory	left	with	result	in	ACC
Description	 The	contents	of	the	specified	Data	Memory	are	rotated	left	by	1	bit	with	bit	7	rotated	into	bit	0.		
	 The	rotated	result	is	stored	in	the	Accumulator	and	the	contents	of	the	Data	Memory	remain	
	 unchanged.
Operation	 ACC.(i+1)	←	[m].i;	(i=0~6)	
	 ACC.0	←	[m].7
Affected	flag(s)	 None

RLC [m] Rotate	Data	Memory	left	through	Carry
Description	 The	contents	of	the	specified	Data	Memory	and	the	carry	flag	are	rotated	left	by	1	bit.	Bit	7	
	 replaces	the	Carry	bit	and	the	original	carry	flag	is	rotated	into	bit	0.
Operation	 [m].(i+1)	←	[m].i;	(i=0~6)	
	 [m].0	←	C	
	 C	←	[m].7
Affected	flag(s)	 C

RLCA [m]	 Rotate	Data	Memory	left	through	Carry	with	result	in	ACC
Description	 Data	in	the	specified	Data	Memory	and	the	carry	flag	are	rotated	left	by	1	bit.	Bit	7	replaces	the		
	 Carry	bit	and	the	original	carry	flag	is	rotated	into	the	bit	0.	The	rotated	result	is	stored	in	the	
	 Accumulator	and	the	contents	of	the	Data	Memory	remain	unchanged.
Operation	 ACC.(i+1)	←	[m].i;	(i=0~6)	
	 ACC.0	←	C	
	 C	←	[m].7
Affected	flag(s)	 C

RR [m] Rotate	Data	Memory	right
Description	 The	contents	of	the	specified	Data	Memory	are	rotated	right	by	1	bit	with	bit	0	rotated	into	bit	7.
Operation	 [m].i	←	[m].(i+1);	(i=0~6)	
	 [m].7	←	[m].0
Affected	flag(s)	 None

Rev. 1.40 90 �a��� �1� �01� Rev. 1.40 91 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

RRA [m] Rotate	Data	Memory	right	with	result	in	ACC
Description	 Data	in	the	specified	Data	Memory	and	the	carry	flag	are	rotated	right	by	1	bit	with	bit	0	
	 rotated	into	bit	7.	The	rotated	result	is	stored	in	the	Accumulator	and	the	contents	of	the	
	 Data	Memory	remain	unchanged.
Operation	 ACC.i	←	[m].(i+1);	(i=0~6)	
	 ACC.7	←	[m].0
Affected	flag(s)	 None

RRC [m] Rotate	Data	Memory	right	through	Carry
Description	 The	contents	of	the	specified	Data	Memory	and	the	carry	flag	are	rotated	right	by	1	bit.	Bit	0	
	 replaces	the	Carry	bit	and	the	original	carry	flag	is	rotated	into	bit	7.
Operation	 [m].i	←	[m].(i+1);	(i=0~6)	
	 [m].7	←	C	
	 C	←	[m].0
Affected	flag(s)	 C

RRCA [m]	 Rotate	Data	Memory	right	through	Carry	with	result	in	ACC
Description	 Data	in	the	specified	Data	Memory	and	the	carry	flag	are	rotated	right	by	1	bit.	Bit	0	replaces		
	 the	Carry	bit	and	the	original	carry	flag	is	rotated	into	bit	7.	The	rotated	result	is	stored	in	the		
	 Accumulator	and	the	contents	of	the	Data	Memory	remain	unchanged.
Operation	 ACC.i	←	[m].(i+1);	(i=0~6)	
	 ACC.7	←	C	
	 C	←	[m].0
Affected	flag(s)	 C

SBC A,[m]	 Subtract	Data	Memory	from	ACC	with	Carry
Description	 The	contents	of	the	specified	Data	Memory	and	the	complement	of	the	carry	flag	are	
	 subtracted	from	the	Accumulator.	The	result	is	stored	in	the	Accumulator.	Note	that	if	the		
	 result	of	subtraction	is	negative,	the	C	flag	will	be	cleared	to	0,	otherwise	if	the	result	is	
	 positive	or	zero,	the	C	flag	will	be	set	to	1.
Operation	 ACC	←	ACC	−	[m]	−		C
Affected	flag(s)	 OV,	Z,	AC,	C

SBCM A,[m]	 Subtract	Data	Memory	from	ACC	with	Carry	and	result	in	Data	Memory
Description	 The	contents	of	the	specified	Data	Memory	and	the	complement	of	the	carry	flag	are		
	 subtracted	from	the	Accumulator.	The	result	is	stored	in	the	Data	Memory.	Note	that	if	the		
	 result	of	subtraction	is	negative,	the	C	flag	will	be	cleared	to	0,	otherwise	if	the	result	is		
	 positive	or	zero,	the	C	flag	will	be	set	to	1.
Operation	 [m]	←	ACC	−	[m]	−	C
Affected	flag(s)	 OV,	Z,	AC,	C

SDZ [m] Skip	if	decrement	Data	Memory	is	0
Description	 The	contents	of	the	specified	Data	Memory	are	first	decremented	by	1.	If	the	result	is	0	the		
	 following	instruction	is	skipped.	As	this	requires	the	insertion	of	a	dummy	instruction	while		
	 the	next	instruction	is	fetched,	it	is	a	two	cycle	instruction.	If	the	result	is	not	0	the	program		
	 proceeds	with	the	following	instruction.
Operation	 [m]	←	[m]	−	1	
	 Skip	if	[m]=0
Affected	flag(s)	 None

Rev. 1.40 90 �a��� �1� �01� Rev. 1.40 91 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

SDZA [m]	 Skip	if	decrement	Data	Memory	is	zero	with	result	in	ACC
Description	 The	contents	of	the	specified	Data	Memory	are	first	decremented	by	1.	If	the	result	is	0,	the		
	 following	instruction	is	skipped.	The	result	is	stored	in	the	Accumulator	but	the	specified		
	 Data	Memory	contents	remain	unchanged.	As	this	requires	the	insertion	of	a	dummy	
	 instruction	while	the	next	instruction	is	fetched,	it	is	a	two	cycle	instruction.	If	the	result	is	not	0,		
	 the	program	proceeds	with	the	following	instruction.
Operation	 ACC	←	[m]	−	1	
	 Skip	if	ACC=0
Affected	flag(s)	 None

SET [m]	 Set	Data	Memory
Description	 Each	bit	of	the	specified	Data	Memory	is	set	to	1.
Operation	 [m]	←	FFH
Affected	flag(s)	 None

SET [m].i Set	bit	of	Data	Memory
Description	 Bit	i	of	the	specified	Data	Memory	is	set	to	1.
Operation	 [m].i	←	1
Affected	flag(s)	 None

SIZ [m] Skip	if	increment	Data	Memory	is	0
Description	 The	contents	of	the	specified	Data	Memory	are	first	incremented	by	1.	If	the	result	is	0,	the	
	 following	instruction	is	skipped.	As	this	requires	the	insertion	of	a	dummy	instruction	while		
	 the	next	instruction	is	fetched,	it	is	a	two	cycle	instruction.	If	the	result	is	not	0	the	program	
	 proceeds	with	the	following	instruction.
Operation	 [m]	←	[m]	+	1	
	 Skip	if	[m]=0	
Affected	flag(s)	 None

SIZA [m] Skip	if	increment	Data	Memory	is	zero	with	result	in	ACC
Description	 The	contents	of	the	specified	Data	Memory	are	first	incremented	by	1.	If	the	result	is	0,	the		
	 following	instruction	is	skipped.	The	result	is	stored	in	the	Accumulator	but	the	specified	
	 Data	Memory	contents	remain	unchanged.	As	this	requires	the	insertion	of	a	dummy	
	 instruction	while	the	next	instruction	is	fetched,	it	is	a	two	cycle	instruction.	If	the	result	is	not	
	 0	the	program	proceeds	with	the	following	instruction.
Operation	 ACC	←	[m]	+	1	
	 Skip	if	ACC=0
Affected	flag(s)	 None

SNZ [m].i Skip	if	bit	i	of	Data	Memory	is	not	0
Description	 If	bit	i	of	the	specified	Data	Memory	is	not	0,	the	following	instruction	is	skipped.	As	this	
	 requires	the	insertion	of	a	dummy	instruction	while	the	next	instruction	is	fetched,	it	is	a	two		
	 cycle	instruction.	If	the	result	is	0	the	program	proceeds	with	the	following	instruction.
Operation	 Skip	if	[m].i	≠	0
Affected	flag(s)	 None

SUB A,[m]	 Subtract	Data	Memory	from	ACC
Description	 The	specified	Data	Memory	is	subtracted	from	the	contents	of	the	Accumulator.	The	result	is		
	 stored	in	the	Accumulator.	Note	that	if	the	result	of	subtraction	is	negative,	the	C	flag	will	be		
	 cleared	to	0,	otherwise	if	the	result	is	positive	or	zero,	the	C	flag	will	be	set	to	1.
Operation	 ACC	←	ACC	−	[m]
Affected	flag(s)	 OV,	Z,	AC,	C

Rev. 1.40 9� �a��� �1� �01� Rev. 1.40 9� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

SUBM A,[m]	 Subtract	Data	Memory	from	ACC	with	result	in	Data	Memory
Description	 The	specified	Data	Memory	is	subtracted	from	the	contents	of	the	Accumulator.	The	result	is		
	 stored	in	the	Data	Memory.	Note	that	if	the	result	of	subtraction	is	negative,	the	C	flag	will	be		
	 cleared	to	0,	otherwise	if	the	result	is	positive	or	zero,	the	C	flag	will	be	set	to	1.
Operation	 [m]	←	ACC	−	[m]
Affected	flag(s)	 OV,	Z,	AC,	C

SUB A,x Subtract	immediate	data	from	ACC
Description	 The	immediate	data	specified	by	the	code	is	subtracted	from	the	contents	of	the	Accumulator.		
	 The	result	is	stored	in	the	Accumulator.	Note	that	if	the	result	of	subtraction	is	negative,	the	C		
	 flag	will	be	cleared	to	0,	otherwise	if	the	result	is	positive	or	zero,	the	C	flag	will	be	set	to	1.
Operation	 ACC	←	ACC	−	x
Affected	flag(s)	 OV,	Z,	AC,	C

SWAP [m] Swap	nibbles	of	Data	Memory
Description	 The	low-order	and	high-order	nibbles	of	the	specified	Data	Memory	are	interchanged.
Operation	 [m].3~[m].0	↔	[m].7~[m].4
Affected	flag(s)	 None

SWAPA [m]	 Swap	nibbles	of	Data	Memory	with	result	in	ACC
Description	 The	low-order	and	high-order	nibbles	of	the	specified	Data	Memory	are	interchanged.	The		
	 result	is	stored	in	the	Accumulator.	The	contents	of	the	Data	Memory	remain	unchanged.
Operation	 ACC.3~ACC.0	←	[m].7~[m].4	
	 ACC.7~ACC.4	←	[m].3~[m].0
Affected	flag(s)	 None

SZ [m] Skip	if	Data	Memory	is	0
Description	 If	the	contents	of	the	specified	Data	Memory	is	0,	the	following	instruction	is	skipped.	As	this		
	 requires	the	insertion	of	a	dummy	instruction	while	the	next	instruction	is	fetched,	it	is	a	two		
	 cycle	instruction.	If	the	result	is	not	0	the	program	proceeds	with	the	following	instruction.
Operation	 Skip	if	[m]=0
Affected	flag(s)	 None

SZA [m] Skip	if	Data	Memory	is	0	with	data	movement	to	ACC
Description	 The	contents	of	the	specified	Data	Memory	are	copied	to	the	Accumulator.	If	the	value	is	zero,		
	 the	following	instruction	is	skipped.	As	this	requires	the	insertion	of	a	dummy	instruction		
	 while	the	next	instruction	is	fetched,	it	is	a	two	cycle	instruction.	If	the	result	is	not	0	the		
	 program	proceeds	with	the	following	instruction.
Operation	 ACC	←	[m]	
	 Skip	if	[m]=0
Affected	flag(s)	 None

SZ [m].i Skip	if	bit	i	of	Data	Memory	is	0
Description	 If	bit	i	of	the	specified	Data	Memory	is	0,	the	following	instruction	is	skipped.	As	this	requires	
	 the	insertion	of	a	dummy	instruction	while	the	next	instruction	is	fetched,	it	is	a	two	cycle	
	 instruction.	If	the	result	is	not	0,	the	program	proceeds	with	the	following	instruction.
Operation	 Skip	if	[m].i=0
Affected	flag(s)	 None

Rev. 1.40 9� �a��� �1� �01� Rev. 1.40 9� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

TABRD [m]	 Read	table	(specific	page)	to	TBLH	and	Data	Memory
Description	 The	low	byte	of	the	program	code	(specific	page)	addressed	by	the	table	pointer	pair		
	 (TBHP	and	TBLP)	is	moved	to	the	specified	Data	Memory	and	the	high	byte	moved	to	TBLH.
Operation	 [m]	←	program	code	(low	byte)	
	 TBLH	←	program	code	(high	byte)
Affected	flag(s)	 None

TABRDC [m]	 Read	table	(current	page)	to	TBLH	and	Data	Memory
Description	 The	low	byte	of	the	program	code	(current	page)	addressed	by	the	table	pointer	(TBLP)	is		
	 moved	to	the	specified	Data	Memory	and	the	high	byte	moved	to	TBLH.
Operation	 [m]	←	program	code	(low	byte)	
	 TBLH	←	program	code	(high	byte)
Affected	flag(s)	 None

TABRDL [m] Read	table	(last	page)	to	TBLH	and	Data	Memory
Description	 The	low	byte	of	the	program	code	(last	page)	addressed	by	the	table	pointer	(TBLP)	is	moved		
	 to	the	specified	Data	Memory	and	the	high	byte	moved	to	TBLH.
Operation	 [m]	←	program	code	(low	byte)	
	 TBLH	←	program	code	(high	byte)
Affected	flag(s)	 None

XOR A,[m]	 Logical	XOR	Data	Memory	to	ACC
Description	 Data	in	the	Accumulator	and	the	specified	Data	Memory	perform	a	bitwise	logical	XOR		
	 operation.	The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	″XOR″	[m]
Affected	flag(s)	 Z

XORM A,[m]	 Logical	XOR	ACC	to	Data	Memory
Description	 Data	in	the	specified	Data	Memory	and	the	Accumulator	perform	a	bitwise	logical	XOR		
	 operation.	The	result	is	stored	in	the	Data	Memory.
Operation	 [m]	←	ACC	″XOR″	[m]
Affected	flag(s)	 Z

XOR A,x Logical	XOR	immediate	data	to	ACC
Description	 Data	in	the	Accumulator	and	the	specified	immediate	data	perform	a	bitwise	logical	XOR		
	 operation.	The	result	is	stored	in	the	Accumulator.
Operation	 ACC	←	ACC	″XOR″	x
Affected	flag(s)	 Z

Rev. 1.40 94 �a��� �1� �01� Rev. 1.40 95 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Package Information

Note	 that	 the	package	 information	provided	here	 is	 for	 consultation	purposes	only.	As	 this	
information	may	be	updated	at	regular	intervals	users	are	reminded	to	consult	the	Holtek	website	for	
the	latest	version	of	the	Package/Carton	Information.

Additional	supplementary	information	with	regard	to	packaging	is	listed	below.	Click	on	the	relevant	
section	to	be	transferred	to	the	relevant	website	page.

•	 Further	Package	Information	(include	Outline	Dimensions,	Product	Tape	and	Reel	Specifications)

•	 Packing	Meterials	Information

•	 Carton	information

Rev. 1.40 94 �a��� �1� �01� Rev. 1.40 95 �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

16-pin NSOP (150mil) Outline Dimensions

� �

�

�

�

�

� �

�

�

� �

�
�

� �

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.��6 BSC —
B — 0.154 BSC —
C 0.01� — 0.0�0
C’ — 0.�90 BSC —
D — — 0.069
E — 0.050 BSC —
F 0.004 — 0.010
G 0.016 — 0.050
H 0.004 — 0.010
α 0° — 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A — 6.0 BSC —
B — �.9 BSC —
C 0.�1 — 0.51
C’ — 9.9 BSC —
D — — 1.�5
E — 1.�� BSC —
F 0.10 — 0.�5
G 0.40 — 1.��
H 0.10 — 0.�5
α 0° — 8°

Rev. 1.40 96 �a��� �1� �01� Rev. 1.40 9� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

20-pin SOP (300mil) Outline Dimensions

� �

�

� �

� �

� �

�

�

� �

� �
�

�

�

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.406 BSC —
B — 0.�95 BSC —
C 0.01� — 0.0�0
C’ — 0.504 BSC —
D — — 0.104
E — 0.050 BSC —
F 0.004 — 0.01�
G 0.016 — 0.050
H 0.008 — 0.01�
α 0° — 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A — 10.�0 BSC —
B — �.5 BSC —
C 0.�1 — 0.51
C’ — 1�.8 BSC —
D — — �.65
E — 1.�� BSC —
F 0.10 — 0.�0
G 0.40 — 1.��
H 0.�0 — 0.��
α 0° — 8°

Rev. 1.40 96 �a��� �1� �01� Rev. 1.40 9� �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

24-pin SOP (300mil) Outline Dimensions

� �

�

� �

� �

� �

�

�

� �

� �
�

�

�

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.406 BSC —
B — 0.�95 BSC —
C 0.01� — 0.0�0
C’ — 0.606 BSC —
D — — 0.104
E — 0.050 BSC —
F 0.004 — 0.01�
G 0.016 — 0.050
H 0.008 — 0.01�
α 0° — 8°

Symbol
Dimensions in mm

Min. Nom. Max.

A — 10.�0 BSC —

B — �.5 BSC —

C 0.�1 — 0.51

C’ — 15.4 BSC —

D — — �.65

E — 1.�� BSC —

F 0.10 — 0.�0

G 0.40 — 1.��

H 0.�0 — 0.��

α 0° — 8°

Rev. 1.40 98 �a��� �1� �01� Rev. 1.40 PB �a��� �1� �01�

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

HT48R004/HT48R008
Cost-Effective I/O 8-Bit OTP MCU

Copy�ig�t© �01� by HOLTEK SE�ICONDUCTOR INC.

T�e info�mation appea�ing in t�is Data S�eet is believed to be a��u�ate at t�e time
of publi�ation. Howeve�� Holtek assumes no �esponsibility a�ising f�om t�e use of
the specifications described. The applications mentioned herein are used solely
fo� t�e pu�pose of illust�ation and Holtek makes no wa��anty o� �ep�esentation t�at
su�� appli�ations will be suitable wit�out fu�t�e� modifi�ation� no� �e�ommends
t�e use of its p�odu�ts fo� appli�ation t�at may p�esent a �isk to �uman life due to
malfun�tion o� ot�e�wise. Holtek's p�odu�ts a�e not aut�o�ized fo� use as ��iti�al
�omponents in life suppo�t devi�es o� systems. Holtek �ese�ves t�e �ig�t to alte�
its products without prior notification. For the most up-to-date information, please
visit ou� web site at �ttp://www.�oltek.�om.tw.

