
HT86Axx/HT86ARxx

A/D Type Voice 8-Bit MCU

Rev. 1.00 1 March 19, 2010

General Description

The devices are Voice type series 8-bit high perfor-

mance microcontrollers which include a voice

synthesiser and tone generator. They are specifically

designed for applications which require multiple I/Os

and sound effects, such as voice and melodies. They

can provide various sampling rates and beats, tone

levels, tempos for speech synthesisers and melody

generators. They also include an integrated high

quality, voltage type DAC output, an integrated series

protocol interface, multi-channel A/D Converter and

integrated power amplifier for speaker driving. The ex-

ternal interrupt can be triggered with falling edges or

both falling and rising edges.

The devices are fully supported by the Holtek range of

fully functional development and programming tools,

providing a means for fast and efficient product devel-

opment cycles.

Features

� HT86AXX Operating voltage: 2.0V~5.5V

HT86ARXX Operating voltage: 2.2V~5.5V

� System clock: 4MHz~8MHz

� Crystal and RC system oscillator

� 40 I/O pins

� 8K�16-bit Program Memory

� 384�8-bit Data Memory

� 768/1536K-bit voice ROM size

� 36/72 sec voice length

� External interrupt input

� 12-bit high quality voltage type D/A output

� 4 channels 12-bit resolution A/D Converter

� SPI series protocol interface

� Integrated 1W power amplifier to drive 8� Speaker

� Four 8-bit programmable Timer with overflow

interrupt and 7-stage prescaler

� One optional 32768Hz crystal oscillator for RTC

time base

� 8-bit counter with 3-bit prescaler

� Watchdog timer function

� 8-level subroutine nesting

� Low voltage reset and low voltage detect function

� Integrated voice ROM with various capacities

� Power-down function and wake-up feature reduce

power consumption

� Up to 0.5�s instruction cycle with 8MHz system

clock at VDD= 5V

� 63 powerful instructions

� 44-pin QFP and 64-pin LQFP packages

Technical Document

� Application Note
� HA0075E MCU Reset and Oscillator Circuits Application Note

www.DataSheet4U.com

http://www.holtek.com.tw/english/tech/appnote/appnote.htm#mcu
http://www.holtek.com.tw/english/tech/appnote/uc/pdf/ha0075ev110.pdf


Part No. VDD
Program

Memory

Data

Memory

Voice

ROM

Voice

Capacity
I/O Timer D/A Stack

Package

Types

HT86A36 2.0V~

5.5V
8K�16 384�8

96�8 36sec

40 8-bit�4 12-bit�1 8
44QFP,

64LQFP

HT86A72

192�8 72sec
HT86AR72

2.2V~

5.5V

Note: Voice length is estimated by 21K-bit data rate

Block Diagram

HT86Axx/HT86ARxx

Rev. 1.00 2 March 19, 2010

� � � � �

� � 	

 � � 
 � � � � � �

� 	 � � � � � �
� � � � � �

� � � � � � � � �
� � � � �
� � � � �

� � � � �  � !
� � � � �

� � � � �
� � � 

� 
 "

 � � �

� � � � �  � !
� � � � � � � � � � # # � � � �

� � � � �

 � � � $ � �

� � � � � � $ % �

 � � � � � # # � �

� 
 � 
 � � � � � #
� � � � # # � � � �

& � '
( � # � � ! �
� � � � � �

� � ' � �
	 � % # � ) � � �

� � � � � #
� � � � � ) � � �

	 � �

 � � 
 � � � � �

( � � � �
� � �

& � '
( � # � � ! �
� � � � �

� � 


� � � ! � � � �
� � � � � �

Selection Table

The devices include a comprehensive range of features, with most features common to all devices. The main features

distinguishing them are Voice ROM capacity and power supply voltage. The functional differences between the de-

vices are shown in the following table. Devices which include an �A� in their part number are Mask type while devices

which contain an �R� in their part number are OTP type.

www.DataSheet4U.com



Pin Assignment

HT86Axx/HT86ARxx

Rev. 1.00 3 March 19, 2010

*

+

,

-

.

/

0

�

1

* 2

* *
* + * , * - * . * / * 0 * � * 1 + 2 + * + +

+ ,

+ -

+ .

+ /

+ 0

+ �

+ 1

, 2

, *

, +

, ,
, -, ., /, 0, �, 1- 2- *- +- ,- -

� � � � � � �
� � 	 
 � � 
 �

� 	 2

� 
 ,

� 
 +

� 
 *

� 
 2

� � 2

� � *

� � +

� � ,

( � � 	 *

( � � 	 *

�
3
�

�
�
/

�
�
.

�
�
-

�
	
0

�
	
/

�
	
.

�
	
-

�
	
,

�
	
+

�
	
*

�
�
�

(
�
�
�

(
�
�
�

(
�
�
�

�
�
4

(
5
�	
�

	
"
�
6
�7

	
"
�
6
�
"
�

(
�
�
	

(
�
�
	

(
�
3
8

9 � 7

9 � " �

( � �

� 3 -

� 3 .

( � �

� 7 �

� 3 /

� � 
 +

� � 
 *

� 
 .

*

+

,

-

.

/

0

�

1

* 2

* *
* + * , * - * . * / * 0 * � * 1 + 2 + * + +

+ ,

+ -

+ .

+ /

+ 0

+ �

+ 1

, 2

, *

, +

, ,
, -, ., /, 0, �, 1- 2- *- +- ,- -

� 	 2

� 
 ,

� 
 +

� 
 *

� 
 2

� � 2

� � *

� � +

� � ,

( � � 	 *

( � � 	 *

�
3
�

�
�
/

�
�
.

�
�
-

�
	
0

�
	
/

�
	
.

�
	
-

�
	
,

�
	
+

�
	
*

�
�
�

(
�
�
�

(
�
�
�

(
�
�
�

�
�
4

(
5
�	
�

	
"
�
6
�7

	
"
�
6
�
"
�

(
�
�
	

(
�
�
	

(
�
3
8

9 � 7

9 � " �

( � �

� 3 -

� 3 .

( � �

� 7 �

� 3 /

� � 
 +

� � 
 *

� 
 .

- 0

- /

- .

- -

- ,

- +

- *

+ * + + + , + - + . + / + 0 + � + 1 , 2 , * , +
, ,

, -

, .

, /
, 0

, �

, 1
- 2

/ - / , / + / * / 2 . 1 . � . 0 . / . . . - . , . + . * . 2 - 1
- �*

+

,

-

.

/

0

�

1

* 2

* *

* +

* ,

* -

* .

* /
* 0 * � * 1 + 2

� � � � � � �
� � 	 � 
 � � 
 �

� 	 2

7 


7 


� 	 *

� 	 +

� 	 ,

� 	 -

� 	 .

� 	 0

� 
 ,

� 
 +

� 
 *

� 
 2

� � 2

� � *

� � +

� 3 ,

� 3 �

9 � 7

9 � " �

( � �

� 3 -

� 3 .

( � �

� 7 �

� 3 /

� � 
 +

� � 
 *

� 3 0

� 
 0

� 
 /

� 
 .

�
�
�

(
�
�
�

(
�
�
�

(
�
�
�

(
�
�
�

�
�
4

(
5
�	
�

	
"
�
6
�7

	
"
�
6
�
"
�

(
�
�
	

(
�
�
	

�


-

(
�
3
8

(
�
�
	
*

(
�
�
	
*

�
�
,

�
3
+

�
3
*

�
3
2

�
�
0

�
�
/

�
�
.

�
�
-

�
5
0

�
5
/

�
5
.

�
5
-

�
5
,

�
5
+

�
5
*

�
5
2

�
	
/

- 0

- /

- .

- -

- ,

- +

- *

+ * + + + , + - + . + / + 0 + � + 1 , 2 , * , +
, ,

, -

, .

, /
, 0

, �

, 1
- 2

/ - / , / + / * / 2 . 1 . � . 0 . / . . . - . , . + . * . 2 - 1
- �*

+

,

-

.

/

0

�

1

* 2

* *

* +

* ,

* -

* .

* /
* 0 * � * 1 + 2

� 	 2

7 


7 


� 	 *

� 	 +

� 	 ,

� 	 -

� 	 .

� 	 0

� 
 ,

� 
 +

� 
 *

� 
 2

� � 2

� � *

� � +

� 3 ,

� 3 �

9 � 7

9 � " �

( � �

� 3 -

� 3 .

( � �

� 7 �

� 3 /

� � 
 +

� � 
 *

� 3 0

� 
 0

� 
 /

� 
 .

�
�
�

(
�
�
�

(
�
�
�

(
�
�
�

(
�
�
�

�
�
4

(
5
�	
�

	
"
�
6
�7

	
"
�
6
�
"
�

(
�
�
	

(
�
�
	

�


-

(
�
3
8

(
�
�
	
*

(
�
�
	
*

�
�
,

�
3
+

�
3
*

�
3
2

�
�
0

�
�
/

�
�
.

�
�
-

�
5
0

�
5
/

�
5
.

�
5
-

�
5
,

�
5
+

�
5
*

�
5
2

�
	
/

� � � � � � �
� � � � � � � �
� � 	 
 � � 
 �

� � � � � � �
� � � � � � � �
� � 	 � 
 � � 
 �

www.DataSheet4U.com



Pad Assignment

HT86A36

Chip Size: 2655 � 2725 (�m)
2

* The IC substrate should be connected to VSS in the PCB layout artwork.

HT86Axx/HT86ARxx

Rev. 1.00 4 March 19, 2010

: 2 ; 2 <

*

+

,

-

.

/

0

�

1

* 2
* * * + * ,

* - * . * / * 0 * � * 1 + 2
+ * + + + ,

+ - + . + / + 0 + � + 1

, 2

, *

, +

, ,

- *

- 2

, 1

, �

, 0

, /

, .

, -

- .

- -

- ,

- +

- /- 0- �- 1. 2. *. +. ,. -. .. /. 0. �. 1/ 2/ */ +/ ,/ -/ ./ // 0

www.DataSheet4U.com



Pad Coordinates Unit: �m

Pad No. Pad Name X Y Pad No. Pad Name X Y

1 PA0 �1141.487 1211.389 35 OSC2 1175.250 �400.731

2 PC3 �1177.862 �380.061 36 PE6 1175.250 �296.331

3 PC2 �1177.862 �483.061 37 INT 1175.250 �201.331

4 PC1 �1177.862 �578.061 38 VSS 1174.567 �90.426

5 PC0 �1177.862 �681.061 39 PE5 1174.567 19.807

6 PD0 �1150.059 �789.182 40 PE4 1174.567 122.807

7 PD1 �1150.059 �892.182 41 VDD 1174.567 226.177

8 PD2 �1150.059 �987.182 42 XOUT 1174.450 794.097

9 PD3 �1150.059 �1090.182 43 XIN 1174.450 897.097

10 VSSA1 �1215.319 �1257.457 44 RES 1174.450 992.097

11 VDDA1 �1008.914 �1225.000 45 PE3 1166.013 1211.389

12 VREF �906.508 �1213.900 46 PE2 1063.013 1211.389

13 PC4 �803.508 �1213.900 47 PE1 941.513 1211.389

14 NC �672.868 �1082.529 48 PE0 838.513 1211.389

15 NC �596.868 �1082.529 49 PD7 743.513 1211.389

16 NC �520.868 �1082.529 50 PD6 640.513 1211.389

17 NC �444.868 �1082.529 51 PD5 545.513 1211.389

18 NC �368.868 �1082.529 52 PD4 442.513 1211.389

19 VSSA �220.317 �1116.909 53 PB7 347.513 1211.389

20 VDDA �113.217 �1121.909 54 PB6 244.513 1211.389

21 AUD_OUT 8.383 �1151.309 55 PB5 149.513 1211.389

22 AUD_IN 156.311 �1146.077 56 PB4 46.513 1211.389

23 VBIAS 289.311 �1146.077 57 PB3 �48.487 1211.389

24 SP+ 391.136 �1101.247 58 PB2 �151.487 1211.389

25 VSSM 498.085 �1101.247 59 PB1 �246.487 1211.389

26 VDDM 605.036 �1101.247 60 PB0 �349.487 1211.389

27 VDDM 733.086 �1101.247 61 PA7 �444.487 1211.389

28 VSSM 840.037 �1101.247 62 PA6 �547.487 1211.389

29 SP- 946.986 �1101.247 63 PA5 �642.487 1211.389

30 PC5 1174.567 �1158.350 64 PA4 �745.487 1211.389

31 PC6 1174.567 �1055.350 65 PA3 �840.487 1211.389

32 PC7 1174.567 �960.350 66 PA2 �943.487 1211.389

33 PE7 1174.567 �857.350 67 PA1 �1038.487 1211.389

34 OSC1 1175.250 �499.731

HT86Axx/HT86ARxx

Rev. 1.00 5 March 19, 2010

www.DataSheet4U.com



HT86A72

Chip Size: 2651 � 3078 (�m)
2

* The IC substrate should be connected to VSS in the PCB layout artwork.

HT86Axx/HT86ARxx

Rev. 1.00 6 March 19, 2010

: 2 ; 2 <

*

+

,

-

.

/

0

�

1

* 2
* * * + * ,

* - * . * / * 0 * �
* 1 + 2

+ * + + + ,
+ - + . + / + 0 + � + 1

, 2

, *

, +

, ,

- *

- 2

, 1

, �

, 0

, /

, .

, -

- .

- -

- ,

- +

- /- 0- �- 1. 2. *. +. ,. -. .. /. 0. �. 1/ 2/ */ +/ ,/ -/ ./ // 0

www.DataSheet4U.com



Pad Coordinates Unit: �m

Pad No. Pad Name X Y Pad No. Pad Name X Y

1 PA0 �1139.487 1389.643 35 OSC2 1177.250 �817.231

2 PC3 �1175.862 �556.476 36 PE6 1177.250 �232.827

3 PC2 �1175.862 �659.476 37 INT 1177.250 �137.827

4 PC1 �1175.862 �754.476 38 VSS 1176.567 �27.172

5 PC0 �1175.862 �857.476 39 PE5 1176.567 82.881

6 PD0 �1148.059 �965.628 40 PE4 1176.567 185.881

7 PD1 �1148.059 1068.682 41 VDD 1176.567 289.431

8 PD2 �1148.059 �1163.682 42 XOUT 1176.450 892.351

9 PD3 �1148.059 �1266.682 43 XIN 1176.450 995.351

10 VSSA1 �1213.319 �1433.997 44 RES 1176.450 1090.351

11 VDDA1 �1009.034 �1401.500 45 PE3 1141.513 1389.643

12 VREF �906.613 �1390.400 46 PE2 1038.513 1389.643

13 PC4 �803.613 �1390.400 47 PE1 943.513 1389.643

14 NC �671.507 �1258.234 48 PE0 840.513 1389.643

15 NC �595.507 �1258.234 49 PD7 745.513 1389.643

16 NC �519.507 �1258.234 50 PD6 642.513 1389.643

17 NC �443.507 �1258.234 51 PD5 547.513 1389.643

18 NC �367.507 �1258.234 52 PD4 444.513 1389.643

19 VSSA �218.317 �1293.409 53 PB7 349.513 1389.643

20 VDDA �111.217 �1298.409 54 PB6 246.513 1389.643

21 AUD_OUT 10.383 �1327.809 55 PB5 151.513 1389.643

22 AUD_IN 158.311 �1322.577 56 PB4 48.513 1389.643

23 VBIAS 261.311 �1322.577 57 PB3 �46.487 1389.643

24 SP+ 393.136 �1277.747 58 PB2 �149.487 1389.643

25 VSSM 500.085 �1277.747 59 PB1 �244.487 1389.643

26 VDDM 607.036 �1277.747 60 PB0 �347.487 1389.643

27 VDDM 735.086 �1277.747 61 PA7 �442.487 1389.643

28 VSSM 842.037 �1277.747 62 PA6 �545.487 1389.643

29 SP- 948.986 �1277.747 63 PA5 �640.487 1389.643

30 PC5 1176.567 �1334.850 64 PA4 �743.487 1389.643

31 PC6 1176.567 �1231.850 65 PA3 �838.487 1389.643

32 PC7 1176.567 �1136.850 66 PA2 �941.487 1389.643

33 PE7 1176.567 �1033.850 67 PA1 �1036.487 1389.643

34 OSC1 1177.250 �916.231

HT86Axx/HT86ARxx

Rev. 1.00 7 March 19, 2010

www.DataSheet4U.com



HT86AR72

Chip Size: 2580 � 5870 (�m)
2

* The IC substrate should be connected to VSS in the PCB layout artwork.

HT86Axx/HT86ARxx

Rev. 1.00 8 March 19, 2010

: 2 ; 2 <

*

+

,

-

.

/

0

�

1

* 2
* * * + * ,

* - * . * / * 0 * �
* 1 + 2 + * + + + ,

+ - + . + / + 0 + � + 1

, 2

, *

, +

, ,

- *

- 2

, 1

, �

, 0

, /

, .

, -

- .

- -

- ,

- +

- /- 0- �- 1. 2. *. +. ,. -. .. /. 0. �. 1/ 2/ */ +/ ,/ -/ ./ // 0

www.DataSheet4U.com



Pad Coordinates Unit: �m

Pad No. Pad Name X Y Pad No. Pad Name X Y

1 PA0 �1138.054 2785.633 35 OSC2 1138.850 �2171.224

2 PC3 �1138.629 �1952.576 36 PE6 1138.668 �1669.854

3 PC2 �1138.629 �2055.576 37 INT 1138.668 �1574.854

4 PC1 �1138.629 �2150.576 38 VSS 1138.985 �1432.154

5 PC0 �1138.629 �2253.576 39 PE5 1138.985 �1321.921

6 PD0 �1110.826 �2361.132 40 PE4 1138.985 �1218.921

7 PD1 �1110.826 �2464.132 41 VDD 1138.900 �1110.526

8 PD2 �1110.826 �2559.132 42 XOUT 1138.908 �994.167

9 PD3 �1110.826 �2662.132 43 XIN 1138.908 �891.167

10 VSSA1 �1176.086 �2827.757 44 RES 1138.906 �761.007

11 VDDA1 �968.465 �2785.850 45 PE3 1142.946 2785.633

12 VREF �873.465 �2785.850 46 PE2 1039.946 2785.633

13 PC4 �770.465 �2785.850 47 PE1 944.946 2785.633

14 NC �638.243 �2804.019 48 PE0 841.946 2785.633

15 NC �562.243 �2804.019 49 PD7 746.946 2785.633

16 NC �486.243 �2804.019 50 PD6 643.946 2785.633

17 NC �410.243 �2804.019 51 PD5 548.946 2785.633

18 NC �334.243 �2804.019 52 PD4 445.946 2785.633

19 VSSA �232.480 �2738.114 53 PB7 350.946 2785.633

20 VDDA �131.115 �2739.664 54 PB6 247.946 2785.633

21 AUD_OUT �28.525 �2739.664 55 PB5 152.946 2785.633

22 AUD_IN 120.644 �2718.027 56 PB4 49.946 2785.633

23 VBIAS 223.644 �2718.027 57 PB3 �45.054 2785.633

24 SP+ 355.469 �2673.197 58 PB2 �148.054 2785.633

25 VSSM 462.418 �2673.197 59 PB1 �243.054 2785.633

26 VDDM 569.369 �2673.197 60 PB0 �346.054 2785.633

27 VDDM 697.419 �2673.197 61 PA7 �441.054 2785.633

28 VSSM 804.370 �2673.197 62 PA6 �544.054 2785.633

29 SP- 911.319 �2673.197 63 PA5 �639.054 2785.633

30 PC5 1138.900 �2696.357 64 PA4 �742.054 2785.633

31 PC6 1138.900 �2593.357 65 PA3 �837.054 2785.633

32 PC7 1138.900 �2498.357 66 PA2 �940.054 2785.633

33 PE7 1138.900 �2395.357 67 PA1 �1035.054 2785.633

34 OSC1 1138.900 �2274.826

HT86Axx/HT86ARxx

Rev. 1.00 9 March 19, 2010

www.DataSheet4U.com



Pin Description

Pin Name I/O Options Description

PA0~PA7 I/O
Wake-up,

Pull-high

Bidirectional 8-bit I/O port. Each pin on this port can be configured as a wake-up

input by a configuration option. Software instructions determine if the pin is a

CMOS output or Schmitt trigger input. Configuration options determine which pins

on the port have a pull-high resistor.

PB0~PB7 I/O Pull-high

Bidirectional 8-bit I/O port. Software instructions determine if the pin is a CMOS

output or Schmitt trigger input. Configuration options determine which pins on the

port have a pull-high resistor.

PC0/AD0

PC1/AD1

PC2/AD2

PC3/AD3

PC4~PC7

I/O Pull-high

Bidirectional 8-bit I/O port. Software instructions determine if the pin is a CMOS

output or Schmitt trigger input. Configuration options determine which pins on the

port have a pull-high resistor. Pins PC0~PC3 are pin-shared with A/D converter

input pins AD0~AD3.

PD0/SCS

PD1/SCK

PD2/SDI

PD3/SDO

PD4~PD7

I/O Pull-high

Bidirectional 8-bit I/O port. Software instructions determine if the pin is a CMOS

output or Schmitt trigger input. Configuration options determine which pin on the

port have a pull-high resistor. Pins PD0~PD3 are pin-shared with SPI interface

pins SCS, SCK, SDI, SDO.

PE0~PE7 I/O Pull-high

Bidirectional 8-bit I/O port. Software instructions determine if the pin is a CMOS

output or Schmitt trigger input. Configuration options determine which pins on the

port have a pull-high resistor.

AUD_OUT O � Audio output for driving an external transistor or for driving HT82V739

AUD_IN I � Power amplifier input pin

SP-, SP+ � Power amplifier output pins

VBIAS O � Voltage bias pin

RES I � Schmitt trigger reset input. Active low.

INT I

Falling Edge

Trigger or

Falling/Rising

Edge Trigger

External interrupt Schmitt trigger input without pull-high resistor. A configuration

option determines if the interrupt active edge is a falling edge only or both a falling

and rising edge.

OSC1

OSC2
�

Crystal

or RC

OSC1, OSC2 are connected to an external RC network or external crystal, deter-

mined by configuration option, for the internal system clock. If the RC system

clock option is selected, pin OSC2 can be used to measure the system clock at

1/4 frequency.

XIN

XOUT
� Crystal Connected to an external 32kHz crystal

VREF I � A/D circuit reference voltage

VDD � � Positive digital power supply

VSS � � Negative digital power supply, ground.

VDDA � � Positive DAC circuit power supply

VSSA � � Negative DAC circuit power supply, ground

VDDA1 � � Positive A/D circuit power supply

VSSA1 � � Negative A/D circuit power supply, ground

VDDM � � Positive Power Amp. power supply

VSSM � � Negative Power Amp. power supply, ground

Note: 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins can be selected to have pull-high resistors.

HT86Axx/HT86ARxx

Rev. 1.00 10 March 19, 2010

www.DataSheet4U.com



Absolute Maximum Ratings

Supply Voltage...........................VSS+2.0V to VSS+5.5V Storage Temperature ............................�50	C to 125	C

Input Voltage..............................VSS�0.3V to VDD+0.3V Operating Temperature...........................�40	C to 85	C

IOL Total ..............................................................150mA IOH Total............................................................�100mA

Total Power Dissipation .....................................500mW

Note: These are stress ratings only. Stresses exceeding the range specified under �Absolute Maximum Ratings� may

cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed

in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics Ta=25	C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD HT86AXX Operating Voltage � fSYS=4MHz/8MHz 2.0 � 5.5 V

VDD HT86ARXX Operating Voltage � fSYS=4MHz/8MHz 2.2 � 5.5 V

IDD1 Operating Current

3V No load, fSYS=4MHz,

RTC enable, DAC disable

� � 1.5 mA

5V � � 5.0 mA

3V No load, fSYS=8MHz,

RTC enable, DAC disable

� � 3.0 mA

5V � � 7.0 mA

IDD2 Operating Current

3V No load, fSYS=4MHz,

RTC enable, DAC enable

� � 10 mA

5V � � 18 mA

3V No load, fSYS=8MHz,

RTC enable, DAC enable

� � 20 mA

5V � � 36 mA

IDD3 Operating Current

3V No load, fSYS=4MHz,

RTC disable, DAC disable

� � 1.5 mA

5V � � 5.0 mA

3V No load, fSYS=8MHz,

RTC disable, DAC disable

� � 3.0 mA

5V � � 7.0 mA

IDD4 Operating Current

3V No load, fSYS=4MHz,

RTC disable, DAC enable

� � 10 mA

5V � � 18 mA

3V No load, fSYS=8MHz,

RTC disable, DAC enable

� � 20 mA

5V � � 36 mA

ISTB1 Standby Current
3V No load, system HALT,

WDT enable, RTC enable

� � 5 �A

5V � � 10 �A

ISTB2 Standby Current
3V No load, system HALT,

WDT disable, RTC enable

� � 2 �A

5V � � 4 �A

ISTB3 Standby Current
3V No load, system HALT,

WDT enable, RTC disable

� � 4 �A

5V � � 8 �A

ISTB4 Standby Current
3V No load, system HALT,

WDT disable, RTC disable

� � 1.0 �A

5V � � 2.0 �A

VIL1 Input Low Voltage for I/O Ports � � 0 � 0.3VDD V

VIH1 Input High Voltage for I/O Ports � � 0.7VDD � VDD V

HT86Axx/HT86ARxx

Rev. 1.00 11 March 19, 2010

www.DataSheet4U.com



Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VIL2 Input Low Voltage (RES) � � 0 � 0.4VDD V

VIH2 Input High Voltage (RES) � � 0.9VDD � VDD V

VLVR Low Voltage Reset � LVR 2.1V option 2.0 2.1 2.2 V

VLVD1 Low Voltage Detect � LVD 2.2V 1.9 � 2.5 V

VLVD2 Low Voltage Detect � LVD 2.3V 2.0 � 2.6 V

VLVD3 Low Voltage Detect � LVD 2.4V 2.1 � 2.7 V

VLVD4 Low Voltage Detect � LVD 2.5V 2.2 � 2.8 V

IOL1

I/O Port Sink Current

(For PA0~PA7, PB0~PB7,

PC0~PC7, PD4~PD7,

PE0~PE7)

3V

VOL=0.1VDD

4 � � mA

5V 10 � � mA

IOH1

I/O Port Source Current

(For PA0~PA7, PB0~PB7,

PC0~PC7, PD4~PD7,

PE0~PE7)

3V

VOH=0.9VDD

�2 � � mA

5V �5 � � mA

IOL2
I/O Port Sink Current

(For PD0~PD3)

3V
VOL=0.1VDD

8 � � mA

5V 20 � � mA

IOH2
I/O Port Source Current

(For PD0~PD3)

3V
VOH=0.9VDD

�2 � � mA

5V �5 � � mA

IAUD AUD Source Current
3V

VOH=0.9VDD

�1.5 � � mA

5V �3 � � mA

RPH Pull-high Resistance
3V

�
20 60 100 k�

5V 10 30 50 k�

VAD A/D Input/Output � � 0 � VREF V

VREF
ADC Input Reference Voltage

Range

3V AVDD=3V 1.3 � AVDD V

5V AVDD=5V 1.5 � AVDD V

DNL ADC Differential Non-Linear �
AVDD=5V, VREF=AVDD,

tAD=1�s
� � 
2.0 LSB

INL ADC Integral Non-Linear �
AVDD=5V, VREF=AVDD,

tAD=1�s
� 
2.5 
4.0 LSB

RESOLU Resolution � � � � 12 bits

IADC
Additional Power Consumption

if A/D Converter is Used

3V
No load, tAD=1�s

� 0.5 1.0 mA

5V � 1.5 3.0 mA

HT86Axx/HT86ARxx

Rev. 1.00 12 March 19, 2010

www.DataSheet4U.com



A.C. Characteristics Ta=25	C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS
System Clock

(RC OSC, Crystal OSC)
�

HT86AXX:2.0V~5.5V

HT86ARXX:2.2V~5.5V
4 � 8 MHz

tWDTOSC Watchdog Oscillator Period
3V � 45 90 180 �s

5V � 32 65 130 �s

tRES External Reset Low Pulse Width � � 1 � � �s

tSST System Start-up Timer Period �
Power-up or Wake-up

from HALT
� 1024 � *tSYS

tLVR Low Voltage Reset Time � � 2 � � ms

tINT Interrupt Pulse Width � � 1 � � �s

tAD A/D Clock Period � � 1.0 � � �s

tADC A/D Conversion Time � � � 80 � tAD

tADC A/D Sampling Time � � � 32 � tAD

tMAT Circumscribe Memory Access Time �
HT86AXX:2.0V~5.5V

HT86ARXX:2.2V~5.5V
� � 400 ns

Note: *tSYS=1/fSYS

Characteristics Curves

HT86AXX

� R vs. F Chart Characteristics Curves

� T vs. F Chart Characteristics Curves

HT86Axx/HT86ARxx

Rev. 1.00 13 March 19, 2010

� 	 � � � 	 � 	 � � � � �

8
��
=
$
�
�
�
�
�:
�
>
?
<

� � : � � <

�

/

-

+

* - / * � � + 0 / , . 0 - 2 1

, @ 2 (
- @ . (

* 2

� � : � 
 <

)�
�



)�
�


�:
+
.
�


<

2 @ 1 *

2 @ 1 .

2 @ 1 1

* @ 2 ,

* @ 2 0

* @ * *

* @ * .

� / 2 � - 2 � + 2 2 + 2 - 2 / 2 � 2 * 2 2

� 	 � � � 	 � 	 � � � � �

( � � A , (

( � � A . (

( � � A , (
( � � A . (

www.DataSheet4U.com



� V vs. F Chart Characteristics Curves � 3.0V

� V vs. F Chart Characteristics Curves � 4.5V

HT86ARXX

� R vs. F Chart Characteristics Curves

HT86Axx/HT86ARxx

Rev. 1.00 14 March 19, 2010

� 	 � � � 	 � 	 � � � � � 	 � � � � 	 � � � � �
8
��
=
$
�
�
�
�
�:
�
>
?
<

( � � � : ( <

+

-

/

�

+ @ / , @ 2 , @ , , @ � - @ + - @ . - @ 1 . @ + . @ .

- � > ? � + 0 / � �

/ � > ? � * � � � �

� � > ? � * - / � �

+ @ +

* 2

� 	 � � � 	 � 	 � � � � � 	 � � � � 	 � � � � �

8
��
=
$
�
�
�
�
�:
�
>
?
<

( � � � : ( <

+ @ + + @ / , @ 2 , @ � - @ + - @ . . @ + . @ ., @ , - @ 1

�

/

-

+

/ � > ? � * � 0 � �

� � > ? � * - 2 � �

- � > ? � + / 1 � �

* 2

� 	 � � � 	 � 	 � � � � �

8
��
=
$
�
�
�
�
�:
�
>
?
<

� � : � � <

�

/

-

+

- 1 / * � / * * * * , +

, @ 2 (

- @ . (

* 2

www.DataSheet4U.com



� T vs. F Chart Characteristics Curves

� V vs. F Chart Characteristics Curves � 3.0V

� V vs. F Chart Characteristics Curves � 4.5V

HT86Axx/HT86ARxx

Rev. 1.00 15 March 19, 2010

� � : � 
 <

)�
�



)�
�


�:
+
.
�


<

2 @ 1 -

2 @ 1 /

2 @ 1 �

* @ 2 2

* @ 2 +

* @ 2 /

* @ * 2

� / 2 � - 2 � + 2 2 + 2 - 2 / 2 � 2 * 2 2

� 	 � � � 	 � 	 � � � � �

( � � A , (

( � � A . (

( � � A , (

( � � A . (

* @ 2 -

* @ 2 �

� 	 � � � 	 � 	 � � � � � 	 � � � � 	 � � � � �

8
��
=
$
�
�
�
�
�:
�
>
?
<

( � � � : ( <

+

-

/

�

+ @ / , @ 2 , @ , , @ � - @ + - @ . - @ 1 . @ + . @ .+ @ +

* 2

- � > ? � � / � �

/ � > ? � / * � �

� � > ? � - 1 � �

� 	 � � � 	 � 	 � � � � � 	 � � � � 	 � � � � �

8
��
=
$
�
�
�
�
�:
�
>
?
<

( � � � : ( <

+ @ + + @ / , @ 2 , @ � - @ + - @ . . @ + . @ ., @ , - @ 1

�

/

-

+

/ � > ? � . . � �

� � > ? � - , � �

- � > ? � 0 1 � �

* 2

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 16 March 19, 2010

System Architecture

A key factor in the high-performance features of the

Holtek range of Voice microcontrollers is attributed to

the internal system architecture. The range of devices

take advantage of the usual features found within RISC

microcontrollers providing increased speed of operation

and enhanced performance. The pipelining scheme is

implemented in such a way that instruction fetching and

instruction execution are overlapped, hence instructions

are effectively executed in one cycle, with the exception

of branch or call instructions. An 8-bit wide ALU is used

in practically all operations of the instruction set. It car-

ries out arithmetic operations, logic operations, rotation,

increment, decrement, branch decisions, etc. The inter-

nal data path is simplified by moving data through the

Accumulator and the ALU. Certain internal registers are

implemented in the Data Memory and can be directly or

indirectly addressed. The simple addressing methods of

these registers along with additional architectural fea-

tures ensure that a minimum of external components is

required to provide a functional I/O, voltage type DAC,

capacitor/resistor sensor input and external RC oscilla-

tor converter with maximum reliability and flexibility.

Clocking and Pipelining

The main system clock, derived from either a Crystal/

Resonator or RC oscillator is subdivided into four inter-

nally generated non-overlapping clocks, T1~T4. The

Program Counter is incremented at the beginning of the

T1 clock during which time a new instruction is fetched.

The remaining T2~T4 clocks carry out the decoding and

execution functions. In this way, one T1~T4 clock cycle

forms one instruction cycle. Although the fetching and

execution of instructions takes place in consecutive in-

struction cycles, the pipelining structure of the

microcontroller ensures that instructions are effectively

executed in one instruction cycle. The exception to this

are instructions where the contents of the Program

Counter are changed, such as subroutine calls or

jumps, in which case the instruction will take one more

instruction cycle to execute.

When the RC oscillator is used, OSC2 is freed for use as

a T1 phase clock synchronizing pin. This T1 phase clock

has a frequency of fSYS/4 with a 1:3 high/low duty cycle.

For instructions involving branches, such as jump or call

instructions, two machine cycles are required to com-

plete instruction execution. An extra cycle is required as

the program takes one cycle to first obtain the actual

jump or call address and then another cycle to actually

execute the branch. The requirement for this extra cycle

should be taken into account by programmers in timing

sensitive applications.

8 � � � � � � � � � @ � : � 
 <

3 B � � $ � � � � � � � @ � : � 
 � * < 8 � � � � � � � � � @ � : � 
 4 * <

3 B � � $ � � � � � � � @ � : � 
 < 8 � � � � � � � � � @ � : � 
 4 + <

3 B � � $ � � � � � � � @ � : � 
 4 * <

� 
 � 
 4 * � 
 4 +

� � � � # # � � � � � 
 # � � �
: � � � � � � � 
 # � � � <

� � � � � � 
 # � � � � � *

� � � ! � � � � 
 � $ � � � �

� � � � � � 
 # � � � � � +

� � � � � � 
 # � � � � � ,

� � � � � � 
 # � � � � � -

� � % � # � � � � !

System Clocking and Pipelining

8 � � � � � � � � � @ � * 3 B � � $ � � � � � � � @ � *

8 � � � � � � � � � @ � +

8 # $ � � � � � % � # � � �

*

+

,

-

.

/ � 3 & 	 C D

� � ( � 	 ; E * + > F


 	 & & � � 3 & 	 C


 � & � E * + > F

D

D

7 � �

3 B � � $ � � � � � � � @ � +

8 � � � � � � � � � @ � ,

8 � � � � � � � � � @ � / 3 B � � $ � � � � � � � @ � /

8 � � � � � � � � � @ � 0

Instruction Fetching

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 17 March 19, 2010

Program Counter

During program execution, the Program Counter is used

to keep track of the address of the next instruction to be

executed. It is automatically incremented by one each

time an instruction is executed except for instructions,

such as �JMP� or �CALL�, that demand a jump to a

non-consecutive Program Memory address. Note that

the Program Counter width varies with the Program

Memory capacity depending upon which device is se-

lected. However, it must be noted that only the lower 8

bits, known as the Program Counter Low Register, are

directly addressable by user.

When executing instructions requiring jumps to

non-consecutive addresses such as a jump instruction,

a subroutine call, interrupt or reset, etc., the

microcontroller manages program control by loading the

required address into the Program Counter. For condi-

tional skip instructions, once the condition has been

met, the next instruction, which has already been

fetched during the present instruction execution, is dis-

carded and a dummy cycle takes its place while the cor-

rect instruction is obtained.

The lower byte of the Program Counter, known as the

Program Counter Low register or PCL, is available for

program control and is a readable and writable register.

By transferring data directly into this register, a short

program jump can be executed directly, however, as

only this low byte is available for manipulation, the

jumps are limited to the present page of memory, that is

256 locations. When such program jumps are executed

it should also be noted that a dummy cycle will be in-

serted.

The lower byte of the Program Counter is fully accessi-

ble under program control. Manipulating the PCL might

cause program branching, so an extra cycle is needed

to pre-fetch. Further information on the PCL register can

be found in the Special Function Register section.

Stack

This is a special part of the memory which is used to

save the contents of the Program Counter only. The

stack has 8 levels and is neither part of the data nor part

of the program space, and is neither readable nor

writable. The activated level is indexed by the Stack

Pointer, SP, and is neither readable nor writable. At a

subroutine call or interrupt acknowledge signal, the con-

tents of the Program Counter are pushed onto the stack.

At the end of a subroutine or an interrupt routine, sig-

naled by a return instruction, �RET� or �RETI�, the Pro-

gram Counter is restored to its previous value from the

stack. After a device reset, the Stack Pointer will point to

the top of the stack.

Mode
Program Counter

*12 *11 *10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0 0 0

External Interrupt 0 0 0 0 0 0 0 0 0 0 1 0 0

Timer 0 Overflow 0 0 0 0 0 0 0 0 0 1 0 0 0

Timer 1 Overflow 0 0 0 0 0 0 0 0 0 1 1 0 0

Timer 2 Overflow 0 0 0 0 0 0 0 0 1 0 0 0 0

Timer 3 Overflow 0 0 0 0 0 0 0 0 1 0 1 0 0

A/D Converter Interrupt 0 0 0 0 0 0 0 0 1 1 0 0 0

Skip Program Counter + 2

Loading PCL *12 *11 *10 *9 *8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #12 #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program Counter

Note: *12~*0: Program counter bits S12~S0: Stack register bits

#12~#0: Instruction code bits @7~@0: PCL bits

� � � ! � � � � 
 � $ � � � �

� � � � � � & � 
 � # � *

� � � � � � & � 
 � # � +

� � � � � � & � 
 � # � ,

� � � � � � & � 
 � # � �

� � � ! � � �
� � � � � �

� � % � � ) � � � � � �

� � � � �
� � � � � � �

5 � � � � � � � ) � � � � � �

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 18 March 19, 2010

If the stack is full and an enabled interrupt takes place,

the interrupt request flag will be recorded but the ac-

knowledge signal will be inhibited. When the Stack

Pointer is decremented, by RET or RETI, the interrupt

will be serviced. This feature prevents stack overflow al-

lowing the programmer to use the structure more easily.

However, when the stack is full, a CALL subroutine in-

struction can still be executed which will result in a stack

overflow. Precautions should be taken to avoid such

cases which might cause unpredictable program

branching.

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the

microcontroller that carries out arithmetic and logic op-

erations of the instruction set. Connected to the main

microcontroller data bus, the ALU receives related in-

struction codes and performs the required arithmetic or

logical operations after which the result will be placed in

the specified register. As these ALU calculation or oper-

ations may result in carry, borrow or other status

changes, the status register will be correspondingly up-

dated to reflect these changes. The ALU supports the

following functions:

� Arithmetic operations ADD, ADDM, ADC, ADCM,

SUB, SUBM, SBC, SBCM, DAA

� Logic operations AND, OR, XOR, ANDM, ORM,

XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA,

RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA,

SDZA, CALL, RET, RETI

Program Memory

The Program Memory is the location where the user

code or program is stored.

Structure

The program memory stores the program instructions

that are to be executed. It also includes data, table and

interrupt entries, addressed by the Program Counter

along with the table pointer. The program memory size

is 8192�16 bits. Certain locations in the program mem-

ory are reserved for special usage.

Special Vectors

Within the Program Memory, certain locations are re-

served for special usage such as reset and interrupts.

� Location 000H

This vector is reserved for use by the device reset for

program initialisation. After a device reset is initiated, the

program will jump to this location and begin execution.

� Location 004H

This vector is used by the external interrupt. If the ex-

ternal interrupt pin on the device goes low, the pro-

gram will jump to this location and begin execution if

the external interrupt is enabled and the stack is not

full.

� Location 008H

This internal vector is used by the 8-bit Timer 0. If a

overflow occurs, the program will jump to this location

and begin execution if the timer interrupt is enabled

and the stack is not full.

� Location 00CH

This internal vector is used by the 8-bit Timer1. If a

overflow occurs, the program will jump to this location

and begin execution if the timer interrupt is enabled

and the stack is not full.

� Location 010H

This internal vector is used by the 8-bit Timer2. If a

overflow occurs, the program will jump to this location

and begin execution if the timer interrupt is enabled

and the stack is not full.

� Location 014H

This internal vector is used by the 8-bit Timer3. If a

overflow occurs, the program will jump to this location

and begin execution if the timer interrupt is enabled

and the stack is not full.

� Location 018H

This internal vector is used by the A/D Converter. If an

A/D converter conversion completes, the program will

jump to this location and begin execution if the A/D

converter interrupt is enabled and the stack is not full.

* 8 8 8 >

* / � � � � �

2 * 1 >

2 2 2 >

2 2 - >

2 2 � >

2 2 
 >

2 * 2 >

� � � � � � # � � � � � � �
( � � � � �

3 B � � � � � #
� � � � � � $ % � � ( � � � � �

� � � � � � 2
� � � � � � $ % � � ( � � � � �

2 * - >

� � � � � � *
� � � � � � $ % � � ( � � � � �

� � � � � � ,
� � � � � � $ % � � ( � � � � �

� � � � � � +
� � � � � � $ % � � ( � � � � �

2 * � >
	 � � � 
 � � 
 � � � � �
� � � � � � $ % � � ( � � � � �

Program Memory Structure

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 19 March 19, 2010

Look-up Table

Any location within the Program Memory can be defined

as a look-up table where programmers can store fixed

data. To use the look-up table, table pointers are used to

setup the address of the data that is to be accessed from

the Program Memory. However, as some devices possess

only a low byte table pointer and other devices possess

both a high and low byte pointer it should be noted that de-

pending upon which device is used, accessing look-up ta-

ble data is implemented in slightly different ways.

For the devices, there are two Table Pointer Registers

known as TBLP and TBHP in which the lower order and

higher order address of the look-up data to be retrieved

must be respectively first written. Unlike the other de-

vices in which only the low address byte is defined using

the TBLP register, the additional TBHP register allows

the complete address of the look-up table to be defined

and consequently allow table data from any address

and any page to be directly accessed. For these de-

vices, after setting up both the low and high byte table

pointers, the table data can then be retrieved from any

area of Program Memory using the �TABRDC [m]� in-

struction or from the last page of the Program Memory

using the �TABRDL [m]� instruction. When either of

these instructions are executed, the lower order table

byte from the Program Memory will be transferred to the

user defined Data Memory register [m] as specified in

the instruction. The higher order table data byte from the

Program Memory will be transferred to the TBLH special

register. Any unused bits in this transferred higher order

byte will be read as �0�.

The following diagram illustrates the addressing/data

flow of the look-up table for the devices:

Table Program Example

The following example shows how the table pointer and

table data is defined and retrieved from the devices. This

example uses raw table data located in the last page

which is stored there using the ORG statement. The

value at this ORG statement is �1F00H� which refers to

the start address of the last page within the Program

Memory of the microcontroller. The table pointer is setup

here to have an initial value of �06H�. This will ensure that

the first data read from the data table will be at the Pro-

gram Memory address �1F06H� or 6 locations after the

start of the last page. Note that the value for the table

pointer is referenced to the first address of the present

page if the �TABRDC [m]� instruction is being used. The

high byte of the table data which in this case is equal to

zero will be transferred to the TBLH register automatically

when the �TABRDL [m]� instruction is executed.

� � � ! � � � �
� � � � � �

� 5 & �

� 5 & > � % � � � ) � �  � � � � E � F

> � ! � � 5 � � � � � ) � � � � # � � 
 � � � � � � � & � ' � 5 � � � � � ) � � � � # � � 
 � � � � � � �

� 5 > �

Look-up Table

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialise table pointer - note that this address
; is referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl

; data at prog. memory address �1F06H� transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2

; data at prog.memory address �1F05H� transferred to
; tempreg2 and TBLH

; in this example the data �1AH� is transferred to

; tempreg1 and data �0FH� to register tempreg2

; the value �00H� will be transferred to the high byte
; register TBLH

:
:

org 1F00h ; sets initial address of HT86A72 last page

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 20 March 19, 2010

Because the TBLH register is a read-only register and

cannot be restored, care should be taken to ensure its

protection if both the main routine and Interrupt Service

Routine use table read instructions. If using the table

read instructions, the Interrupt Service Routines may

change the value of the TBLH and subsequently cause

errors if used again by the main routine. As a rule it is

recommended that simultaneous use of the table read

instructions should be avoided. However, in situations

where simultaneous use cannot be avoided, the inter-

rupts should be disabled prior to the execution of any

main routine table-read instructions. Note that all table

related instructions require two instruction cycles to

complete their operation.

Instruction
Table Location

*12 *11 *10 *9 *8 *7 *6 *5 *4 *3 *2 *1 *0

TABRDC [m] P12 P11 P10 P9 P8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table Location

Note: *12~*0: Current Program ROM table P12~P8: Write P12~P8 to TBHP pointer register

@7~@0: Write @7~@0 to TBLP pointer register

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM in-

ternal memory and is the location where temporary in-

formation is stored. Divided into two sections, the first of

these is an area of RAM where special function registers

are located. These registers have fixed locations and

are necessary for correct operation of the device. Many

of these registers can be read from and written to di-

rectly under program control, however, some remain

protected from user manipulation. The second area of

RAM Data Memory is reserved for general purpose use.

All locations within this area are read and write accessi-

ble under program control.

Structure

The Data Memory is subdivided into two banks, known

as Bank 0 and Bank 1, all of which are implemented in

8-bit wide RAM. Most of the RAM Data Memory is lo-

cated in Bank 0 which is also subdivided into two sec-

tions, the Special Purpose Data Memory and the

General Purpose Data Memory. The start address of the

RAM Data Memory for all devices is the address �00H�,

and the last Data Memory address is �FFH�. Registers

which are common to all microcontrollers, such as ACC,

PCL, etc., have the same Data Memory address.

Note: Most of the RAM Data Memory bits can be directly

manipulated using the �SET [m].i� and �CLR [m].i� in-

structions with the exception of a few dedicated bits.

The RAM Data Memory can also be accessed through

the Memory Pointer registers MP0 and MP1.

General Purpose Data Memory

All microcontroller programs require an area of

read/write memory where temporary data can be stored

and retrieved for use later. It is this area of RAM memory

that is known as General Purpose Data Memory. This

area of Data Memory is fully accessible by the user pro-

gram for both read and write operations. By using the

�SET [m].i� and �CLR [m].i� instructions individual bits

can be set or reset under program control giving the

user a large range of flexibility for bit manipulation in the

Data Memory.

D � " � � � � ' �

2 2 >

- 2 >

8 8 >

, 3 >

� % � � � � # � � $ � % � � �
� � � � � � � � � � �

G � � � � � # � � $ � % � � �
� � � � � � � � � � �
: * 1 + � 5 � � � � <

- 2 >

8 8 >

G � � � � � # � � $ � % � � �
� � � � � � � � � � �
: * 1 + � 5 � � � � <

 � ! " 	 �  � ! " 	 #

RAM Data Memory Structure � Bank 0 and Bank 1

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 21 March 19, 2010

Special Purpose Data Memory

This area of Data Memory, is located in Bank 0, where

registers, necessary for the correct operation of the

microcontroller, are stored. Most of the registers are

both readable and writeable but some are protected and

are readable only, the details of which are located under

the relevant Special Function Register section. Note

that for locations that are unused, any read instruction to

these addresses will return the value �00H�. Although

the Special Purpose Data Memory registers are located

in Bank 0, they will still be accessible even if the Bank

Pointer has selected Bank 1.

Special Function Registers

To ensure successful operation of the microcontroller,

certain internal registers are implemented in the RAM

Data Memory area. These registers ensure correct op-

eration of internal functions such as timers, interrupts,

watchdog, etc., as well as external functions such as I/O

data control. The location of these registers within the

RAM Data Memory begins at the address �00H�. Any

unused Data Memory locations between these special

function registers and the point where the General Pur-

pose Memory begins is reserved for future expansion

purposes, attempting to read data from these locations

will return a value of �00H�.

Indirect Addressing Register � IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, al-

though having their locations in normal RAM register

space, do not actually physically exist as normal regis-

ters. The method of indirect addressing for RAM data

manipulation uses these Indirect Addressing Registers

and Memory Pointers, in contrast to direct memory ad-

dressing, where the actual memory address is speci-

fied. Actions on the IAR0 and IAR1 registers will result in

no actual read or write operation to these registers but

rather to the memory location specified by their corre-

sponding Memory Pointer, MP0 or MP1. Acting as a

pair, IAR0 and MP0 can together only access data from

Bank 0, while the IAR1 and MP1 register pair can ac-

cess data from both Bank 0 and Bank 1. As the Indirect

Addressing Registers are not physically implemented,

reading the Indirect Addressing Registers indirectly will

return a result of �00H� and writing to the registers indi-

rectly will result in no operation.

Memory Pointer � MP0, MP1

For all devices, two Memory Pointers, known as MP0

and MP1 are provided. These Memory Pointers are

physically implemented in the Data Memory and can be

manipulated in the same way as normal registers pro-

viding a convenient way with which to address and track

data. When any operation to the relevant Indirect Ad-

dressing Registers is carried out, the actual address that

the microcontroller is directed to, is the address speci-

fied by the related Memory Pointer. MP0, together with

Indirect Addressing Register, IAR0, are used to access

data from Bank 0 only, while MP1 and IAR1 are used to

access data from both Bank 0 and Bank 1.
D � " � � � � '

� 	 � 2

� � 2

� 	 � *

� � *

5 �

	 
 


� 
 &

� 5 & �

� 5 & >

� � � �

� � 	 � " �

� 7 � 


� � � 2

� � � 2 


� � � *

� � � * 


� 	

� 	 


� 5

� 5 


� 


� 
 


& 	 � 
 > 2 >

& 	 � 
 > 2 �

& 	 � 
 > 2 &

& 	 � 
 > * >

& 	 � 
 > * �

& 	 � 
 > * &

� 7 � 
 >

� 5 > �

� � � +

� � � + 


� � � ,

� � � , 


( � � 
 3 


� 	 &

� 	 >

( � &

& 	 � 
 > �

� �

� � 


	 � � &

	 � � >

	 � 
 �

	 
 � �

& ( � 


� 3

� 3 


� 5 
 �

� 5 � �

2 2 >

2 * >

2 + >

2 , >

2 - >

2 . >

2 / >

2 0 >

2 � >

2 1 >

2 	 >

2 5 >

2 
 >

2 � >

2 3 >

2 8 >

* 2 >

* * >

* + >

* , >

* - >

* . >

* / >

* 0 >

* � >

* 1 >

* 	 >

* 5 >

* 
 >

* � >

* 3 >

* 8 >

+ 2 >

+ * >

+ + >

+ , >

+ - >

+ . >

+ / >

+ 0 >

+ � >

+ 1 >

+ 	 >

+ 5 >

+ 
 >

+ � >

+ 3 >

+ 8 >

, 2 >

, * >

, + >

, , >

, - >

, . >

, / >

, 0 >

, � >

, 1 >

, 	 >

, 5 >

, 
 >

, � >

Special Purpose Data Memory Structure

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 22 March 19, 2010

The following example shows how to clear a section of four RAM locations already defined as locations adres1 to

adres4.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?

code .section at 0 �code�
org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1; Accumulator loaded with first RAM address
mov mp0,a ; setup memory pointer with first RAM address

loop:
clr IAR0 ; clear the data at address defined by MP0
inc mp0 ; increment memory pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference is made to specific RAM addresses.

Bank Pointer � BP

The RAM Data Memory is divided into two Banks,

known as Bank 0 and Bank 1. With the exception of the

BP register, all of the Special Purpose Registers and

General Purpose Registers are contained in Bank 0. If

data in Bank 0 is to be accessed, then the BP register

must be loaded with the value "00", while if data in Bank

1 is to be accessed, then the BP register must be loaded

with the value �01�.

Using Memory Pointer MP0 and Indirect Addressing

Register IAR0 will always access data from Bank 0, irre-

spective of the value of the Bank Pointer.

The Data Memory is initialised to Bank 0 after a reset,

except for the WDT time-out reset in the Power Down

Mode, in which case, the Data Memory bank remains

unaffected. It should be noted that Special Function

Data Memory is not affected by the bank selection,

which means that the Special Function Registers can be

accessed from within either Bank 0 or Bank 1. Directly

addressing the Data Memory will always result in Bank 0

being accessed irrespective of the value of the Bank

Pointer.

Accumulator � ACC

The Accumulator is central to the operation of any

microcontroller and is closely related with operations

carried out by the ALU. The Accumulator is the place

where all intermediate results from the ALU are stored.

Without the Accumulator it would be necessary to write

the result of each calculation or logical operation such

as addition, subtraction, shift, etc., to the Data Memory

resulting in higher programming and timing overheads.

Data transfer operations usually involve the temporary

storage function of the Accumulator; for example, when

transferring data between one user defined register and

another, it is necessary to do this by passing the data

through the Accumulator as no direct transfer between

two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low

byte of the Program Counter is made accessible to pro-

grammers by locating it within the Special Purpose area

of the Data Memory. By manipulating this register, direct

jumps to other program locations are easily imple-

mented. Loading a value directly into this PCL register

will cause a jump to the specified Program Memory lo-

cation, however, as the register is only 8-bit wide, only

jumps within the current Program Memory page are per-

mitted. When such operations are used, note that a

dummy cycle will be inserted.

 � ! " 	 � � $ ! � % �

� 0 � 2

5 � 2

5 � 2 � � � � � � � � � � � � � � �
� � � 2 � � � � � � 5 � � � � 2
� � � * � � � � � � 5 � � � � *

7 � � � $ � �  ; � � $ � � � � � � � � � � � � � � � H 2 H

Bank Pointer � BP

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 23 March 19, 2010

Look-up Table Registers � TBLP, TBHP, TBLH

These two special function registers are used to control

operation of the look-up table which is stored in the Pro-

gram Memory. TBLP is the table pointer and indicates

the location where the table data is located. Its value

must be setup before any table read commands are ex-

ecuted. Its value can be changed, for example using the

�INC� or �DEC� instructions, allowing for easy table data

pointing and reading. TBLH is the location where the

high order byte of the table data is stored after a table

read data instruction has been executed. Note that the

lower order table data byte is transferred to a user de-

fined location.

Watchdog Timer Register � WDTS

The Watchdog feature of the microcontroller provides

an automatic reset function giving the microcontroller a

means of protection against spurious jumps to incorrect

Program Memory addresses. To implement this, a timer

is provided within the microcontroller which will issue a

reset command when its value overflows. To provide

variable Watchdog Timer reset times, the Watchdog

Timer clock source can be divided by various division ra-

tios, the value of which is set using the WDTS register.

By writing directly to this register, the appropriate divi-

sion ratio for the Watchdog Timer clock source can be

setup. Note that only the lower 3 bits are used to set divi-

sion ratios between 1 and 128.

Status Register � STATUS

This 8-bit register contains the zero flag (Z), carry flag

(C), auxiliary carry flag (AC), overflow flag (OV), power

down flag (PDF), and watchdog time-out flag (TO).

These arithmetic/logical operation and system manage-

ment flags are used to record the status and operation of

the microcontroller.

With the exception of the TO and PDF flags, bits in the

status register can be altered by instructions like most

other registers. Any data written into the status register

will not change the TO or PDF flag. In addition, opera-

tions related to the status register may give different re-

sults due to the different instruction operations. The TO

flag can be affected only by a system power-up, a WDT

time-out or by executing the �CLR WDT� or �HALT� in-

struction. The PDF flag is affected only by executing the

�HALT� or �CLR WDT� instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of

the latest operations.

� C is set if an operation results in a carry during an ad-

dition operation or if a borrow does not take place dur-

ing a subtraction operation; otherwise C is cleared. C

is also affected by a rotate through carry instruction.

� AC is set if an operation results in a carry out of the

low nibbles in addition, or no borrow from the high nib-

ble into the low nibble in subtraction; otherwise AC is

cleared.

� Z is set if the result of an arithmetic or logical operation

is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the high-

est-order bit but not a carry out of the highest-order bit,

or vice versa; otherwise OV is cleared.

� PDF is cleared by a system power-up or executing the

�CLR WDT� instruction. PDF is set by executing the

�HALT� instruction.

� TO is cleared by a system power-up or executing the

�CLR WDT� or �HALT� instruction. TO is set by a

WDT time-out.

In addition, on entering an interrupt sequence or execut-

ing a subroutine call, the status register will not be

pushed onto the stack automatically. If the contents of

the status registers are important and if the subroutine

can corrupt the status register, precautions must be

taken to correctly save it.

Interrupt Control Register � INTC, INTCH

Two 8-bit register, known as the INTC and INTCH regis-

ters, controls the operation of both external and internal

timer interrupts. By setting various bits within these reg-

isters using standard bit manipulation instructions, the

enable/disable function of the external and timer inter-

rupts can be independently controlled. A master inter-

rupt bit within this register, the EMI bit, acts like a global

enable/disable and is used to set all of the interrupt en-

able bits on or off. This bit is cleared when an interrupt

� � � � 8 � ( I 	 
 
 & � � � ' & 	 � % ( $ � � % �

� � $ � � ) % � $ * + � � ( $ * 	 , - % � � � $ � ! 	 � . � ( �

 � � � � � ) # � !
	 $ B � # � � � � � � � � � � � ) # � !
I � � � � ) # � !
� 
 � � ) # � ' � ) # � !

& / � � % ) 	 0 � ! � ( % ) % ! � 	 � . � ( �
� � ' � � �  � ' � � ) # � !
� � � � �  � ! � � � � � � � $ � � ) # � !
7 � � � � � % # � � � � � �  ; � � � �  � � � � H 2 H

� 0 � 2

Status Register

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 24 March 19, 2010

routine is entered to disable further interrupt and is set

by executing the �RETI� instruction.

Note: In situations where other interrupts may require

servicing within present interrupt service rou-

tines, the EMI bit can be manually set by the pro-

gram after the present interrupt service routine

has been entered.

Timer Registers

All devices contain four 8-bit Timers whose associated

registers are known as TMR0, TMR1, TMR2 and TMR3,

which are the locations where the associated timer's

8-bit value is located. Their associated control registers,

known as TMR0C, TMR1C, TMR2C and TMR3C, con-

tain the setup information for these timers. Note that all

timer registers can be directly written to in order to

preload their contents with fixed data to allow different

time intervals to be setup.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O

registers and their associated control registers play a

prominent role. All I/O ports have a designated register

correspondingly labeled as PA, PB, PC, PD, PE, etc.

These labeled I/O registers are mapped to specific ad-

dresses within the Data Memory as shown in the Data

Memory table, which are used to transfer the appropri-

ate output or input data on that port. With each I/O port

there is an associated control register labeled PAC,

PBC, PCC, PDC, PEC, etc., also mapped to specific ad-

dresses with the Data Memory. The control register

specifies which pins of that port are set as inputs and

which are set as outputs. To setup a pin as an input, the

corresponding bit of the control register must be set

high, for an output it must be set low. During program in-

itialisation, it is important to first setup the control regis-

ters to specify which pins are outputs and which are

inputs before reading data from or writing data to the I/O

ports. One flexible feature of these registers is the ability

to directly program single bits using the �SET [m].i� and

�CLR [m].i� instructions. The ability to change I/O pins

from output to input and vice-versa by manipulating spe-

cific bits of the I/O control registers during normal pro-

gram operation is a useful feature of these devices.

Voice ROM Data Address Latch Counter Registers

These are the LATCH0H/LATCH0M/LATCH0L,

LATCH1H/LATCH1M/LATCH1L and the Voice ROM

data registers. The voice ROM data address latch coun-

ter provides the handshaking between the

microcontroller and the voice ROM, where the voice

codes are stored. Eight bits of voice ROM data will be

addressed by using the 21-bit address latch counter,

which is composed of LATCH0H/LATCH0M/LATCH0L

or LATCH1H/LATCH1M/LATCH1L. After the 8-bit voice

ROM data is addressed, several instruction cycles of at

least 4�s at least, will be required to latch the voice ROM

data, after which the microcontroller can read the voice

data from LATCHD.

Voice Control and Audio output Registers �

VOICEC, DAL, DAH, VOL

The device includes a single 12-bit current type DAC

function for driving an external 8� speaker through an

external NPN transistor. The programmer must write the

voice data to the DAL/DAH registers.

A/D Converter Registers �

ADRL, ADRH, ADCR, ACSR

The device contains a 4-channel 12-bit A/D converter.

The correct operation of the A/D requires the use of two

data registers, a control register and a clock source reg-

ister. It contain a 12-bit A/D converter, there are two data

registers, a high byte data register known as ADRH, and

a low byte data register known as ADRL. These are the

register locations where the digital value is placed after

the completion of an analog to digital conversion cycle.

The channel selection and configuration of the A/D con-

verter is setup via the control register ADCR while the

A/D clock frequency is defined by the clock source reg-

ister, ACSR.

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on

their I/O ports. With the input or output designation of ev-

ery pin fully under user program control, pull-high op-

tions for all ports and wake-up options on certain pins,

the user is provided with an I/O structure to meet the

needs of a wide range of application possibilities.

Depending upon which device or package is chosen,

the microcontroller range provides 40 bidirectional in-

put/output lines labeled with port names PA, PB, PC,

PD, PE, etc. These I/O ports are mapped to the RAM

Data Memory with specific addresses as shown in the

Special Purpose Data Memory table. All of these I/O

ports can be used for input and output operations. For

input operation, these ports are non-latching, which

means the inputs must be ready at the T2 rising edge of

instruction �MOV A,[m]�, where m denotes the port ad-

dress. For output operation, all the data is latched and

remains unchanged until the output latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for

their switch inputs usually requiring the use of an exter-

nal resistor. To eliminate the need for these external re-

sistors, all I/O pins, when configured as an input have

the capability of being connected to an internal pull-high

resistor. These pull-high resistors are selectable via

configuration options and are implemented using a

weak PMOS transistor. Note that if the pull-high option is

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 25 March 19, 2010

selected, then all I/O pins on that port will be connected

to pull-high resistors, individual pins can be selected for

pull-high resistor options.

Port A Wake-up

Each device has a HALT instruction enabling the

microcontroller to enter a Power Down Mode and pre-

serve power, a feature that is important for battery and

other low-power applications. Various methods exist to

wake-up the microcontroller, one of which is to change

the logic condition on one of the Port A pins from high to

low. After a �HALT� instruction forces the microcontroller

into entering a HALT condition, the processor will re-

main idle or in a low-power state until the logic condition

of the selected wake-up pin on Port A changes from high

to low. This function is especially suitable for applica-

tions that can be woken up via external switches. Note

that each pin on Port A can be selected individually to

have this wake-up feature.

I/O Port Control Registers

Each I/O port has its own control register PAC, PBC,

PCC, PDC, PEC, etc., to control the input/output config-

uration. With this control register, each CMOS output or

input with or without pull-high resistor structures can be

reconfigured dynamically under software control. Each

pin of the I/O ports is directly mapped to a bit in its asso-

ciated port control register. For the I/O pin to function as

an input, the corresponding bit of the control register

must be written as a �1�. This will then allow the logic

state of the input pin to be directly read by instructions.

When the corresponding bit of the control register is

written as a �0�, the I/O pin will be setup as a CMOS out-

put. If the pin is currently setup as an output, instructions

can still be used to read the output register. However, it

should be noted that the program will in fact only read

the status of the output data latch and not the actual

logic status of the output pin.

Pin-shared Functions

The flexibility of the microcontroller range is greatly en-

hanced by the use of pins that have more than one func-

tion. Limited numbers of pins can force serious design

constraints on designers but by supplying pins with

multi-functions, many of these difficulties can be over-

come. For some pins, the chosen function of the

multi-function I/O pins is set by configuration options

while for others the function is set by application pro-

gram control.

� A/D Inputs

The device have 4 A/D converter channel inputs. All of

these analog inputs are pin-shared with PC0 to PC3. If

these pins are to be used as A/D inputs and not as

normal I/O pins then the corresponding bits in the A/D

Converter Control Register that must be properly set.

There are no configuration options associated with

the A/D function. If used as I/O pins, then full pull-high

resistor selections remain, however if used as A/D in-

puts then any pull-high resistor selections associated

with these pins will be automatically disconnected.

� Serial Interface

The Serial Interface are pin-shared with PD0 to PD3.

If there are to be used as Serial Interface inputs and

not as normal I/O pins then the corresponding bits in

the Serial Interface Control Register that must be

properly set. There are a configuration option associ-

ated with the Serial Interface function. If used as I/O

pins, then full pull-high resistor selections remain,

however if used as the Serial Interface inputs then any

pull-high resistor selections associated with these

pins will be automatically disconnected.

� I/O Pin Structures

The following diagrams illustrate the I/O pin internal

structures. As the exact logical construction of the I/O

pin may differ from these drawings, they are supplied

as a guide only to assist with the functional under-

standing of the I/O pins. Note also that the specified

pins refer to the largest device package, therefore not

all pins specified will exist on all devices.

Programming Considerations

Within the user program, one of the first things to con-

sider is port initialization. After a reset, all of the I/O data

and port control registers will be set high. This means

that all I/O pins will default to an input state, the level of

which depends on the other connected circuitry and

whether pull-high options have been selected. If the port

control registers, PAC, PBC, PCC, PDC, PEC etc., are

then programmed to setup some pins as outputs, these

output pins will have an initial high output value unless

the associated port data registers, PA, PB, PC, PD, PE,

etc., are first programmed. Selecting which pins are in-

puts and which are outputs can be achieved byte-wide

by loading the correct values into the appropriate port

control register or by programming individual bits in the

port control register using the �SET [m].i� and �CLR

[m].i� instructions. Note that when using these bit control

instructions, a read-modify-write operation takes place.

The microcontroller must first read in the data on the en-

tire port, modify it to the required new bit values and then

rewrite this data back to the output ports.

� * � + � , � - � * � + � , � -

� � � � � � � � � � � � � � � �  � ) � � � � � � � �

� � � � � � � 
 # � � �

� � � � � � � � �

Read/Write Timing

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 26 March 19, 2010

( � �

� � �  � � � � � � � � ! � � � � �

� J


 K
�

� J


 K
�


 � � � � � # � 5 � �
� $ # # � > � ! �
� % � � � �

� � � � � 5 $ �

� � � � � � 
 � � � � � # � � � ! � � � � �


 � � % � � � � � �

� � �  � 
 � � � � � # � � � ! � � � � �

� � � � � � � � � � � � � ! � � � � �

� � � � � 5 � �

� � � �
� $ # # � $ %

J

J

�
"
9

� 5 2 L � 5 0
� 3 2 L � 3 0

PB/PE Input/Output Ports

( � �

�
"
9

� � �  � � � � � � � � ! � � � � �

� J


 K
�

� J


 K
�


 � � � � � # � 5 � �
� $ # # � > � ! �
� % � � � �

� � � � � 5 $ �

� � � � � � 
 � � � � � # � � � ! � � � � �


 � � % � � � � � �

� � �  � 
 � � � � � # � � � ! � � � � �

� � � � � � � � � � � � � ! � � � � �

� � � � � 5 � �

� 
 2 � � � � � � 5 � �
	 � 2 L 	 � ,

	 � � � 
 � � 
 � � � � �

� � � �
� $ # # � $ %

J

J

�
"
9

� 
 2 L � 
 0
	 � 2 L 	 � ,

PC Input/Output Port

� � � � � $ % � � % � � � �
� � � � � � � � � � � � $ %

� � �  � � � � � � � � ! � � � � �


 � � � � � # � 5 � �
� $ # # � > � ! �
� % � � � �

� � � � � 5 $ �

� � � � � � 
 � � � � � # � � � ! � � � � �


 � � % � � � � � �

� � �  � 
 � � � � � # � � � ! � � � � �

� � � � � � � � � � � � � ! � � � � �

� � � � � 5 � �

� 	 2 L � 	 0

� � � �
� $ # # � $ %� J


 K
�

J

� J


 K
�

J

( � �

�
"
9

PA Input/Output Port

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 27 March 19, 2010

Port A has the additional capability of providing wake-up

functions. When the device is in the Power Down Mode,

various methods are available to wake the device up.

One of these is a high to low transition of any of the Port

A pins. Single or multiple pins on Port A can be setup to

have this function.

Timers

The provision of timers form an important part of any

microcontroller, giving the designer a means of carrying

out time related functions. The devices in the Voice Type

MCU series contain four count up timers of 8-bit capac-

ity. Each timer has only one operating mode, which is to

act as a general timer. The provision of an internal

prescaler to the clock circuitry of the timers gives added

range to the timer.

Configuring the Timer Input Clock Source

The clock source of Timer0/Timer1/Tmier2 is the system

clock divided by four and the clock source of Timer3 is

the system clock divided by four or the RTC clock which

is derived from a external 32kHz crystal. A configuration

option determines which clock is selected. If the RTC

clock is selected then note that it will continue to run

when the device is powered down using the HALT in-

struction. The 8-bit timer clock source is also first di-

vided by a prescaler, the division ratio of which is

conditioned by the three lower bits of the associated

timer control register.

Timer Registers � TMR0, TMR1, TMR2, TMR3

The timer registers are special function registers located

in the special purpose Data Memory and is the place

where the actual timer value is stored. The value in the

timer registers increases by one each time an internal

clock pulse is received. The timer will count from the ini-

tial value loaded by the preload register to the full count

of FFH at which point the timer overflows and an internal

interrupt signal is generated. The timer value will then

be reset with the initial preload register value and con-

tinue counting.

� � � � � � � �  � � 
 � � � � � #

� 2 � 7
� * � 7
� + � 7

� � � # � �  � � � ! � � � � �

� � � � �

� � � � � 5 $ �

� � # � �  

� 
 � � ) # � '
� � � � � � � � � $ % �

� + � � 
 + L � + � � 
 2
� * � � 
 + L � * � � 
 2
� 2 � � 
 + L � 2 � � 
 2

� � 5 � � � � � � � �

) � C � � - � � � � � � # � �

: * � + L * � + . / <

� + � � *
� * � � *
� 2 � � *

� + � � 2
� * � � 2
� 2 � � 2

8-bit Timer Structure � TMR0, TMR1, TMR2

( � �

�
"
9

� � �  � � � � � � � � ! � � � � �

� J


 K
�

� J


 K
�


 � � � � � # � 5 � �
� $ # # � > � ! �
� % � � � �

� � � � � 5 $ �

� � � � � � 
 � � � � � # � � � ! � � � � �


 � � % � � � � � �

� � �  � 
 � � � � � # � � � ! � � � � �

� � � � � � � � � � � � � ! � � � � �

� � � � � 5 � �

� � 2 � � � � � � 5 � �
� 
 � ; � � 
 K ; � � � � ; � � � �

� � � � � # � � � � � � ) � � �

� � � �
� $ # # � $ %

J

J

�
"
9

� � 2 L � � 0
� 
 � ; � � 
 K ; � � � � ; � � � �

PD Input/Output Port

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 28 March 19, 2010

Note that to achieve a maximum full range count of FFH

for the 8-bit timer, the preload registers must first be

cleared to all zeros. It should be noted that after

power-on, the preload registers will be in an unknown

condition. Note that if the Timer Counters are in an OFF

condition and data is written to their preload registers,

this data will be immediately written into the actual coun-

ter. However, if the counter is enabled and counting, any

new data written into the preload data register during

this period will remain in the preload register and will

only be written into the actual counter the next time an

overflow occurs. Note also that when the timer registers

are read, the timer clock will be blocked to avoid errors,

however, as this may result in certain timing errors, pro-

grammers must take this into account.

Timer Control Registers �

TMR0C, TMR1C, TMR2C, TMR3C

The timers are setup using their respective control regis-

ter. These registers are known as TMR0C, TMR1C,

TMR2C and TMR3C. It is the timer control register to-

gether with its corresponding timer registers that control

the full operation of the Timer. Before the timers can be

used, it is essential that the appropriate timer control

register is fully programmed with the right data to ensure

its correct operation, a process that is normally carried

out during program initialization.

Bits 7 and 6 of the Timer Control Register, which are

known as the bit pair TM1/TM0, must be set to 10 re-

spectively to ensure correct Timer operation. The

timer-on bit, which is bit 4 of the Timer Control Register

and known as TON, provides the basic on/off control of

the respective timer. setting the bit high allows the timer

to run, clearing the bit stops the timer. Bits 0~2 of the

Timer Control Register determine the division ratio of

the input clock prescaler.

Configuring the Timer

The Timer is used to measure fixed time intervals, pro-

viding an internal interrupt signal each time the Timer

overflows. To do this the Operating Mode Select bit pair

in the Timer Control Register must be set to the correct

value as shown.

The Timer clock source is further divided by a prescaler,

the value of which is determined by the Prescaler Rate

Select bits, which are bits 0~2 in the Timer Control Reg-

ister. After the other bits in the Timer Control Register

have been setup, the enable bit, which is bit 4 of the

Timer Control Register, can be set high to enable the

Timer to run. Each time an internal clock cycle occurs,

the Timer increments by one. When it is full and over-

flows, an interrupt signal is generated and the Timer will

reload the value already loaded into the preload register

and continue counting. The interrupt can be disabled by

ensuring that the Timer Interrupt Enable bit in the Inter-

rupt Control Register, INTC, is reset to zero.

� � � � � � � �  � � 
 � � � � � #

� , � 7

� � � # � �  � � � ! � � � � �

� � � � �

� � � � � 5 $ �

� � # � �  

� 
 � � ) # � '
� � � � � � � � � $ % �

� , � � 
 + L � , � � 
 2

� � 5 � � � � � � � �

) � C � � - � � � � � � # � �

: * � + L * � + . / <

� , � � * � , � � 2

� � 
 � " 9


 � � ) � ! $ � � � � � �
� % � � � �

8-bit Timer Structure � TMR3

� � � � � � � � �
� � � � � � 
 � � � � � # # � �

� � � � � � # � � � � $ � % $ �

� � � � � � 4 � * � � � � � � 4 � + � � � � � � 4 � 7 � � � � � � 4 � 7 � 4 � *

Timer Mode Timing Diagram

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 29 March 19, 2010

� 0

� � 7� � 2� � *

� 2

7 � � � � � % # � � � � � �  ; � � � �  � � � � H 2 H

� � � � � � � � � � ) ) � � � � � � � #
* D � � � � � # �
2 D �  � � � � # �

� % � � � � � � ! � � �  � � � � # � � �

� 2 � � *
� * � � *
� + � � *
� , � � *

2
2
*
*

� 2 � � 2
� * � � 2
� + � � 2
� , � � 2

2
*
2
*

� � � � �  � � � 
 � � # � � # �
� � � � �  � � � 
 � � # � � # � �
� � � � � � � �  �
� � � � �  � � � 
 � � # � � # �

� 0 � � � + � 0 � # � + � 0 � � � + � 0 � � � 	 � % ( $ � � % �

7 � � � � � % # � � � � � �  ; � � � �  � � � � H  � � M � � � � � � H

� � 
 + � � 
 * � � 
 2

� � � � � � � � � � � � # � � � � � � � � � � # � � �

� 2 � � 
 +
� * � � 
 +
� + � � 
 +
� , � � 
 +

2
2
2
2
*
*
*
*

� 2 � � 
 *
� * � � 
 *
� + � � 
 *
� , � � 
 *

2
2
*
*
2
2
*
*

� 2 � � 
 2
� * � � 
 2
� + � � 
 2
� , � � 
 2

2
*
2
*
2
*
2
*

� � � � � � � � � �

� � � � � * D +
� � � � � * D -
� � � � � * D �
� � � � � * D * /
� � � � � * D , +
� � � � � * D / -
� � � � � * D * + �
� � � � � * D + . /

Timer Control Register � All Devices

Prescaler

All of the 8-bit timers possess a prescaler. Bits 0~2 of

their associated timer control register, define the

pre-scaling stages of the internal clock source of the

Timer. The Timer overflow signal can be used to gener-

ate signals for the Timer interrupt.

Programming Considerations

The internal system clock is used as the timer clock

source and is therefore synchronized with the overall

operation of the microcontroller. In this mode, when the

appropriate timer register is full, the microcontroller will

generate an internal interrupt signal directing the pro-

gram flow to the respective internal interrupt vector.

When the Timer is read, the clock is blocked to avoid er-

rors, however as this may result in a counting error, this

should be taken into account by the programmer. Care

must be taken to ensure that the timers are properly in-

itialised before using them for the first time. The associ-

ated timer enable bits in the interrupt control register

must be properly set otherwise the internal interrupt as-

sociated with the timer will remain inactive. It is also im-

portant to ensure that an initial value is first loaded into

the timer registers before the timer is switched on; this is

because after power-on the initial values of the timer

registers are unknown. After the timer has been initial-

ised the timer can be turned on and off by controlling the

enable bit in the timer control register.

Timer Program Example

The following example program section is based on the

devices, which contain a single internal 8-bit timer. Pro-

gramming the timer for other devices is conducted in a

very similar way. The program shows how the timer reg-

isters are setup along with how the interrupts are en-

abled and managed. Also note how the timer is turned

on by setting bit 4 of the respective timer control register.

The timer can be turned off in a similar way by clearing

the same bit. This example program sets the timer to be

in the timer mode which uses the internal system clock

as their clock source.

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 30 March 19, 2010

include HT86A72.inc

jmp begin

:

org 04h ; external interrupt vectors

reti

org 08h

reti

org 0Ch

reti

org 10h ; timer 2 interrupt vector

jmp tmr2int ; jump here when timer 2 overflows

org 14h

reti

org 18h

reti

:

; internal timer 2 interrupt routine

tmr2int:

:

; timer 2 main program placed here

:

reti

:

begin:

; setup timer 2 registers

mov a,09bh ; setup timer 2

mov tmr2,a

mov a,0097h ; setup timer 2

mov tmr2c,a ; setup timer 2

; setup interrupt register

mov a,01h ; enable master interrupt

mov intc,a

mov a,01h ; enable timer 2 interrupt

mov intch,a

:

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 31 March 19, 2010

Interrupts

Interrupts are an important part of any microcontroller

system. When an external event or an internal function

such as a Timer requires microcontroller attention, their

corresponding interrupt will enforce a temporary sus-

pension of the main program al lowing the

microcontroller to direct attention to their respective

needs.

Interrupt Register

Overall interrupt control, which means interrupt enabling

and flag setting, is controlled using two registers, known

as INTC and INTCH, which are located in the Data

Memory. By controlling the appropriate enable bits in

these registers each individual interrupt can be enabled

or disabled. Also when an interrupt occurs, the corre-

sponding request flag will be set by the microcontroller.

The global enable flag if cleared to zero will disable all

interrupts.

Interrupt Operation

A timer overflow or the external interrupt line being

pulled low will all generate an interrupt request by set-

ting their corresponding request flag, if their appropriate

interrupt enable bit is set. When this happens, the Pro-

gram Counter, which stores the address of the next in-

struction to be executed, will be transferred onto the

stack. The Program Counter will then be loaded with a

new address which will be the value of the correspond-

ing interrupt vector. The microcontroller will then fetch its

next instruction from this interrupt vector. The instruc-

tion at this vector will usually be a JMP statement which

will take program execution to another section of pro-

gram which is known as the interrupt service routine.

Here is located the code to control the appropriate inter-

rupt. The interrupt service routine must be terminated

with a RETI statement, which retrieves the original Pro-

gram Counter address from the stack and allows the

microcontroller to continue with normal execution at the

point where the interrupt occurred.

The various interrupt enable bits, together with their as-

sociated request flags, are shown in the accompanying

diagram with their order of priority.

Once an interrupt subroutine is serviced, all the other in-

terrupts will be blocked, as the EMI bit will be cleared au-

tomatically. This will prevent any further interrupt nesting

from occurring. However, if other interrupt requests oc-

cur during this interval, although the interrupt will not be

immediately serviced, the request flag will still be re-

corded. If an interrupt requires immediate servicing

while the program is already in another interrupt service

routine, the EMI bit should be set after entering the rou-

tine, to allow interrupt nesting. If the stack is full, the in-

terrupt request will not be acknowledged, even if the

related interrupt is enabled, until the Stack Pointer is

decremented. If immediate service is desired, the stack

must be prevented from becoming full.

1 2 � � 	 � % ( $ � � % �

� � � � � � � � � � � � � $ % � � G # � � � # � 3 � � � # �
* D � ! # � � � # � � � � � # �
2 D � ! # � � � # �  � � � � # �

7 � � � � % # � � � � � �  ; � � � �  � � � � H 2 H

� 0 � 2

3 3 � 3 � �

� � � � � � 2 � � � � � � � $ % � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

� � � � � � 2 � � � � � � � $ % � � � � = $ � � � � 8 # � !
* D � � � � � 
 �
2 D � � � � � � � 
 �

3 � 8� 2 8

3 B � � � � � # � � � � � � � $ % � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

3 B � � � � � # � � � � � � � $ % � � � � = $ � � � � 8 # � !
* D � � � � � 
 �
2 D � � � � � � � 
 �

3 � * �� * 8

� � � � � � * � � � � � � � $ % � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

� � � � � � * � � � � � � � $ % � � � � = $ � � � � 8 # � !
* D � � � � � 
 �
2 D � � � � � � � 
 �

3 � 2 �

Interrupt Control Register

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 32 March 19, 2010

1 2 � � � 	 � % ( $ � � % �

� 0 � 2

3 � + �� + 8� , 8 3 � , �3 	 � �	 � 8

� � � � � � + � � � � � � � $ % � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

� � � � � � , � � � � � � � $ % � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

	 � � � 
 � � 
 � � � � � � � � � � � � $ % � � 3 � � � # �

7 � � � � % # � � � � � �  ; � � � �  � � � � H 2 H

� � � � � � + � � � � � � � $ % � � � � = $ � � � � 8 # � !
* D � � � � � 
 �
2 D � � � � � � � 
 �

� � � � � � , � � � � � � � $ % � � � � = $ � � � � 8 # � !
* D � � � � � 
 �
2 D � � � � � � � 
 �

	 � � � 
 � � 
 � � � � � � � � � � � � $ % � � � � = $ � � � � 8 # � !
* D � � � � � 
 �
2 D � � � � � � � 
 �

7 � � � � % # � � � � � �  ; � � � �  � � � � H 2 H

INTCH Register

	 $ � � � � � � � � # # � � 
 # � � � �  � � � � � � �
� � � $ � # # � � � � � � � � � 
 # � � � �  � � � � � � ) � ' � � �

3 3 � 3 � �

� � � � � � � �

� � � � � � $ % �
� � # # � � !

> � ! �

	 $ � � � � � � � � # # � � � � � � � # �  � � � � � � �

 � � � � � � 3 � � � # �  � � � � $ � # # �

3 � 2 �

& � '

3 � + �

3 � * �

3 � , �

� � � � � � 2
� � � � � � $ % � � � � = $ � � � � 8 # � ! � � 2 8

� � � � � � *
� � � � � � $ % � � � � = $ � � � � 8 # � ! � � * 8

� � � � � � +
� � � � � � $ % � � � � = $ � � � � 8 # � ! � � + 8

� � � � � � ,
� � � � � � $ % � � � � = $ � � � � 8 # � ! � � , 8

3 B � � � � � # � � � � � � � $ % �
� � = $ � � � � 8 # � ! � 3 � 8

3 	 � �	 � � � 
 � � 
 � � � � �
� � � � � � $ % � � � � = $ � � � � 8 # � ! � 	 � 8

Interrupt Structure

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 33 March 19, 2010

Interrupt Priority

Interrupts, occurring in the interval between the rising

edges of two consecutive T2 pulses, will be serviced on

the latter of the two T2 pulses, if the corresponding inter-

rupts are enabled. In case of simultaneous requests, the

accompanying table shows the priority that is applied.

Interrupt Source Interrupt Vector Priority

External Interrupt 04H 1

Timer 0 Overflow 08H 2

Timer 1 Overflow 0CH 3

Timer 2 Overflow 10H 4

Timer 3 Overflow 14H 5

A/D Converter Overflow 18H 6

In cases where both external the timer interrupts are en-

abled and where an external and timer interrupt occur

simultaneously, the external interrupt will always have

priority and will therefore be serviced first. Suitable

masking of the individual interrupts using the INTC and

INTCH registers can prevent simultaneous occur-

rences.

External Interrupt

Each device contains a single external interrupt function

controlled by the external pin, INT. For an external inter-

rupt to occur, the corresponding external interrupt en-

able bit must be first set. This is bit 1 of the INTC register

and known as EEI. An external interrupt is triggered by

an external edge transition on the external interrupt pin

INT, after which the related interrupt request flag, EIF,

which is bit 4 of INTC, will be set. A configuration option

exists for the external interrupt pin to determine the type

of external edge transition which will trigger an external

interrupt. There are two options available, a low going

edge or both high and low going edges. When the mas-

ter interrupt and external interrupt bits are enabled, the

stack is not full and an active edge transition, as setup in

the configuration options, occurs on the INT pin, a sub-

routine call to the corresponding external interrupt vec-

tor, which is located at 04H, will occur. After entering the

interrupt execution routine, the corresponding interrupt

request flag, EIF, will be reset and the EMI bit will be

cleared to disable other interrupts.

Timer Interrupt

For a timer generated interrupt to occur, the correspond-

ing timer interrupt enable bit must be first set. Each de-

vice contains four 8-bit timers whose corresponding

interrupt enable bits are known as ET0I, ET1I, ET2I and

ET3I and are located in the INTC and INTCH registers.

Each timer also has a corresponding timer interrupt re-

quest flag, which are known as T0F, T1F, T2F and T3F,

also located in the INTC and INTCH registers. When the

master interrupt and corresponding timer interrupt en-

able bits are enabled, the stack is not full, and when the

corresponding timer overflows a subroutine call to the

corresponding timer interrupt vector will occur. The cor-

responding Program Memory vector locations for Timer

0, Timer1, Timer 2 and Timer 3 are 08H, 0CH, 10H and

14H. After entering the interrupt execution routine, the

corresponding interrupt request flags, T0F, T1F, T2F or

T3F will be reset and the EMI bit will be cleared to dis-

able other interrupts.

A/D Converter Interrupt

The internal A/D Converter interrupt is initialised by set-

ting the A/D interrupt request flag (ADF:bit6 of INTCH).

When the interrupt is enabled, and the stack is not full

and the ADF bit is set, a subroutine call to location �18H�

will occur. The related interrupt request flag, ADF, will be

reset and the EMI bit cleared to disable further interrupts.

Programming Considerations

By disabling the interrupt enable bits, a requested inter-

rupt can be prevented from being serviced, however,

once an interrupt request flag is set, it will remain in this

condition in the INTC or INTCH register until the corre-

sponding interrupt is serviced or until the request flag is

cleared by a software instruction.

It is recommended that programs do not use the �CALL

subroutine� instruction within the interrupt subroutine.

Interrupts often occur in an unpredictable manner or

need to be serviced immediately in some applications. If

only one stack is left and the interrupt is not well con-

trolled, the original control sequence will be damaged

once a �CALL subroutine� is executed in the interrupt

subroutine.

All of these interrupts have the capability of waking up

the MCU when in the Power Down Mode. Only the Pro-

gram Counter is pushed onto the stack. If the contents of

the register or status register are altered by the interrupt

service program, which may corrupt the desired control

sequence, then the contents should be saved in ad-

vance.

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 34 March 19, 2010

Reset and Initialisation

A reset function is a fundamental part of any

microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside

parameters. The most important reset condition is after

power is first applied to the microcontroller. In this case,

internal circuitry will ensure that the microcontroller, af-

ter a short delay, will be in a well defined state and ready

to execute the first program instruction. After this

power-on reset, certain important internal registers will

be set to defined states before the program com-

mences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to

begin program execution from the lowest Program

Memory address.

In addition to the power-on reset, situations may arise

where it is necessary to forcefully apply a reset condition

when the microcontroller is running. One example of this

is where after power has been applied and the

microcontroller is already running, the RES line is force-

fully pulled low. In such a case, known as a normal oper-

ation reset, some of the microcontroller registers remain

unchanged allowing the microcontroller to proceed with

normal operation after the reset line is allowed to return

high. Another type of reset is when the Watchdog Timer

overflows and resets the microcontroller. All types of re-

set operations result in different register conditions be-

ing setup.

Another reset exists in the form of a Low Voltage Reset,

LVR, where a full reset, similar to the RES reset is imple-

mented in situations where the power supply voltage

falls below a certain threshold.

Reset Functions

There are five ways in which a microcontroller reset can

occur, through events occurring both internally and ex-

ternally:

� Power-on Reset

The most fundamental and unavoidable reset is the

one that occurs after power is first applied to the

microcontroller. As well as ensuring that the Program

Memory begins execution from the first memory ad-

dress, a power-on reset also ensures that certain

other registers are preset to known conditions. All the

I/O port and port control registers will power up in a

high condition ensuring that all pins will be first set to

inputs.

Although the microcontroller has an internal RC reset

function, if the VDD power supply rise time is not fast

enough or does not stabilise quickly at power-on, the

internal reset function may be incapable of providing

proper reset operation. For this reason it is recom-

mended that an external RC network is connected to

the RES pin, whose additional time delay will ensure

that the RES pin remains low for an extended period

to allow the power supply to stabilise. During this time

delay, normal operation of the microcontroller will be

inhibited. After the RES line reaches a certain voltage

value, the reset delay time tRSTD is invoked to provide

an extra delay time after which the microcontroller will

begin normal operation. The abbreviation SST in the

figures stands for System Start-up Timer.

For most applications a resistor connected between

VDD and the RES pin and a capacitor connected be-

tween VSS and the RES pin will provide a suitable ex-

ternal reset circuit. Any wiring connected to the RES

pin should be kept as short as possible to minimise

any stray noise interference.

For applications that operate within an environment

where more noise is present the Enhanced Reset Cir-

cuit shown is recommended.

More information regarding external reset circuits is

located in Application Note HA0075E on the Holtek

website.

� RES Pin Reset

This type of reset occurs when the microcontroller is

already running and the RES pin is forcefully pulled

low by external hardware such as an external switch.

In this case as in the case of other reset, the Program

Counter will reset to zero and program execution initi-

ated from this point.

� 3 �

( � �

� � � � � � � � � � $ �

� � � � � � � # � � � � � �

2 @ 1 � ( � �

� � � � �

Power-On Reset Timing Chart

� 3 �

2 @ * � 8

* 2 2 � �

( � �

( � �

2 @ 2 * � 8

* 2 � �

Enhanced Reset Circuit

� 3 �

� � � � � � � � � � $ �

� � � � � � � # � � � � � �

2 @ 1 � ( � �

2 @ - � ( � �

� � � � �

RES Reset Timing Chart

� 3 �

( � �

( � �

2 @ * � 8

* 2 2 � �

Basic Reset Circuit

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 35 March 19, 2010

� Low Voltage Reset � LVR

The microcontroller contains a low voltage reset circuit

in order to monitor the supply voltage of the device,

which is selected via a configuration option. If the supply

voltage of the device drops to within a range of

0.9V~VLVR such as might occur when changing the bat-

tery, the LVR will automatically reset the device inter-

nally. The LVR includes the following specifications: For

a valid LVR signal, a low voltage, i.e., a voltage in the

range between 0.9V~VLVR must exist for greater than the

value tLVR specified in the A.C. characteristics. If the low

voltage state does not exceed 1ms, the LVR will ignore it

and will not perform a reset function.

� Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal opera-

tion is the same as a hardware RES pin reset except

that the Watchdog time-out flag TO will be set to �1�.

� Watchdog Time-out Reset during Power Down

The Watchdog time-out Reset during Power Down is

a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Pro-

gram Counter and the Stack Pointer will be cleared to

�0� and the TO flag will be set to �1�. Refer to the A.C.

Characteristics for tSST details.

Reset Initial Conditions

The different types of reset described affect the reset

flags in different ways. These flags, known as PDF and

TO are located in the status register and are controlled

by various microcontroller operations, such as the

Power Down function or Watchdog Timer. The reset

flags are shown in the table:

TO PDF RESET Conditions

0 0 RES reset during power-on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during Power Down

Note: �u� stands for unchanged

The following table indicates the way in which the vari-

ous components of the microcontroller are affected after

a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT
Clear after reset, WDT begins

counting

Timer All Timer will be turned off

Prescaler
The Timer Prescaler will be

cleared

Input/Output Ports I/O ports will be setup as inputs

Stack Pointer
Stack Pointer will point to the top

of the stack

& ( �

� � � � � � � � � � $ �

� � � � � � � # � � � � � �

� � � � �

Low Voltage Reset Timing Chart

� � � � � � � � � � $ �

� � � � � � � � � � $ �

� � � � � � � # � � � � � �

� � � � �

WDT Time-out Reset during Normal Operation

Timing Chart

� � � � � � � � � � $ �

� � � � � � � � � � $ �

� � � �

WDT Time-out Reset during Power Down

Timing Chart

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 36 March 19, 2010

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable

continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller

is in after a particular reset occurs. The following table describes how each type of reset affects each of the

microcontroller internal registers. Note that where more than one package type exists the table will reflect the situation

for the larger package type.

Register
Reset

(Power-on)

WDT Time-out

(Normal Operation)

RES Reset

(Normal Operation)

RES Reset

(HALT)

WDT Time-out

from HALT

MP0 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

MP1 x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

BP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

ACC x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

PCL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TBLP x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

TBLH x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

WDTS 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 u u u u u u u u

STATUS ��� 0 0 x x x x ��� 1 u u u u u ��� u u u u u u ��� 0 1 u u u u ��� 1 1 u u u u

INTC � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � 0 0 0 0 0 0 0 � u u u u u u u

TMR0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

TMR0C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

TMR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

TMR1C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PBC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PCC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PDC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

PEC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 u u u u u u u u

TMR2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

TMR2C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

TMR3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u u u u u u u

TMR3C 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

INTCH � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � 0 0 0 � u u u � u u u

TBHP x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

DAL x x x x � � � � u u u u � � � � u u u u � � � � u u u u � � � � u u u u � � � �

DAH x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

VOL x x x � � � � � x x x � � � � � x x x � � � � � x x x � � � � � u u u � � � � �

VOICEC 0 0 0 0 � 0 0 � 0 0 0 0 � 0 0 � 0 0 0 0 � 0 0 � 0 0 0 0 � 0 0 � u u u u � u u �

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 37 March 19, 2010

Register
Reset

(Power-on)

WDT Time-out

(Normal Operation)

RES Reset

(Normal Operation)

RES Reset

(HALT)

WDT Time-out

from HALT

LATCH0H x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

LATCH0M x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

LATCH0L x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

LATCH1H x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

LATCH1M x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

LATCH1L x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

LATCHD x x x x x x x x u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u

ADRL x x x x � � � � x x x x � � � � x x x x � � � � x x x x � � � � u u u u � � � �

ADRH x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u

ADCR 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 u u u u u u u u

ACSR � � � � � � 0 0 � � � � � � 0 0 � � � � � � 0 0 � � � � � � 0 0 � � � � � � u u

LVDC 0 0 0 x 0 � 0 0 0 0 0 x 0 � 0 0 0 0 0 x 0 � 0 0 0 0 0 x 0 � 0 0 u u u x u � u u

SBCR 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 u u u u u u u u

SBDR x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x u u u u u u u u

Note: �u� stands for unchanged

�x� stands for unknown

��� stands for undefined

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 38 March 19, 2010

Oscillator

Various oscillator options offer the user a wide range of

functions according to their various application require-

ments. Two types of system clocks can be selected

while various clock source options for the Watchdog

Timer are provided for maximum flexibility. All oscillator

options are selected through the configuration options.

The two methods of generating the system clock are:

� External crystal/resonator oscillator

� External RC oscillator

One of these two methods must be selected using the

configuration options.

More information regarding the oscillator is located in

Application Note HA0075E on the Holtek website.

External Crystal/Resonator Oscillator

The simple connection of a crystal across OSC1 and

OSC2 will create the necessary phase shift and feed-

back for oscillation, and will normally not require exter-

nal capacitors. However, for some crystals and most

resonator types, to ensure oscillation and accurate fre-

quency generation, it may be necessary to add two

small value external capacitors, C1 and C2. The exact

values of C1 and C2 should be selected in consultation

with the crystal or resonator manufacturer�s specifica-

tion. The external parallel feedback resistor, Rp, is nor-

mally not required but in some cases may be needed to

assist with oscillation start up.

Internal Ca, Cb, Rf Typical Values @ 5V, 25�C

Ca Cb Rf

11~13pF 13~15pF 800k�

Oscillator Internal Component Values

External RC Oscillator

Using the external system RC oscillator requires that an

external resistor is connected. For the Mask version de-

vice a value of between 120k� and 280k� is required

For the OPT device a value of between 40k� and 90k�

is required. This external resistor is connected between

OSC1 and VSS. A clock signal, with a frequency of the

generated system clock divided by 4, will be provided on

OSC2 as an output which can be used for external syn-

chronisation purposes. Note that as the OSC2 output is

an NMOS open-drain type, a pull high resistor should be

connected if it to be used to monitor the internal fre-

quency. Although this is a cost effective oscillator con-

figuration, the oscillation frequency can vary with VDD,

temperature and process variations and is therefore not

suitable for applications where timing is critical or where

accurate oscillator frequencies are required. Note that it

is the only microcontroller internal circuitry together with

the external resistor, that determines the frequency of

the oscillator.

Watchdog Timer Oscillator

The WDT oscillator is a fully self-contained free running

on-chip RC oscillator with a typical period of 65�s at 5V

requiring no external components. When the device en-

ters the Power Down Mode, the system clock will stop

running but the WDT oscillator continues to free-run and

to keep the watchdog active. However, to preserve

power in certain applications the WDT oscillator can be

disabled via a configuration option.

RTC Oscillator

A 32KHz crystal can be connected to pins XIN and

XOUT to implement an RTC oscillator. The RTC oscilla-

tor is used as a clock source for Timer/Event Counter 3

but must be first enabled using a configuration option. If

the configuration option enables the RTC oscillator then

it will automatically become the clock source for the

Timer/Event Counter 3. The RTC oscillator will continue

to operate even if the HALT instruction is executed and

the device is powered down. It may be necessary to

connect two small capacitors between XIN, XOUT and

ground for correct operation of the RTC.

� � 
 *

� � 
 +

� )

� � � � � � � � � � #
� � � � $ � � �

1 ! � % � ! � .
, � * $ . . � � � �
� $ � * 3 $ �


 *


 +


 �


 �

� %

7 � � � D * @ � � % � � � � � � � � � # # � � � � � � � � = $ � � �  @
+ @ � 	 # � � � $ ! � � � � � � � � � ' � � � � 
 * � � � 
 + � % � � � � � � 
 � � � � % � � � � � � � �
� � � � � � % � � � � � � � � � � ) � � � � $ �  � 0 % 8 @

Crystal/Resonator Oscillator

� � 
 *

� � � 


� � 
 +) � C � � - � 7 � � � � � % � � � � � � � �

External RC Oscillator

9 � " �

9 � 7
, + 0 / � > ?

RTC Oscillator

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 39 March 19, 2010

Power Down Mode and Wake-up

Power Down Mode

All of the Holtek microcontrollers have the ability to enter

a Power Down Mode, also known as the HALT Mode or

Sleep Mode. When the device enters this mode, the nor-

mal operating current, will be reduced to an extremely

low standby current level. This occurs because when

the device enters the Power Down Mode, the system

oscillator is stopped which reduces the power consump-

tion to extremely low levels, however, as the device

maintains its present internal condition, it can be woken

up at a later stage and continue running, without requir-

ing a full reset. This feature is extremely important in ap-

plication areas where the MCU must have its power

supply constantly maintained to keep the device in a

known condition but where the power supply capacity is

limited such as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power

Down Mode and that is to execute the �HALT� instruc-

tion in the application program. When this instruction is

executed, the following will occur:

� The system oscillator will stop running and the appli-

cation program will stop at the �HALT� instruction.

� The Data Memory contents and registers will maintain

their present condition.

� The WDT will be cleared and resume counting if the

WDT clock source is selected to come from the WDT

oscillator. The WDT will stop if its clock source origi-

nates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will

be set and the Watchdog time-out flag, TO, will be

cleared.

Standby Current Considerations

As the main reason for entering the Power Down Mode

is to keep the current consumption of the MCU to as low

a value as possible, perhaps only in the order of several

micro-amps, there are other considerations which must

also be taken into account by the circuit designer if the

power consumption is to be minimized. Special atten-

tion must be made to the I/O pins on the device. All

high-impedance input pins must be connected to either

a fixed high or low level as any floating input pins could

create internal oscillations and result in increased cur-

rent consumption. Care must also be taken with the

loads, which are connected to I/Os, which are setup as

outputs. These should be placed in a condition in which

minimum current is drawn or connected only to external

circuits that do not draw current, such as other CMOS

inputs. Also note that additional standby current will also

be required if the configuration options have enabled the

Watchdog Timer internal oscillator.

Wake-up

After the system enters the Power Down Mode, it can be

woken up from one of various sources listed as follows:

� An external reset

� An external falling edge on Port A

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the de-

vice will experience a full system reset, however, if the

device is woken up by a WDT overflow, a Watchdog

Timer reset will be initiated. Although both of these

wake-up methods will initiate a reset operation, the ac-

tual source of the wake-up can be determined by exam-

ining the TO and PDF flags. The PDF flag is cleared by a

system power-up or executing the clear Watchdog

Timer instructions and is set when executing the �HALT�

instruction. The TO flag is set if a WDT time-out occurs,

and causes a wake-up that only resets the Program

Counter and Stack Pointer, the other flags remain in

their original status.

Each pin on Port A can be setup via an individual config-

uration option to permit a negative transition on the pin

to wake-up the system. When a Port A pin wake-up oc-

curs, the program will resume execution at the instruc-

tion following the �HALT� instruction.

If the system is woken up by an interrupt, then two possi-

ble situations may occur. The first is where the related

interrupt is disabled or the interrupt is enabled but the

stack is full, in which case the program will resume exe-

cution at the instruction following the �HALT� instruction.

In this situation, the interrupt which woke-up the device

will not be immediately serviced, but will rather be ser-

viced later when the related interrupt is finally enabled or

when a stack level becomes free. The other situation is

where the related interrupt is enabled and the stack is

not full, in which case the regular interrupt response

takes place. If an interrupt request flag is set to �1� be-

fore entering the Power Down Mode, the wake-up func-

tion of the related interrupt will be disabled.

No matter what the source of the wake-up event is, once

a wake-up situation occurs, a time period equal to 1024

system clock periods will be required before normal sys-

tem operation resumes. However, if the wake-up has

originated due to an interrupt, the actual interrupt sub-

routine execution will be delayed by an additional one or

more cycles. If the wake-up results in the execution of

the next instruction following the �HALT� instruction, this

will be executed immediately after the 1024 system

clock period delay has ended.

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 40 March 19, 2010

Watchdog Timer

The Watchdog Timer is provided to prevent program

malfunctions or sequences from jumping to unknown lo-

cations, due to certain uncontrollable external events

such as electrical noise. It operates by providing a de-

vice reset when the WDT counter overflows. The WDT

clock is supplied by one of two sources selected by con-

figuration option: its own self-contained dedicated inter-

nal WDT oscillator, or the instruction clock which is the

system clock divided by 4. Note that if the WDT configu-

ration option has been disabled, then any instruction re-

lating to its operation will result in no operation.

The internal WDT oscillator has an approximate period

of 65�s at a supply voltage of 5V. If selected, it is first di-

vided by 256 via an 8-stage counter to give a nominal

period of 17ms. Note that this period can vary with VDD,

temperature and process variations. For longer WDT

time-out periods the WDT prescaler can be utilized. By

writing the required value to bits 0, 1 and 2 of the WDTS

register, known as WS0, WS1 and WS2, longer time-out

periods can be achieved. With WS0, WS1 and WS2 all

equal to 1, the division ratio is 1:128 which gives a maxi-

mum time-out period of about 2.1s.

A configuration option can select the instruction clock,

which is the system clock divided by 4, as the WDT clock

source instead of the internal WDT oscillator. If the in-

struction clock is used as the clock source, it must be

noted that when the system enters the Power Down

Mode, as the system clock is stopped, then the WDT

clock source will also be stopped. Therefore the WDT

will lose its protecting purposes. In such cases the sys-

tem cannot be restarted by the WDT and can only be re-

started using external signals. For systems that operate

in noisy environments, using the internal WDT oscillator

is therefore the recommended choice.

Under normal program operation, a WDT time-out will

initialise a device reset and set the status bit TO. How-

ever, if the system is in the Power Down Mode, when a

WDT time-out occurs, only the Program Counter and

Stack Pointer will be reset. Three methods can be

adopted to clear the contents of the WDT and the WDT

prescaler. The first is an external hardware reset, which

means a low level on the RES pin, the second is using

the watchdog software instructions and the third is via a

�HALT� instruction.

There are two methods of using software instructions to

clear the Watchdog Timer, one of which must be chosen

by configuration option. The first option is to use the sin-

gle �CLR WDT� instruction while the second is to use

the two commands �CLR WDT1� and �CLR WDT2�. For

the first option, a simple execution of �CLR WDT� will

clear the WDT while for the second option, both �CLR

WDT1� and �CLR WDT2� must both be executed to

successfully clear the WDT. Note that for this second

option, if �CLR WDT1� is used to clear the WDT, succes-

sive executions of this instruction will have no effect,

only the execution of a �CLR WDT2� instruction will

clear the WDT. Similarly, after the �CLR WDT2� instruc-

tion has been executed, only a successive �CLR WDT1�

instruction can clear the Watchdog Timer.

� � + 4 5 � & 	 � % ( $ � � % �

� 0 � 2

� � � � % � � � � � # � � � � � � � � � � # � � �

� � +
2
2
2
2
*
*
*
*

� � *
2
2
*
*
2
2
*
*

� � 2
2
*
2
*
2
*
2
*

� � � � � � � �
� � � � � � * D *
� � � � � � * D +
� � � � � � * D -
� � � � � � * D �
� � � � � � * D * /
� � � � � � * D , +
� � � � � � * D / -
� � � � � � * D * + �

7 � � � $ � �  

� � * � � 2

Watchdog Timer Register

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 41 March 19, 2010

Voice Output

Voice Control

The voice control register controls the voice ROM circuit

and the DAC circuit and selects the Voice ROM latch

counter. If the DAC circuit is not enabled, any DAH/DAL

outputs will be invalid. Writing a �1� to the DAC bit will

enable the DAC circuit, while writing a �0� to the DAC bit

will disable the DAC circuit. If the voice ROM circuit is

not enabled, then voice ROM data cannot be accessed.

Writing a �1� to the VROMC bit will enable the voice

ROM circuit, while writing a �0� to the VROMC bit will

disable the voice ROM circuit. The LATCH bit deter-

mines which voice ROM address latch counter will be

used as the voice ROM address latch counter.

Audio Output and Volume Control � DAL, DAH, VOL

The audio output is 12-bits wide whose highest 8-bits

are written into the DAH register and whose lowest four

bits are written into the highest four bits of the DAL regis-

ter. Bits 0~3 of the DAL register are always read as zero.

There are 8 levels of volume which are setup using the

VOL register. Only the highest 3-bits of this register are

used for volume control, the other bits are not used and

read as zero.

� � � � � � 
 � $ � � � �

� � � � � : � + . / < 0 � � � � � � � � � � � # � �

� � � � � * � � " 9

� � � � � � � � � � $ �

� � 2 L � � +
� � � � 
 # � � � � � � $ � � �


 # � � � � � � � � � � % �


 � � ) � ! $ � � � � � � � � % � � � �


 & � � � � � * � 8 # � !


 & � � � � � + � 8 # � !

* � � � � + � � � � � � $ � � � � � �

 & � �


 & � �
) � C � � -

� � � � � � � � # # � � � �

� � � � 
 # � � � � � � $ � � �


 � � ) � ! $ � � � � � � � � % � � � �

Watchdog Timer

� , 1 � 6 � 	 � % ( $ � � % �

� 0 � 2

& 	 � 
 > 
 ( � � � 
 � 	 
� 2 	 3 7� 2 	 3 �8 	 � �

7 � � � � � % # � � � � � �  ; � � � �  � � � � ? � � �

� 	 
 � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

( � � � � � � � � � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

7 � � � � � % # � � � � � �  ; � � � �  � � � � ? � � �

( � � � � � � � � � 
 � $ � � � � � � � # � � �
* D � 	   � � � � � & � � � � � *
2 D � 	   � � � � � & � � � � � 2

� � ' � � � 	 � % # � ) � � � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

� � ' � � � 	 � % # � ) � � � � � $ � � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

� % � �  � " % � , + � > ? � 
 � � � � � # � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

VOICE Control Register

5 � � 	 � % ( $ � � % �

� 0 � 2

7 � � � $ � �  ; � � � �  � � � � H 2 H

� , � + � * � 2

	 $  � � � � $ � % $ �

5 $ ( $ � � . 	 � � 	 � ! � . � ( 	 5 � � � 	 � � 7 	 � % ( $ � � % �

5 � � 	 � % ( $ � � % �

� 0 � 2

� * * � * 2 � 1 � �

	 $  � � � � $ � % $ �

5 $ ( $ � � . 	 � � 	 � ! � . � ( 	 5 � � � 	 � $ ( � 	 � % ( $ � � % �

� , � 	 � % ( $ � � % �

� 0 � 2

7 � � � $ � �  ; � � � �  � � � � H 2 H

� 	 � 
 � # $ � � � � � � � � � # �  � � �

� � . 3 ) % 	 � � ! � � � . 	 � % ( $ � � % �

� 0 � / � . � -

( � & + ( � & * ( � & 2

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 42 March 19, 2010

Voice ROM Data Address Latch Counter

The Voice ROM address is 21-bits wide and therefore requires three registers to store the address. There are two sets

of three registers to store this address, which are LATCH0H/LATCH0M/LATCH0L and LATCH1H/

LATCH1M/LATCH1L. The 21-bit address stored in one set of these three registers is used to access the 8-bit voice

code data in the Voice ROM. After the 8-bit Voice ROM data is addressed, a few instruction cycles, of at least 4us dura-

tion, are needed to latch the Voice ROM data. After this the microcontroller can read the voice data from the LATCHD

register.

Example: Read an 8-bit voice ROM data which is located at address 000007H by address latch 0

Set [26H].2 ; Enable voice ROM circuit

mov A, 07H ;

mov LATCH0L, A ; Set LATCH0L to 07H

mov A, 00H ;

mov LATCH0M, A ; Set LATCH0M to 00H

mov A, 00H ;

mov LATCH0H, A ; Set LATCH0H to 00H

call Delay ; Delay a short period of time

mov A, LATCHD ; Get voice data at 000007H

Power Amplifier

Each device contains an audio power amplifier which is

an integrated class AB monophonic type speaker driver.

It has the properties of high S/N ratio, high slew rate,

low distortion, large output voltage swing, excellent

power supply ripple rejection, low power consumption,

low standby current and power off control etc.

Aud In: Audio input

VBIAS: Speaker non-inverting input voltage reference

SP+:Audio Positive output

SP-: Audio Negative output

OUTP Rising Time (tR)

When AMP_EN enables the Power Amplifer, note that it

requires a certain time before it can output fully on the

OUTP pin. However, this delay time depends on the

value of C1. The C1 capacitor is connected between

VBIAS and VSS.	 � � * 	 � � +

( 5 � 	 �

* 2 �� � �

	 $  � � �

5 � 	 �

� �

�

� � 4

	 � � 6 3 7

� � K


 *

2 @ * � 8

	 � � 6 3 7

� " � �

� � � �

Capacitor

0.1�F 1�F 4.7�F 10�FtR

Voltage

2.2V 15ms 30ms 90ms 185ms

3V 15ms 30ms 90ms 185ms

4 15ms 30ms 90ms 185ms

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 43 March 19, 2010

SP+/SP-

AM P_EN

tR tR

For battery based applications, power consumption is a

key issue, therefore the amplifier should be turned off

when in the standby state. In order to eliminate any

speaker sound bursts while turning the amplifier on, the

application circuit, which will incorporate a capacitance

value of C1, should be adjusted in accordance with the

speaker s audio frequency response. A greater value of

C1 will improve the noise burst while turning on the am-

plifier. The recommended operation sequence is:

Turn On: audio signal standby (1/2VDD) 
 enable am-

plifier 
 wait tR for amplifier ready 
 audio output

Turn Off: audio signal finished 
 disable amplifier 


wait tR for amplifier off 
 audio signal off

If the application is not powered by batteries and there is

no problem with amplifier On/Off issues, a capacitor

value of 0.1�F for C1 is recommended.

Analog to Digital Converter

The need to interface to real world analog signals is a

common requirement for many electronic systems.

However, to properly process these signals by a

microcontroller, they must first be converted into digital

signals by A/D converters. By integrating the A/D con-

version electronic circuitry into the microcontroller, the

need for external components is reduced significantly

with the corresponding follow-on benefits of lower costs

and reduced component space requirements.

A/D Overview

The devices contain a 4-channel analog to digital con-

verter which can directly interface to external analog sig-

nals, such as that from sensors or other control signals

and convert these signals directly into either a 12-bit dig-

ital value.

The following diagram shows the overall internal struc-

ture of the A/D converter, together with its associated

registers.

A/D Converter Data Registers � ADRL, ADRH

The devices have a 12-bit A/D converter, two registers

are required, a high byte register, known as ADRH , and

a low byte register, known as ADRL. After the conver-

sion process takes place, these registers can be directly

read by the microcontroller to obtain the digitized con-

version value. They use two A/D Converter Data Regis-

ters, note that only the high byte register ADRH utilises

its full 8-bit contents. The low byte register ADRL uti-

lises only 4 of its 8-bit contents as it contains only the

lower 4 bit of the 12-bit converted value.

	 � 
 � � � $ � � �
) � � 


� + � L

� , +
	 
 � � � � � ! � � � � �

	 � 


( � �

	 � � � � � ) � � � � � � � 
 � # � � ! �

	 � � &

	 � � >

	 � � � � � � �
� � ! � � � � � �

� 
 � 2 L � 
 � + 	 
 � 2 L 	 
 � * � � 	 � � 3 � 

	 � 
 �
� � ! � � � � �

� � � � 
 � � ) � ! $ � � � � � �
5 � � �


 � � � � � # � � � # � � �
5 � � �

� � � � � � � �  � 3 �  � � )

 � � 
 � � � � � � � 5 � � �


 # � � � � � � 
 �  � � � � � � �

� 
 2 � 	 7 2

� 
 * � 	 7 *

� 
 + � 	 7 +

� 
 , � 	 7 ,

A/D Converter Structure

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 44 March 19, 2010

In the following table, D0~D11 are the A/D conversion

data result bits.

Register
Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit

0

ADRL D3 D2 D1 D0 � � � �

ADRH D11 D10 D9 D8 D7 D6 D5 D4

A/D Data Register

A/D Converter Control Register � ADCR

To control the function and operation of the A/D con-

verter, a control register known as ADCR is provided.

This 8-bit register defines functions such as the selec-

tion of which analog channel is connected to the internal

A/D converter, which pins are used as analog inputs and

which are used as normal I/Os as well as controlling the

start function and monitoring the A/D converter end of

conversion status.

One section of this register contains the bits

ACS1~ACS0 which define the channel number. As each

of the devices contains only one actual analog to digital

converter circuit, each of the individual 4 analog inputs

must be routed to the converter. It is the function of the

ACS1~ACS0 bits in the ADCR register to determine

which analog channel is actually connected to the inter-

nal A/D converter.

The ADCR control register also contains the

PCR2~PCR0 bits which determine which pins on Port C

are used as analog inputs for the A/D converter and

which pins are to be used as normal I/O pins. Note that if

the PCR2~PCR0 bits are all set to zero, then all the Port

C pins will be setup as normal I/Os and the internal A/D

converter circuitry will be powered off to reduce the

power consumption.

The START bit in the ADCR register is used to start and

reset the A/D converter. When the microcontroller sets

this bit from low to high and then low again, an analog to

digital conversion cycle will be initiated. When the

START bit is brought from low to high but not low again,

the EOC bit in the ADCR register will be set high and the

analog to digital converter will be reset. It is the START

bit that is used to control the overall on/off operation of

the internal analog to digital converter.

The EOC bit in the ADCR register is used to indicate

when the analog to digital conversion process is com-

plete. This bit will be automatically cleared to zero by the

microcontroller after a conversion cycle has ended. In

addition, the corresponding A/D interrupt request flag

will be set in the interrupt control register, and if the inter-

rupts are enabled, an appropriate internal interrupt sig-

nal will be generated. This A/D internal interrupt signal

will direct the program flow to the associated A/D inter-

nal interrupt address for processing. If the A/D internal

interrupt is disabled, the microcontroller can be used to

poll the EOC bit in the ADCR register to check whether it

has been cleared as an alternative method of detecting

the end of an A/D conversion cycle.

A/D Converter Clock Source Register � ACSR

The clock source for the A/D converter, which originates

from the system clock fOSC, is first divided by a division

ratio, the value of which is determined by the ADCS1

and ADCS0 bits in the ACSR register.

Although the A/D clock source is determined by the sys-

tem clock fOSC, and by bits ADCS1 and ADCS0, there

are some limitations on the maximum A/D clock source

speed that can be selected. Refer to the following table.

ACS1 ACS0 Analog Channel

0 0 AN0

0 1 AN1

1 0 AN2

1 1 AN3

ACS Table: A/D Channel Select Table

� 5 � � 	 � % ( $ � � % �

� � # � � � � 	 � � � � � � � � � #
� � � �  � � � � # � � � ) � � � � � � � 	 
 � � � � � # �

� 0 � 2

� � 	 � � � 
 � + � 
 � * � 
 � 2 	 
 � * 	 
 � 2

� � � � � 
 � 	 � � � � � � � � � # � � � � ) � ! $ � � � � � � �
� � � �  � � � � # � � � ) � � � � � � � � 
 � � � � � # �

3 �  � � ) � 	 � � � � � � 
 � � � � � � � ) # � !
* D � � � � � � �  � � ) � 	 � � � � � � 
 � � � � � � � � � 	 � � � � � � 
 � � � � � � � ' � � � � � ! � � � � � � � % � � ! � � � �
2 D � � �  � � ) � 	 � � � � � � 
 � � � � � � � � � 	 � � � � � � 
 � � � � � � � � �  �  

� � � � � � � � � � 	 � � � � � � 
 � � � � � �

2 � � � * � � � 2 � D � � � � � �

2 � � � * � D � � � � � � � 	 � � � � � � 
 � � � � � � � �  � � � � � 3 � 
 5 � � � � H * H

3 � 
 5

7 � � � � � % # � � � � � �  � � � �  � � � � H 2 H

ADCR Register

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 45 March 19, 2010

PCR2 PCR1 PCR0 3 2 1 0

0 0 0 PC3 PC2 PC1 PC0

0 0 1 PC3 PC2 PC1 AN0

0 1 0 PC3 PC2 AN1 AN0

0 1 1 PC3 AN2 AN1 AN0

1 0 0 AN3 AN2 AN1 AN0

PCR Table: Port A/D Channel Configuration Table

fOSC

A/D Clock Period (tAD)

ADCS1, ADCS0=01

(fOSC/2)

ADCS1, ADCS0=10

(fOSC/8)

ADCS1, ADCS0=00

(fOSC/32)

ADCS1, ADCS0=11

4MHz 500ns 2�s 8�s �

6MHz 333ns 1.3�s 5.3�s �

8MHz 250ns 1�s 4�s �

A/D Clock Period Examples

� � & � 	 � % ( $ � � % �

� � # � � � � 	 � � � � � � 
 � � � � � � � # � � � � � � $ � � �

� 0 � 2

� 3 � � 	 � 
 � * 	 � 
 � 2

	 � 
 � *
2
2
*
*

	 � 
 � 2
2
*
2
*

D � ) � � 
 � +
D � ) � � 
 � �
D � ) � � 
 � , +
D � 7 � � � � � % # � � � � � �  

7 � � � � � % # � � � � � �  ; � � � �  � � � � H 2 H

8 � � � � � � � � � �  � � $ � � � � � # �

ACSR Register

A/D Input Pins

All of the A/D analog input pins are pin-shared with the

I/O pins on Port C. Bits PCR2~PCR0 in the ACSR regis-

ters, not configuration options, determine whether the

input pins are setup as normal Port C input/output pins

or whether they are setup as analog inputs. In this way,

pins can be changed under program control to change

their function from normal I/O operation to analog inputs

and vice versa. Pull-high resistors, which are setup

through configuration options, apply to the input pins

only when they are used as normal I/O pins, if setup as

A/D inputs the pull-high resistors will be automatically

disconnected. Note that it is not necessary to first setup

the A/D pin as an input in the PBC port control register to

enable the A/D input, when the PCR2~PCR0 bits en-

able an A/D input, the status of the port control register

will be overridden.

The VDD power supply pin is used as the A/D converter

reference voltage, and as such analog inputs must not

be allowed to exceed this value. Appropriate measures

should also be taken to ensure that the VDD pin remains

as stable and noise free as possible.

Initialising the A/D Converter

The internal A/D converter must be initialised in a spe-

cial way. Each time the Port C A/D channel selection bits

are modified by the program, the A/D converter must be

re-initialised. If the A/D converter is not initialized after

the channel selection bits are changed, the EOCB flag

may have an undefined value, which may produce a

false end of conversion signal. To initialize the A/D con-

verter after the channel selection bits have changed,

then, within a time frame of one to ten instruction cycles,

the START bit in the ADCR register must first be set high

and then immediately cleared to zero. This will ensure

that the EOCB flag is correctly set to a high condition.

Summary of A/D Conversion Steps

The following summarizes the individual steps that

should be executed in order to implement an A/D con-

version process.

� Step 1

Select the required A/D conversion clock by correctly

programming bits ADCS1 and ADCS0 in the ACSR

register.

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 46 March 19, 2010

� Step 2

Select which channel is to be connected to the internal

A/D converter by correctly programming the

ACS1~ACS0 bits which are also contained in the

ADCR register.

� Step 3

Select which pins on Port C are to be used as A/D in-

puts and configure them as A/D input pins by correctly

programming the PCR2~PCR0 bits in the ADCR reg-

ister. Note that this step can be combined with Step 2

into ADCR registers programming operation.

� Step 4

The analog to digital conversion process can now be

initialised by setting the START bit in the ADCR regis-

ter from �0� to �1� and then to �0� again. Note that this

bit should have been originally set to �0�.

� Step 5

To check when the analog to digital conversion pro-

cess is complete, the EOCB bit in the ADCR register

can be polled. The conversion process is complete

when this bit goes low. When this occurs the A/D data

registers ADRL and ADRH can be read to obtain the

conversion value.

The following timing diagram shows graphically the vari-

ous stages involved in an analog to digital conversion

process and its associated timing.

� 	 � 


	 � � � � � � 
 � � � � � � � � � � �

� 	 � 


	 � � � � � � 
 � � � � � � � � � � �

� 	 � 


	 � � � � � � 
 � � � � � � � � � � �

2 2 2 5

2 2 2 5 2 * 2 5

� � 	 � �

3 � 
 5

� 
 � + L
� 
 � 2

	 
 � * L
	 
 � 2

� � ' � � � � �
� � � � �

3 �  � � ) � 	 � �
� � � 
 � � � � � �* D � � � ) � � � � � 
 � � � � ) � ! $ � � � � � �

+ D � � � # � � � � � � � # � ! � � � � � � � #

� � � � � � � ) � 	 � �
� � � 
 � � � � � �

� � � � � � 	 � �
� � � 
 � � � � �

	 � � � � � � % # � � ! � � � � �
� � , + � 	 � �

2 * * 5

2 2 2 5

� � � � � � � ) � 	 � �
� � � 
 � � � � � �

� � � � � � 	 � �
� � � 
 � � � � �

2 2 2 5

* @ � � 
 � % � � � � � � � $ % � � � � � � � �
+ @ � 	 � � � � � � 
 � � � � � � � � � % � ' � � �  � � ) )
� � � � � � � � �  $ � � � % � ' � � � � � � � $ � % � � � �

* 2 2 5

2 2 * 5

� � � � � � � ) � 	 � �
� � � 
 � � � � � �

� � � � � � 	 � �
� � � 
 � � � � �

� � � M � � � � � �

3 �  � � ) � 	 � �
� � � 
 � � � � � �

3 �  � � ) � 	 � �
� � � 
 � � � � � �

� � 	 � � � � � � � � � � � � � ! � � ' � � � � � � � � � � � � � � � � � � � � � � $ � � � � � � � � � # � � � � ) � � � � � � � � � 
 � 2 L � 
 � + � � � � � � � � � � ! � � � � � � �

	 � � � � � � % # � � ! � � � � �
� � , + � 	 � �

	 � � � � � � % # � � ! � � � � �
� � , + � 	 � �

A/D Conversion Timing

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 47 March 19, 2010

SPI Serial Interface

The device includes a single SPI Serial Interfaces. The

SPI interface is a full duplex serial data link, originally

designed by Motorola, which allows multiple devices

connected to the same SPI bus to communicate with

each other. The devices communicate using a mas-

ter/slave technique where only the single master device

can initiate a data transfer. A simple four line signal bus

is used for all communication. The four SPI lines are

shared with I/O pins PD0~PD3, the function of which is

chosen using a configuration option.

SPI Interface Communication

Four lines are used for SPI communication known as

SDI - Serial Data Input, SDO - Serial Data Output, SCK -

Serial Clock and SCS - Slave Select. Note that the con-

dition of the Slave Select line is conditioned by the

CSEN bit in the SBCR control register. If the CSEN bit is

high then the SCS line is active while if the bit is low then

the SCS line will be in a floating condition. The following

timing diagram depicts the basic timing protocol of the

SPI bus.

� 0 � / � . � - � , � + � * � 2

� 5 � � � : � � � � � 
 �  � � � � � � � � ! � � � � � <

�
"
9

� � � � 5 $ ) ) � �

�
"
9

� & �

� � � � � 5 $ �

�
"
9

� � � � � � � � � � � # � 
 �

� � �

� � �

� � � � � � � # � 5 � $  � � � � � � 
 # � � �

� 
 K


 # � � � � � � # � � � � �


 +
 *
 2

� 5 3 7

� � � � � � � # � 5 $ � � � 8 # � !

� 5 3 7

� � � � � � � 5 � �

� 
 � & � 8 # � !

� � 8
� �  ; � � � � � �

� 5 3 7

3 7

	 7 �

� � � � � � � 5 � �

� � � � � � � 5 � � � 3 � � � # � � � � � � � # �

� 
 �3 7

� � � � � � � � � � � # � 
 �


 � 3 7
� 5 3 7

� �  ; � � � � � �

� �  ; � � � � � �

SPI Block Diagram

� 5 
 �

� 3 8 	 " & �

� 5 � �

� 3 8 	 " & �

7 � � � D � H " H � � � � � � � $ � � � � � ! �  @


 K � � * � 2 � 5 3 7 � & � 
 � 3 7 � 
 � & � � 8

� 0 � / � . � - � , � + � * � 2

2 * * 2 2 2 2 2

� 0 � / � . � - � , � + � * � 2

" " " " " " " "

� 5 
 � � D � � 3 � � 	 & � 5 " �


 � 7 � � � & � � 3 G � � � 3 �

� 5 � � � D � � 3 � � 	 & � 5 " �

� 	 � 	 � � 3 G � � � 3 �

� 0 � � 2 � / � � * � . � � + � - � � , � , � � - � + � � . � * � � / � 2 � � 0� � �

� 0 � � 2 � / � � * � . � � + � - � � , � , � � - � + � � . � * � � / � 2 � � 0� � �

� 
 K

� 
 �

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 48 March 19, 2010

&  � � 	 � % ( $ � � % �

� 0 � 2


 K � � * � 2 � 5 3 7 � & � 
 � 3 7 � 
 � & � � 8

� � � � � � � � � � � � � � � 
 � � 8 # � !
2 D � 7 � � � � � � % # � � �
* D � � � � � � � � � � � � � � � � � � % � � � � � � � � % # � � �

� � � � � � 
 � # # � � � � � � 5 � �
2 D � 
 � # # � � � � � � ) � � �
* D � 
 � # # � � � � � �  � � � � � �  

� � # � � � � � � � � � ! � � # � 3 � � � # � � � � � � � # � � 5 � �
2 D � � 
 � � ) # � � � � � !
* D � 3 � � � # �

� � 5 � & � 5 � 8 � � � � � 5 � �
2 D � & � 5 � � � � ) � � ) � � � �
* D � � � 5 � � � � ) � � ) � � � �

� � � � � # � 5 $ � � 3 � � � # � � � � � � � # � � 5 � �
2 D � � � � � � # �
* D � 3 � � � # �
� � � � � � % � �  � � � � $ % � � � 
 � 3 7 � � � �

� � � � � � � � # � 
 � � 5 � $  � � � � � � 5 � � �

� � � � � � ; � � � $  � � � � � D � ) � � �
� � � � � � ; � � � $  � � � � � D � ) � � � � -
� � � � � � ; � � � $  � � � � � D � ) � � � � * /
� # � 
 � � � �  �

� *
2
2
*
*

� 2
2
*
2
*


 # � � � � � � $ � � � � � � # � � � � 5 � �
2 D � ) � � � A ) � C � � -
* D � ) � � � A ) � C �

SPI Interface Control Register

� 
 K

� 
 �

� � �

� � � � * � � /

� 0 � � 2 � / � � * � . � � + � - � � , � , � � - � + � � . � * � � / � 2 � � 0

� 0 � � 2 � / � � * � . � � + � - � � , � , � � - � + � � . � 2 � � 0

� 5 3 7 A � 
 � 3 7 A � * � � �  � ' � � � � �  � � � � � � � � 5 � �

� 5 3 7 A � * ; � 
 � 3 7 A � 2 � � �  � ' � � � � �  � � � � � � � � 5 � � � : � ) � % $ # # � � � ! � �  <

� 
 K

SPI Bus Timing

SPI Registers

There are two registers associated with the SPI Inter-

face. These are the SBCR register which is the control

register and the SBDR which is the data register. The

SBCR register is used to setup the required setup pa-

rameters for the SPI bus and also used to store associ-

ated operating flags, while the SBDR register is used for

data storage.

After Power on, the contents of the SBDR register will be

in an unknown condition while the SBCR register will de-

fault to the condition below:

CKS M1 M0 SBEN MLS CSEN WCOL TRF

0 1 1 0 0 0 0 0

Note that data written to the SBDR register will only be

written to the TXRX buffer, whereas data read from the

SBDR register will actual be read from the register.

SPI Bus Enable/Disable

To enable the SPI bus and CSEN=1, the SCK, SDI,

SDO and SCS lines should all be zero, then wait for data

to be written to the SBDR (TXRX bufffer) register. For

the Master Mode, after data has been written to the

SBDR (TXRX buffer) register then transmission or re-

ception will start automatically. When all the data has

been transferred the TRF bit should be set. For the

Slave Mode, when clock pulses are received on SCK,

data in the TXRX buffer will be shifted out or data on SDI

will be shifted in.

To Disable the SPI bus SCK, SDI, SDO, SCS floating.

SPI Operation

All communication is carried out using the 4-line inter-

face for both Master or Slave Mode. The timing diagram

shows the basic operation of the bus.

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 49 March 19, 2010

The CSEN bit in the SBCR register controls the overall

function of the SPI interface. Setting this bit high, will en-

able the SPI interface by allowing the SCS line to be ac-

tive, which can then be used to control the SPI interface.

If the CSEN bit is low, the SPI interface will be disabled

and the SCS line will be in a floating condition and can

therefore not be used for control of the SPI interface.

The SBEN bit in the SBCR register must also be high

which will place the SDI line in a floating condition and

the SDO line high. If in Master Mode the SCK line will be

either high or low depending upon the clock polarity con-

figuration option. If in Slave Mode the SCK line will be in

a floating condition. If SBEN is low then the bus will be

disabled and SCS, SDI, SDO and SCK will all be in a

floating condition.

In the Master Mode the Master will always generate the

clock signal. The clock and data transmission will be ini-

tiated after data has been written to the SBDR register.

In the Slave Mode, the clock signal will be received from

an external master device for both data transmission or

reception. The following sequences show the order to

be followed for data transfer in both Master and Slave

Mode:

� Master Mode

Step 1. Select the clock source using the CKS bit in

the SBCR control register

Step 2. Setup the M0 and M1 bits in the SBCR control

register to select the Master Mode and the

required Baud rate. Values of 00, 01 or 10 can

be selected.

Step 3. Setup the CSEN bit and setup the MLS bit to

choose if the data is MSB or LSB first,

this must be same as the Slave device.

Step 4. Setup the SBEN bit in the SBCR control

register to enable the SPI interface.

Step 5. For write operations: write the data to the

SBDR register, which will actually place the

data into the TXRX buffer. Then use the SCK

and SCS lines to output the data.

Goto to step6.For read operations: the data

transferred in on the SDI line will be stored

in the TXRX buffer until all the data has been

received at which point it will be latched into

the SBDR register.

Step 6. Check the WCOL bit, if set high then a

collision error has occurred so return to step5.

If equal to zero then go to the following step.

Step 7. Check the TRF bit or wait for an SBI serial bus.

Step 8. Read data from the SBDR register.

Step 9. Clear TRF.

Step10. Goto step 5.

� Slave Mode

Step 1. The CKS bit has a don�t care value in the

slave mode.

Step 2. Setup the M0 and M1 bits to 00 to select the

Slave Mode. The CKS bit is don�t care.

Step 3. Setup the CSEN bit and setup the MLS bit to

choose if the data is MSB or LSB first,

this must be same as the Master device.

Step 4. Setup the SBEN bit in the SBCR control

register to enable the SPI interface.

Step 5. For write operations: write data to the SBCR

register, which will actually place the data into

the TXRX register, then wait for the master

clock and SCS signal. After this goto step 6.

For read operations: the data transferred in

on the SDI line will be stored in the TXRX

buffer until all the data has been received

at which point it will be latched into the SBDR

register.

Step 6. Check the WCOL bit, if set high then a

collision error has occurred so return to step5.

If equal to zero then go to the following step.

Step 7. Check the TRF bit or wait for an SBI serial bus.

Step 8. Read data from the SBDR register.

Step 9. Clear TRF

Step10. Goto step 5

SPI Configuration Options

Several configuration options exist for the SPI Interface

function which must be setup during device program-

ming. The first is a configuration to select the PD0~PD3

pins to be used as the SPI interface pins. Another option

is to enable the operation of the WCOL, write collision

bit, in the SBCR register. Another option exists to select

the clock polarity of the SCK line. A configuration option

also exists to disable or enable the operation of the

CSEN bit in the SBCR register. If the configuration op-

tion disables the CSEN bit then this bit cannot be used

to affect overall control of the SPI Interface.

Error Detection

The WCOL bit in the SBCR register is provided to indi-

cate errors during data transfer. The bit is set by the Se-

rial Interface but must be cleared by the application

program. This bit indicates a data collision has occurred

which happens if a write to the SBDR register takes

place during a data transfer operation and will prevent

the write operation from continuing. The bit will be set

high by the Serial Interface but has to be cleared by the

user application program. The overall function of the

WCOL bit can be disabled or enabled by a configuration

option.

Programming Considerations

When the device is placed into the Power Down Mode

note that data reception and transmission will continue.

The TRF bit is used to generate an interrupt when the

data has been transferred or received.

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 50 March 19, 2010

Low Voltage Detect Function

A low voltage detect function is implemented within the microcontroller. The LVD function is controlled using the LVDC

register and configuration options. To enable the LVD function, both the LVD configuration option should be enabled

and the LVEN bit should be set high. After setting the LVEN bit high, the circuit requires about 100�s to stabilise. After

this time has elapsed, the LVFG bit can be monitored to look for low voltage conditions.

The LVS0 and LVS1 bits are used to define the LVD voltage threshold level, however configuration options can also be

used to define this voltage. A configuration option is used to decide whether these two register bits or the configuration

option is used to define the LVD voltage threshold level. As the low voltage detector circuitry will consume a certain

amount of power, the LVEN bit can be reset to zero to turn off the LVD internal circuitry to reduce power consumption.

� � 5 � 	 � % ( $ � � % �

� 0 � 2

& ( 3 7 & ( � * & ( � 2& ( 8 G

& ( � � 
 � # � � ! � � � � # � � �

7 � � � � � % # � � � � � �  ; � � � �  � � � � H 2 H

& � ' � ( � # � � ! � � � � � � � � � 3 � � � # �
* D � � � � � # �
2 D �  � � � � # �

& � ' � ( � # � � ! � � � � � � � � � & � 
 � #
* D � & 5 � 7 � % � � � 
 � # � � ! � � � � � # � � � � � � � �
2 D � & 5 � 7 � 
 � # � � ! � � � � � � � � � # � � � � � � � �

7 � � � � � % # � � � � � �  ; � � � � � � � � � H 2 H

& ( � *
2
2
*
*

& ( � 2
2
*
2
*

& ( � � ( � # � � ! �
+ @ + (
+ @ , (
+ @ - (
+ @ . (

Low Voltage Detect Control Register � LVDC

& ( 3 7 � 5 � �

& ( � � 3 � � � # �

 � � ) � ! $ � � � � � � � � % � � � �

& ( �
8 $ � � � � � �

� " 9
& ( � 2 � & ( � * � 5 � �

& ( � � ( � # � � ! � � & � 
 � #

 � ) � ! $ � � � � � � � � % � � � �

& ( �
( � # � � ! � � & � 
 � #

& ( � � ( � # � � ! � � & � 
 � #
� � $ � � � � � � # � � �

& ( �
� � � � ) )

& ( 8 G

LVD Block Diagram

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 51 March 19, 2010

Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the device during the program-

ming process. During the development process, these options are selected using the HT-IDE software development

tools. As these options are programmed into the device using the hardware programming tools, once they are selected

they cannot be changed later by the application software.

No. Options

I/O Options

1 PA0~PA7: wake-up enable or disable (bit option)

2 PA0~PA7: pull-high enable or disable (bit option)

3 PB0~PB7: pull-high enable or disable (bit option)

4 PC0~PC7: pull-high enable or disable (bit option)

5 PD0~PD7: pull-high enable or disable (bit option)

6 PE0~PE7: pull-high enable or disable (bit option)

7 PD pin shared function select: select PD3~PD0 as I/O pins or as serial interface function

Oscillation Option

8 OSC type selection: RC or crystal

9 RTC: enable or disable

Interrupt Option

10 INT Triggering edge: Falling or both

Watchdog Options

11 WDT: enable or disable

12 WDT clock source: WDROSC or T1

13 CLRWDT instructions: 1 or 2 instructions

Low Voltage Reset Option

14 LVR select: enable or disable

Low Voltage Detect Option

15 LVD voltage: 2.2V~2.5V

16 LVD select: enable or disable

17 LVD voltage level control select: Register bits or configuration option

Serial interface Option

18 Serial interface CPOL: falling edge or rising edge

19 Serial interface WCOL: enable or disable

20 Serial interface CSEN: enable or disable

www.DataSheet4U.com



Application Circuits

HT86Axx/HT86ARxx

Rev. 1.00 52 March 19, 2010

	 " � 6 � 7

2 @ * � 8

� 3 �

( � �

( � �

� 7 �

* 2 2 � �

( � �

2 @ * � 8

* 2 2 � 8

( � �

(
�
�
	

* 2 �

- 0 � 82 @ * � 8

� � K� � 4
� � �

� � � � � � � + � � � � � � � + � � � � � � � �

( � �
( � � 	
( � � 	 *
( � � �

	 " � 6 � " �

( 5 � 	 �

. 2 � �

� 	 2 L � 	 0

� 5 2 L � 5 0

� 
 2 L � 
 0

� � 2 L � � 0

� 3 2 L � 3 0

* 2 � 8

� � 
 +

� � 
 *

� � � 


(
�
�
	
*

(
�
�
�

	 " � 6 � 7

2 @ * � 8

� 3 �

( � �

( � �

� 7 �

* 2 2 � �

( � �

2 @ * � 8

* 2 2 � 8

( � �

(
�
�
	

* 2 �

- 0 � 82 @ * � 8

� � K� � 4
� � �

� � � � � � � + � � � � � � � + � � � � � � � �

( � �
( � � 	
( � � 	 *
( � � �

	 " � 6 � " �

( 5 � 	 �

. 2 � �

� 	 2 L � 	 0

� 5 2 L � 5 0

� 
 2 L � 
 0

� � 2 L � � 0

� 3 2 L � 3 0

* 2 � 8

� � 
 +

� � 
 *

(
�
�
	
*

(
�
�
�

- � > ? L �
� � > ?

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 53 March 19, 2010

Instruction Set

Introduction

Central to the successful operat ion of any

microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to

perform certain operations. In the case of Holtek

microcontrollers, a comprehensive and flexible set of

over 60 instructions is provided to enable programmers

to implement their application with the minimum of pro-

gramming overheads.

For easier understanding of the various instruction

codes, they have been subdivided into several func-

tional groupings.

Instruction Timing

Most instructions are implemented within one instruc-

tion cycle. The exceptions to this are branch, call, or ta-

ble read instructions where two instruction cycles are

required. One instruction cycle is equal to 4 system

clock cycles, therefore in the case of an 8MHz system

oscillator, most instructions would be implemented

within 0.5�s and branch or call instructions would be im-

plemented within 1�s. Although instructions which re-

quire one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instruc-

tions, it is important to realize that any other instructions

which involve manipulation of the Program Counter Low

register or PCL will also take one more cycle to imple-

ment. As instructions which change the contents of the

PCL will imply a direct jump to that new address, one

more cycle will be required. Examples of such instruc-

tions would be �CLR PCL� or �MOV PCL, A�. For the

case of skip instructions, it must be noted that if the re-

sult of the comparison involves a skip operation then

this will also take one more cycle, if no skip is involved

then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program

is one of the most frequently used operations. Making

use of three kinds of MOV instructions, data can be

transferred from registers to the Accumulator and

vice-versa as well as being able to move specific imme-

diate data directly into the Accumulator. One of the most

important data transfer applications is to receive data

from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and

data manipulation is a necessary feature of most

microcontroller applications. Within the Holtek

microcontroller instruction set are a range of add and

subtract instruction mnemonics to enable the necessary

arithmetic to be carried out. Care must be taken to en-

sure correct handling of carry and borrow data when re-

sults exceed 255 for addition and less than 0 for

subtraction. The increment and decrement instructions

INC, INCA, DEC and DECA provide a simple means of

increasing or decreasing by a value of one of the values

in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR

and CPL all have their own instruction within the Holtek

microcontroller instruction set. As with the case of most

instructions involving data manipulation, data must pass

through the Accumulator which may involve additional

programming steps. In all logical data operations, the

zero flag may be set if the result of the operation is zero.

Another form of logical data manipulation comes from

the rotate instructions such as RR, RL, RRC and RLC

which provide a simple means of rotating one bit right or

left. Different rotate instructions exist depending on pro-

gram requirements. Rotate instructions are useful for

serial port programming applications where data can be

rotated from an internal register into the Carry bit from

where it can be examined and the necessary serial bit

set high or low. Another application where rotate data

operations are used is to implement multiplication and

division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to

specified locations using the JMP instruction or to a sub-

routine using the CALL instruction. They differ in the

sense that in the case of a subroutine call, the program

must return to the instruction immediately when the sub-

routine has been carried out. This is done by placing a

return instruction RET in the subroutine which will cause

the program to jump back to the address right after the

CALL instruction. In the case of a JMP instruction, the

program simply jumps to the desired location. There is

no requirement to jump back to the original jumping off

point as in the case of the CALL instruction. One special

and extremely useful set of branch instructions are the

conditional branches. Here a decision is first made re-

garding the condition of a certain data memory or indi-

vidual bits. Depending upon the conditions, the program

will continue with the next instruction or skip over it and

jump to the following instruction. These instructions are

the key to decision making and branching within the pro-

gram perhaps determined by the condition of certain in-

put switches or by the condition of internal data bits.

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 54 March 19, 2010

Bit Operations

The ability to provide single bit operations on Data Mem-

ory is an extremely flexible feature of all Holtek

microcontrollers. This feature is especially useful for

output port bit programming where individual bits or port

pins can be directly set high or low using either the �SET

[m].i� or �CLR [m].i� instructions respectively. The fea-

ture removes the need for programmers to first read the

8-bit output port, manipulate the input data to ensure

that other bits are not changed and then output the port

with the correct new data. This read-modify-write pro-

cess is taken care of automatically when these bit oper-

ation instructions are used.

Table Read Operations

Data storage is normally implemented by using regis-

ters. However, when working with large amounts of

fixed data, the volume involved often makes it inconve-

nient to store the fixed data in the Data Memory. To over-

come this problem, Holtek microcontrollers allow an

area of Program Memory to be setup as a table where

data can be directly stored. A set of easy to use instruc-

tions provides the means by which this fixed data can be

referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range

of other instructions also exist such as the �HALT� in-

struction for Power-down operations and instructions to

control the operation of the Watchdog Timer for reliable

program operations under extreme electric or electro-

magnetic environments. For their relevant operations,

refer to the functional related sections.

Instruction Set Summary

The following table depicts a summary of the instruction

set categorised according to function and can be con-

sulted as a basic instruction reference using the follow-

ing listed conventions.

Table conventions:

x: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for Addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate Data to ACC

Logical OR immediate Data to ACC

Logical XOR immediate Data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 55 March 19, 2010

Mnemonic Description Cycles Flag Affected

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note
None

None

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

2Note

2Note
None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter power down mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the �CLR WDT1� and �CLR WDT2� instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both �CLR WDT1� and

�CLR WDT2� instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

www.DataSheet4U.com



Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m] � ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC � ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC � ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m] � ACC + [m]

Affected flag(s) OV, Z, AC, C

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �AND� [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC � ACC �AND� x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC �AND� [m]

Affected flag(s) Z

HT86Axx/HT86ARxx

Rev. 1.00 56 March 19, 2010

www.DataSheet4U.com



CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack � Program Counter + 1

Program Counter � addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m] � 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i � 0

Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO � 0

PDF � 0

Affected flag(s) TO, PDF

HT86Axx/HT86ARxx

Rev. 1.00 57 March 19, 2010

www.DataSheet4U.com



CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m] � [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC � [m]

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD ( Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m] � ACC + 00H or

[m] � ACC + 06H or

[m] � ACC + 60H or

[m] � ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m] � [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] � 1

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

power down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO � 0

PDF � 1

Affected flag(s) TO, PDF

HT86Axx/HT86ARxx

Rev. 1.00 58 March 19, 2010

www.DataSheet4U.com



INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m] � [m] + 1

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC � [m] + 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter � addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC � [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC � x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m] � ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC � ACC �OR� [m]

Affected flag(s) Z

HT86Axx/HT86ARxx

Rev. 1.00 59 March 19, 2010

www.DataSheet4U.com



OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �OR� x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m] � ACC �OR� [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the re-

stored address.

Operation Program Counter � Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter � Stack

ACC � x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending

when the RETI instruction is executed, the pending Interrupt routine will be processed be-

fore returning to the main program.

Operation Program Counter � Stack

EMI � 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � [m].7

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � [m].7

Affected flag(s) None

HT86Axx/HT86ARxx

Rev. 1.00 60 March 19, 2010

www.DataSheet4U.com



RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) � [m].i; (i = 0~6)

[m].0 � C

C � [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) � [m].i; (i = 0~6)

ACC.0 � C

C � [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � [m].0

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i � [m].(i+1); (i = 0~6)

[m].7 � C

C � [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the Carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i � [m].(i+1); (i = 0~6)

ACC.7 � C

C � [m].0

Affected flag(s) C

HT86Axx/HT86ARxx

Rev. 1.00 61 March 19, 2010

www.DataSheet4U.com



SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Accumulator. Note that if the result

of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or

zero, the C flag will be set to 1.

Operation ACC � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] � 1

Skip if [m] = 0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC � [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m] � FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i � 1

Affected flag(s) None

HT86Axx/HT86ARxx

Rev. 1.00 62 March 19, 2010

www.DataSheet4U.com



SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] � [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC � [m] + 1

Skip if ACC = 0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation ACC � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation [m] � ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will

be set to 1.

Operation ACC � ACC � x

Affected flag(s) OV, Z, AC, C

HT86Axx/HT86ARxx

Rev. 1.00 63 March 19, 2010

www.DataSheet4U.com



SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0 � [m].7 ~ [m].4

ACC.7 ~ ACC.4 � [m].3 ~ [m].0

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC � [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] � program code (low byte)

TBLH � program code (high byte)

Affected flag(s) None

HT86Axx/HT86ARxx

Rev. 1.00 64 March 19, 2010

www.DataSheet4U.com



XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC � ACC �XOR� [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m] � ACC �XOR� [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC � ACC �XOR� x

Affected flag(s) Z

HT86Axx/HT86ARxx

Rev. 1.00 65 March 19, 2010

www.DataSheet4U.com



Package Information

44-pin QFP (10mm�10mm) Outline Dimensions

Symbol
Dimensions in mm

Min. Nom. Max.

A 13 � 13.4

B 9.9 � 10.1

C 13 � 13.4

D 9.9 � 10.1

E � 0.8 �

F � 0.3 �

G 1.9 � 2.2

H � � 2.7

I 0.25 � 0.5

J 0.73 � 0.93

K 0.1 � 0.2

L � 0.1 �

� 0	 � 7	

HT86Axx/HT86ARxx

Rev. 1.00 66 March 19, 2010

, -

* **

- -

	 5

+ +

* +

3

8

G

>

�

N

K �

, , + ,




�

&

www.DataSheet4U.com



64-pin LQFP (10mm�10mm) Outline Dimensions

Symbol
Dimensions in mm

Min. Nom. Max.

A 11.9 � 12.1

B 9.9 � 10.1

C 11.9 � 12.1

D 9.9 � 10.1

E � 0.5 �

F � 0.2 �

G 1.35 � 1.45

H � � 1.6

I � 0.1 �

J 0.45 � 0.75

K 0.1 � 0.2

� 0	 � 7	

HT86Axx/HT86ARxx

Rev. 1.00 67 March 19, 2010

- �

- 1

, ,

, +

/ -

* * /

* 0

	 5




�

3

8

G
>

�

N

K �

www.DataSheet4U.com



HT86Axx/HT86ARxx

Rev. 1.00 68 March 19, 2010

Copyright � 2010 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek as-
sumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life

due to malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

www.DataSheet4U.com


	Technical Document
	Features
	General Description
	Selection Table
	Block Diagram
	Pin Assignment
	Pad Assignment
	Pad Coordinates
	Pad Coordinates
	Pin Description
	Absolute Maximum Ratings
	D.C. Characteristics
	A.C. Characteristics
	Characteristics Curves
	System Architecture
	Program Memory
	Data Memory
	Special Function Registers
	Input/Output Ports
	Timers
	Interrupts
	Reset and Initialisation
	Oscillator
	Power Down Mode and Wake-up
	Watchdog Timer
	Voice Output
	Power Amplifier
	Analog to Digital Converter
	SPI Serial Interface
	Low Voltage Detect Function
	Configuration Options
	Application Circuits
	Instruction Set
	Instruction Definition
	Package Information



