

Features

- Output voltage ranges: Fixed range of 1.8V, 2.5V, 2.7V, 3.0V, 3.3V, 5.0V type.
- Highly accuracy: ±2%
- Low voltage drop: 360mV (typ.), V_{OUT}=5.0V at 500mA
- Guaranteed output current: 500mA
- Low quiescent current: 4µA (typ.)
- Current limiting
- Over-temperature shutdown
- 5-pin SOT23 and 3-pin SOT89 Packages

Applications

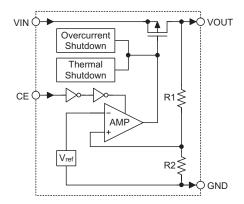
- Portable electronics
- Wireless devices
- · Cordless phones
- PC peripherals
- · Battery powered devices
- Electronic scales

Selection Table

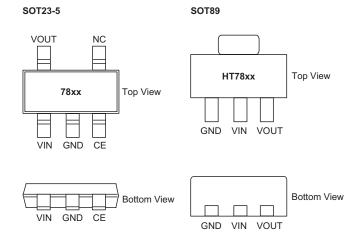
General Description The HT78xx series of positive, linear regulators

features low quiescent current ($4\mu A$ typ.) with low dropout voltage, making them ideal for battery applications. The devices are capable of supplying 500mA of output current continuously.

They are available with several fixed output voltages ranging from 1.8V to 5.0V. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.


These rugged devices have Thermal Shutdown and Current Limiting to prevent device failure under the "Worst" of operating conditions.

Part No.	Output Voltage	Tolerance	Package	Marking			
HT7818	1.8V						
HT7825	2.5V		SOT23-5	78XX (for SOT23-5)			
HT7827	2.7V	±2%					
HT7830	3.0V		SOT89	HT78XX (for SOT89)			
HT7833	3.3V						
HT7850	5.0V						


Note: "xx" stands for output voltages.

Block Diagram

Pin Assignment

Pin Description

Pin No.		Pin Name	Description	
SOT23-5	SOT89	Fill Name	Description	
3	—	CE	Chip enable pin, high enable	
5	3	VOUT Output pin		
1	2	VIN Input pin		
2	1	GND	Ground pin	
4	_	NC	No connection	

Absolute Maximum Ratings*

Maximum Supply VoltageUp to 8.3	5V	Storage Temperature50°C to 125°C
Operating Temperature40°C to 85	°C	Maximum Junction Temperature 150°C

Note: These are stress ratings only. Stresses exceeding the range specified under Absolute Maximum Ratings may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. * Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits.

The guaranteed specifications apply only for the test conditions listed.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
0	Thermal Resistance (Junction to Ambient)	SOT23-5	500	°C/W
ΑLΘ	(Assume no ambient airflow, no heat sink)	SOT89	200	°C/W
Po	Dower Dissinction	SOT23-5	0.20	W
	Power Dissipation	SOT89	0.50	W

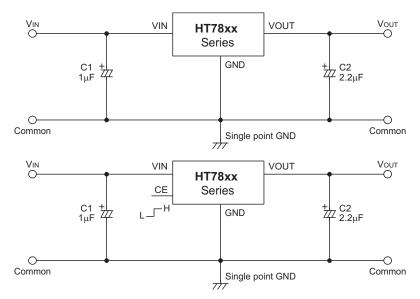
Note: P_D is measured at Ta=25°C

Electrical Characteristics

 $T_{j}\!\!=\!\!25^{\circ}C,\,V_{IN}\!\!=\!\!V_{OUT}\!\!+\!\!1.0V\!,\,I_{O}\!\!=\!\!1mA,$ unless otherwise specified

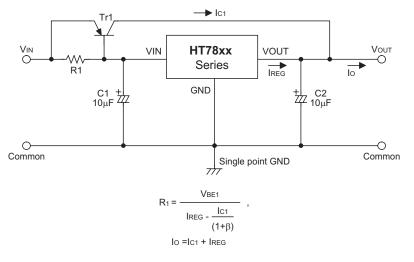
Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
Vin	Input Voltage	_	—		_	8	V
ΔVout	Output Voltage Tolerance	—	—		_	2	%
Iss	Quiescent Current	Io=0mA, VCE=\	/ _{IN}	_	4	7	μA
ΔV_{LOAD}	Load Regulation (Note1)	1mA ≤ I _{OUT} ≤ 50	00mA	_	0.004	0.008	%/mA
			V₀≤ 1.8V	_	800	1200	mV
Vdrop	Dropout Voltage (Note2)	ΔV _{OUT} =2% Ιουτ=500mA	$2.5V \le V_0 \le 2.7V$	_	500	650	
		100T-30011A	$3.0V \le V_0 \le 5.0V$	_	360	500	
ΔV_{LINE}	Line Regulation	V _{OUT} +1.0V≤V _{IN} ≤8.0V		_	0.2	0.3	%/V
ILIM	Current Limit (Note3)	ΔV _{OUT} =10%		500	_		mA
VIH	CE Input High Threshold	V_{OUT} + 1V \leq $V_{IN} \leq$ 8V		2	_	_	V
VIL	CE Input Low Threshold	V_{OUT} + 1V \leq $V_{IN} \leq$ 8V		_	_	0.8	V
Isd	Shutdown Current	CE input voltage ≤ 0.8V		_	0.5	1.0	μA
$\frac{\Delta V_{\text{OUT}}}{\Delta T_{\text{a}}}$	Temperature Coefficient	-40°C < Ta < 85°C		_	±0.8	_	mV/°C

- Note: 1. Load regulation is measured at a constant junction temperature, using pulse testing with a low ON time and is guaranteed up to the maximum power dissipation. Power dissipation is determined by the input/output differential voltage and the output current. Guaranteed maximum power dissipation will not be available over the full input/output range. The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} Ta) / \theta_{JA}$.
 - 2. Dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN} = V_{OUT} + 1V$ with a fixed load.
 - 3. Current limit is measured by pulsing for a short time.

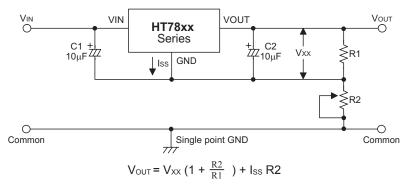

 $\frac{R2}{R1}$

Application Circuit

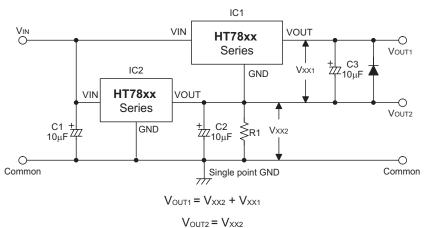
The circuits provided in this section are for reference only.

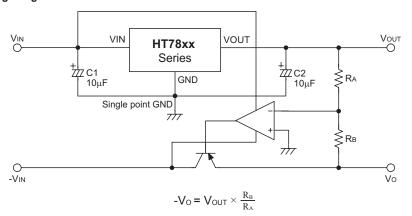

For the purposes of clarity some of the detailed components pramaters shall depend on the application.

Basic Circuits


Typical Application Circuits

High Output Current Positive Voltage Regulator

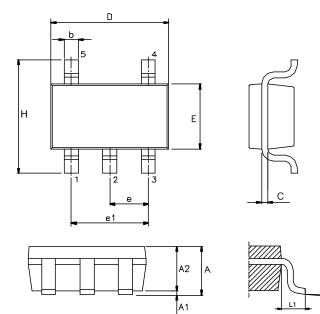



Increased Output Voltage Circuit

Dual Supply Circuit

Tracking Voltage Regulator

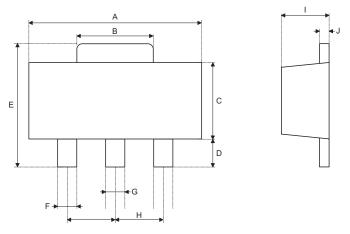
Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/</u> <u>Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

5-pin SOT23 Outline Dimensions


Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
А	_	_	0.057	
A1	_	_	0.006	
A2	0.035	0.045	0.051	
b	0.012	_	0.020	
С	0.003	_	0.009	
D	_	0.114 BSC	_	
E	_	0.063 BSC	_	
е	_	0.037 BSC	_	
e1	_	0.075 BSC	_	
Н	_	0.110 BSC	_	
L1	—	0.024 BSC	_	
θ	0°	_	8°	

Symbol	Dimensions in mm			
	Min.	Nom.	Max.	
A	—	—	1.45	
A1	_	—	0.15	
A2	0.90	1.15	1.30	
b	0.30	—	0.50	
С	0.08	—	0.22	
D	_	2.90 BSC	—	
E	_	1.60 BSC	—	
е	_	0.95 BSC	—	
e1	_	1.90 BSC	—	
Н	—	2.80 BSC	—	
L1	—	0.60 BSC	—	
θ	0°	—	8°	

e

3-pin SOT89 Outline Dimensions

Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
А	0.173	_	0.185	
В	0.053	_	0.072	
С	0.090	_	0.106	
D	0.031	—	0.047	
Е	0.155	—	0.173	
F	0.014	—	0.019	
G	0.017	—	0.022	
Н	—	0.059 BSC	—	
Ι	0.055	_	0.063	
J	0.014	—	0.017	

Symbol	Dimensions in mm			
	Min.	Nom.	Max.	
А	4.40	—	4.70	
В	1.35	_	1.83	
С	2.29	—	2.70	
D	0.80	_	1.20	
Е	3.94	—	4.40	
F	0.36	_	0.48	
G	0.44	_	0.56	
Н	_	1.50 BSC	—	
Ι	1.40	—	1.60	
J	0.35	_	0.44	

Copyright[©] 2019 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.