

Two Way Radio Flash MCU

HT98F069

Revision: V1.20 Date: November 26, 2019

www.holtek.com

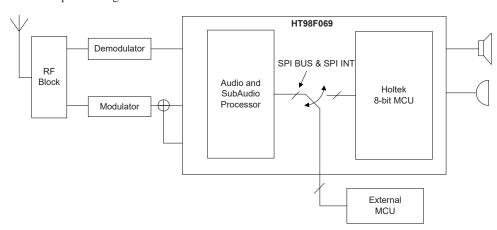
Table of Contents

Features	
Audio Processor Features	
CPU Features	
General Description	
Block Diagram	
Pin Assignment	9
Pin Description1	1
Absolute Maximum Ratings13	3
D.C. Characteristics13	3
A.C. Characteristics15	5
LVR/LVD Electrical Characteristics	6
A/D Converter Characteristics17	7
D/A Converter Characteristics17	7
Audio Processor Characteristics	В
Power-on Reset Characteristics19	9
System Architecture	0
Clocking and Pipelining	
Program Counter – PC2	1
Stack	2
Arithmetic and Logic Unit – ALU22	2
Flash Program Memory23	3
Structure 23	
Special Vectors	
Look-up Table 24	
Table Program Example	
In Circuit Programming – ICP	
On-Chip Debug Support – OCDS	
RAM Data Memory	
General Purpose Data Memory	•
Special Purpose Data Memory	
Special Function Registers3	
Indirect Addressing Registers – IAR0, IAR1	
Memory Pointers – MP0, MP1	7
Bank Pointer – BP	8
Accumulator – ACC	
Program Counter Low Register – PCL	
Look-up Table Registers – TBLP, TBHP, TBLH3	9

Status Register – STATUS	39
System Control Registers – CTRL0, CTRL1, CTRL2	40
Oscillators	43
System Oscillator Overview	43
Internal PLL Frequency Generator	43
External 32768Hz Crystal Oscillator – LXT	43
Internal 32kHz Oscillator – LIRC	45
Operating Modes	45
Mode Types and Selection	
Mode Switching	48
Standby Current Considerations	48
Wake-up	49
Watchdog Timer	50
Watchdog Timer Clock Source	50
Watchdog Timer Control Registers	50
Watchdog Timer Operation	51
Reset and Initialisation	52
Reset Functions	
Reset Initial Conditions	55
Input/Output Ports	58
Pull-high Resistors	
Port A Wake-up	59
I/O Port Control Registers	59
Pin-shared Functions	60
Pin Remapping Configuration	61
I/O Pin Structure	62
Programming Considerations	62
Timer/Event Counters	63
Configuring the Timer/Event Counter Input Clock Source	63
Timer Registers – TMR0, TMR1, TMR2L, TMR2H	64
Timer Control Registers – TMR0C, TMR1C, TMR2C	65
Timer Mode	67
Event Counter Mode	67
Pulse Width Capture Mode	68
Prescaler	69
PFD Function	
I/O Interfacing	
Programming Considerations	
Timer Program Example	
Time Base	71
Analog to Digital Converter	
A/D Overview	
A/D Converter Data Registers – ADRL, ADRH	
A/D Converter Control Registers – ADCR, ACSR, ANCSR	73

A/D Input Pins. 76 Summary of A/D Conversion Steps. 76 Programming Considerations. 77 A/D Transfer Function. 77 A/D Transfer Function. 77 A/D Programming Example. 78 Interrupts. 80 Interrupt Segister 80 Interrupt Operation 82 Interrupt Priority. 83 External Interrupt. 84 Timer/Event Counter Interrupt. 84 Timer/Event Counter Interrupt. 84 Time Base Interrupt. 85 Interrupt Wake-up Function 85 Programming Considerations. 85 LOW Voltage Detector – LVD 86 LVD Register 86 LVD Operation. 87 SPI Function. 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 LCU Command Group Summary 101 I/O Command Group Summary 102 CLI Command Group Detail 102 LI Command Group Detail 102 LI Comfiguration Options 118 Application Circuits 119 Instruction Timing 120 Instruction Timing 120 Instruction Reports Operation 122 Introduction 112 Instruction Reports Operation 122 Introduc	A/D Operation	
Programming Considerations 77 A/D Transfer Function 77 A/D Programming Example 78 Interrupts 80 Interrupt Register 80 Interrupt Operation 82 Interrupt Priority 83 External Interrupt 84 TimerEvent Counter Interrupt 84 A/D Converter Interrupt 84 Time Base Interrupt 85 Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Signal Routing 97 MCU Interfacing 98 Command Group Summary 101 I/O Command Group Detail	A/D Input Pins	76
A/D Transfer Function 77 A/D Programming Example 78 Interrupts 80 Interrupt Register 80 Interrupt Operation 82 Interrupt Priority 83 External Interrupt 84 Timer/Event Counter Interrupt 84 A/D Converter Interrupt 84 Time Base Interrupt 85 Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Roceiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Group Summary 101	Summary of A/D Conversion Steps	76
A/D Programming Example 76 Interrupts 80 Interrupt Register 80 Interrupt Priority 82 Interrupt Priority 83 External Interrupt 84 Timer/Event Counter Interrupt 84 A/D Converter Interrupt 85 Time Base Interrupt 85 Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Group Summary 101 I/O Command Group Summary 101 I/O Command Group Detail		
Interrupts 80 Interrupt Register 80 Interrupt Operation 82 Interrupt Priority 83 External Interrupt 84 Timer/Event Counter Interrupt 84 A/D Converter Interrupt 84 Time Base Interrupt 85 Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Operation 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Receiver 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 9		
Interrupt Register	A/D Programming Example	78
Interrupt Operation	Interrupts	80
Interrupt Priority	Interrupt Register	80
External Interrupt 84 Timer/Event Counter Interrupt 84 A/D Converter Interrupt 84 Time Base Interrupt 85 Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 110 CLI Command Group Detail 110 Configuration Options 118 Applicati	Interrupt Operation	82
Timer/Event Counter Interrupt 84 A/D Converter Interrupt 84 Time Base Interrupt 85 Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Summary 104 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118	Interrupt Priority	83
A/D Converter Interrupt	·	
Time Base Interrupt 85 Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Detail 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Timing 120 Introduction 120 Introduction Timing 120 Arithmetic Operations	·	
Audio Processor Interrupt 85 Interrupt Wake-up Function 85 Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Detail 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Introduction Timing 120 Arithmetic Operations 120	·	
Interrupt Wake-up Function	·	
Programming Considerations 85 Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Moving and Transferring Data 120 Arithmetic Operations 120	•	
Low Voltage Detector – LVD 86 LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	·	
LVD Register 86 LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Detail 102 CLI Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
LVD Operation 87 SPI Function 88 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Detail 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	<u> </u>	
SPI Function 89 BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Detail 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
BEEP Function 89 Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	LVD Operation	87
Digital to Analog Converter – DAC 89 Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	SPI Function	88
Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	BEEP Function	89
Operation 89 Audio Processor 91 Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	Digital to Analog Converter – DAC	89
Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	<u> </u>	
Audio Receiver 91 Audio Transmitter 93 Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	Audio Processor	91
Supported Different Combination Functions 96 Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
Audio Signal Routing 97 MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	Audio Transmitter	93
MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	Supported Different Combination Functions	96
MCU Interfacing 98 Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	Audio Signal Routing	97
Command Groups 98 I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
I/O Command Group Summary 101 I/O Command Group Detail 102 CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
I/O Command Group Detail 102 CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	·	
CLI Command Group Summary 108 CLI Command Group Detail 110 Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
Configuration Options 118 Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	·	
Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	CLI Command Group Detail	110
Application Circuits 119 Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120	Configuration Options	118
Instruction Set 120 Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
Introduction 120 Instruction Timing 120 Moving and Transferring Data 120 Arithmetic Operations 120		
Instruction Timing		
Moving and Transferring Data		
Arithmetic Operations	-	
	•	
Logical and Notate Operation	Logical and Rotate Operation	

HT98F069 Two Way Radio Flash MCU


Branches and Control Transfer	121
Bit Operations	121
Table Read Operations	121
Other Operations	121
Instruction Set Summary	122
Table Conventions	
Instruction Definition	124
Package Information	133
48-pin LQFP (7mm×7mm) Outline Dimensions	
64-nin LOFP (7mmx7mm) Outline Dimensions	135

Features

Audio Processor Features

- Audio Processor working frequency up to 24.576MHz
- Operating voltage: 3.3V~5.5V
- PGA: 5-bit Operational Amplifier Gain setup
- Programmable Audio Scrambler
- Sub-tone processor
 - User-defined CTCSS/DCS encoder/decoder
- In-band-tone processor
 - DTMF encoder/decoder
 - Selective call encoder/decoder
 - User-defined tone encoder/decoder
- · Audio-band Processing
 - Pre-emphasis/de-emphasis
 - Scrambler
 - Compandor
 - VOX
- SPI Interface for external MCU control
- TX Output for Single-Point Modulation

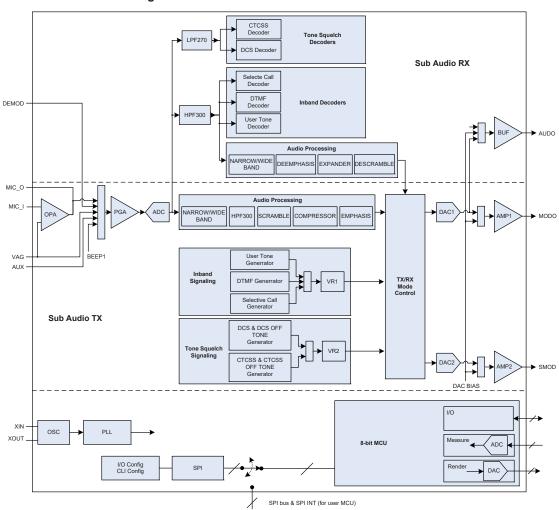
Note: This integrated Audio Processor can be controlled by either the internal MCU or an external MCU.

Audio Processor

Rev. 1.20 6 November 26, 2019

CPU Features

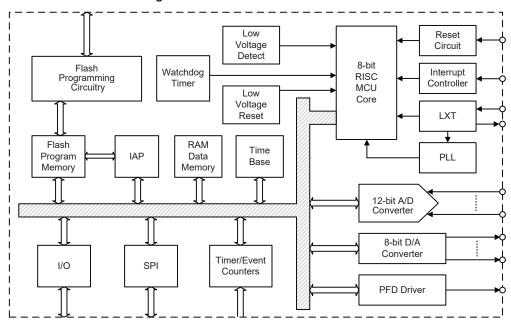
- · Operating voltage:
 - f_{SYS}=32768Hz: 2.2V~5.5V
 - f_{SYS}=4.096MHz: 2.2V~5.5V
 - f_{SYS}=8.192MHz: 2.2V~5.5V
 - $f_{SYS}=12.288MHz: 3.3V\sim5.5V$
 - f_{SYS}=16.384MHz: 3.3V~5.5V
- Up to 0.24 μ s instruction cycle with 16.384MHz system clock at V_{DD} =5V
- · Power down and wake-up functions to reduce power consumption
- Multi-mode operation: Normal, Slow, Idle and Sleep
- · Oscillator types:
 - External 32768Hz low speed crystal LXT
 - Internal 32kHz low speed RC LIRC
- Internal PLL to generate the system clock
 - Input reference clock: 32768Hz
 - Output: 2.048MHz ×12/×16/×20/×24 (optional)
- · All instructions executed in one or two instruction cycles
- · Table read instruction
- 63 powerful instructions
- 10-level subroutine nesting
- · Bit manipulation instruction
- Flash Program Memory: 24K×16
- RAM Data Memory: 1152×8
- · Watchdog Timer function
- Up to 42 bidirectional I/O lines
- One external interrupt pin shared with I/O pin
- 8-channel 12-bit A/D Converter
- 4-channel 8-bit D/A Converter
- Two 8-bit and one 16-bit programmable Timer/Event Counters with overflow interrupt and prescaler
- Programmable Frequency Divider PFD
- Single Time-Base function for generation of fixed time interrupt signals
- · Low voltage reset/detect function
- Flash program memory can be re-programmed up to 10,000 times
- Flash program memory data retention > 10 years
- Package types: 48-pin LQFP, 64-pin LQFP

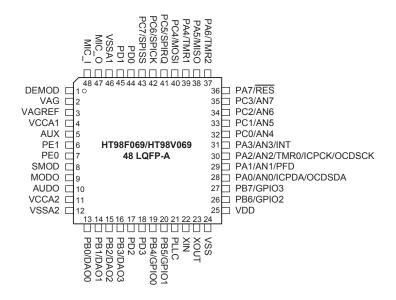


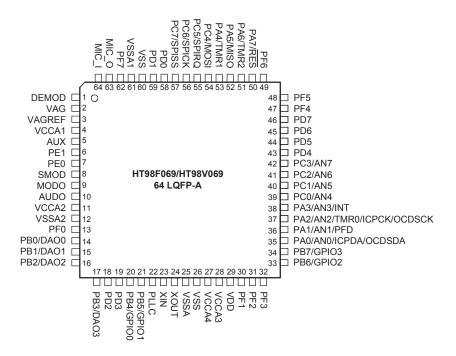
General Description

The HT98F069 device is a Flash ASSP MCU for analog two way radio applications such as FRS. It contains an 8-bit MCU, an Audio Processor, a 16-bit delta-sigma A/D converter, two 16-bit D/A converters and an operational amplifier for peripheral interfaces. It includes an 8-channel 12-bit A/D converter, a 4-channel 8-bit D/A converter, an LXT oscillator function, an external interrupt, 24K words of Flash Program Memory and 1152 bytes of SRAM Data Memory for general MCU control application. The integrated Audio Processor can be accessed by the MCU using its internal SPI interface. The Internal Audio Processor supports various programmable functions. These functions include a CTCSS/DCS encoder/decoder, DTMF encoder/decoder, scramble/descramble, VOX and compandor, etc. By connecting to a suitable RF module, this device provides a cost effective and extremely flexible FRS solution. Applications will include products in the leisure radio application area such as general mobile radios, personal mobile radios and multiple user radios.

Block Diagram


Overall Block Diagram


Rev. 1.20 8 November 26, 2019


Internal 8-Bit MCU Block Diagram

Pin Assignment

Note: 1. If the pin-shared pin functions have multiple outputs simultaneously, its pin names at the right side of the "/" sign can be used for higher priority.

The INT, TMR0 and PFG pin functions can be remapped to other pins controlled by the same control bit. Refer to the CTRL0 register in the System Control Registers section.

Rev. 1.20 10 November 26, 2019

Pin Description

As the Pin Description table shows the situation for the package with the most pins, not all pins in the table will be available on smaller package sizes.

					ickage sizes.
Pad Name	Function	OPT	I/T	O/T	Description
PA0/AN0/	PA0	PAPU PAWK	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
ICPDA/	AN0	ANCSR	AN	_	A/D converter analog input 0
OCDSDA	ICPDA	_	_	_	ICP Serial Data/Address pin
	OCDSDA	_	_	_	OCDS Data/Address pin, for EV chip only.
	PA1	PAPU PAWK	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA1/AN1/PFD	AN1	ANCSR	AN	_	A/D converter analog input 1
	PFD	CTRL0	_	CMOS	PFD output
	PA2	PAPU PAWK	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
PA2/AN2/	AN2	ANCSR	AN	_	A/D converter analog input 2
TMR0/ ICPCK/ OCDSCK	TMR0	CTRL0 TMR0C	ST	_	Timer/Event Counter 0 clock input
OCDOCK	ICPCK	_	_	_	ICP Clock pin
	OCDSCK	_	_	_	OCDS Clock pin, for EV chip only.
	PA3	PAPU PAWK	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA3/AN3/INT	AN3	ANCSR	AN	_	A/D converter analog input 3
T AO/AIVO/IIVI	INT	CTRL0 CTRL1 INTC0	ST	_	External interrupt input
PA4/TMR1	PA4	PAPU PAWK	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA4/TMR1	TMR1	TMR1C	ST	_	Timer/Event Counter 1 clock input
PA5/MISO	PA5	PAPU PAWK	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
	MISO	SPICR	_	_	Slave SPI output data pin
PA6/TMR2	PA6	PAPU PAWK	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
	TMR2	TMR2C	ST	_	Timer/Event Counter 2 clock input
PA7/RES	PA7	PAWK	ST	NMOS	General purpose I/O. Register enabled wake-up.
PAT/RES	RES	CO	ST	_	External reset pin
PB0/DAO0	PB0	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB0/DA00	DAO0	DACR	_	AN	DAC0 output
DB1/DA01	PB1	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB1/DAO1	DAO1	DACR	_	AN	DAC1 output
DP3/DAG3	PB2	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB2/DAO2	DAO2	DACR	_	AN	DAC2 output
DB3/DAO3	PB3	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB3/DAO3	DAO3	DACR	_	AN	DAC3 output
PB4/GPIO0	PB4	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
1 54/67100	GPIO0	SPICR	_		Audio processor I/O 0
DR5/CDIO1	PB5	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB5/GPIO1	GPIO1	SPICR	_	_	Audio Processor I/O 1
PB6/GPIO2	PB6	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
1 00/05/102	GPIO2	SPICR	_	_	Audio Processor I/O 2

Pad Name	Function	ОРТ	I/T	O/T	Description
DD7/ODIO0	PC0	PCPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB7/GPIO3	GPIO3	SPICR	_	_	Audio Processor I/O 3
PC0/AN4	PCn	PCPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PC1/AN5 PC2/AN6 PC3/AN7	ANn	ADCSR	AN	_	A/D converter analog input 4, 5, 6, 7
DC4/MOCI	PC4	PCPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PC4/MOSI	MOSI	SPICR	_	_	Slave SPI input data pin
PC5/SPIRQ	PC5	PCPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PC5/SPIRQ	SPIRQ	SPICR	_	_	Slave SPI output pin
PC6/SPICK	PC6	PCPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PC6/SPICK	SPICK	SPICR	_	_	Slave SPI clock source input pin
PC7/SPISS	PC7	PCPU	ST	ST CMOS General purpose I/O. Register enabled pull-up.	
PC//3P133	SPISS	SPICR	_	_	Audio Processor select pin
PD0~PD7	PDn	PDPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PE0~PE1	PEn	PEPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PF0~PF7	PFn	PFPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
XIN	XIN	_	LXT	_	Low frequency crystal input pin
XOUT	XOUT	_	_	LXT	Low frequency crystal output pin
MIC_I	MIC_I	_	_	_	Microphone OP input
MIC_O	MIC_O	_	_	_	Microphone OP output
AUX	AUX	_	_	_	Auxiliary audio input
AUDO	AUDO	_	_	_	Audio output
MODO	MODO	_	_	_	Audio baseband modulation output to RF module
SMOD	SMOD		_	_	Sub-tone baseband modulation output
DEMOD	DEMOD	_	_		PGA Input from RF demodulation output
VCCA1	VCCA1		_	_	Analog Block VCC
VSSA1	VSSA1	_	_	_	Analog Block GND
VCCA2	VCCA2	_	_	_	Analog Block VCC
VSSA2	VSSA2	_	_	_	Analog Block GND
VAG	VAG		_	_	Audio ADC analog ground output
VAGREF	VAGREF	_	_	_	Audio ADC analog ground reference bypass
PLLC	PLLC	_	_	_	Connect to low pass loop filter circuit
VDD	VDD	_	PWR	_	Positive power supply
VSS	VSS	_	PWR	_	Negative power supply, GND

Legend: I/T: Input type;

O/T: Output type;

OPT: Optional by configuration option (CO) or register option;
PWR: Power;
CO: Configuration option
ST: Schmitt Trigger input;
AN: Analog signal;
CMOS: CMOS output;
NMOS: NMOS output

LXT: Low frequency crystal oscillator

Rev. 1.20 November 26, 2019

Absolute Maximum Ratings

Supply Voltage	V_{SS} =0.3V to V_{SS} +6.0V
Input Voltage	V_{SS} =0.3V to V_{DD} +0.3V
Storage Temperature	50°C to 125°C
Operating Temperature	40°C to 85°C
I _{OL} Total	80mA
I _{OH} Total	-80mA
Total Power Dissipation	500mW

Note:These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Ta=25°C

Or mala c.l.	D		Test Conditions	N/I :	T	Man	I I m ! f	
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit	
		_	f _{SYS} =32768Hz	2.2	_	5.5		
		_	f _{SYS} =4.096MHz	2.2	_	5.5		
V_{DD}	MCU Operating Voltage	_	f _{SYS} =8.192MHz	2.2	_	5.5	V	
			f _{SYS} =12.288MHz	3.3		5.5		
		_	f _{SYS} =16.384MHz	3.3		5.5		
	Operating Current	3V	No load, f _{SYS} =4.096MHz	_	2	4		
	(LXT+PLL)	5V	ADC disable, DAC disable, Audio Processor off	_	4	8	mA	
	Operating Current	3V	No load, f _{SYS} =8.192MHz	_	2	4		
	(LXT+PLL)	5V	ADC disable, DAC disable, Audio Processor off	_	4	8	mA	
I _{DD}	Operating Current (LXT+PLL)	3.3V	No load, f _{SYS} =12.288MHz	_	2	4		
		5V	ADC disable, DAC disable, Audio Processor off	_	4	8	mA	
	Operating Current (LXT+PLL)	3.3V	No load, f _{SYS} =16.384MHz	_	4	12		
		5V	ADC disable, DAC disable, Audio Processor off	_	6	16	mA	
	Operating Current (LXT on, PLL off)	3V	No load, f _{SYS} =32768Hz	_	20	30		
		5V	ADC disable, DAC disable, Audio Processor off	_	40	60	μA	
	Operating Current (Audio Processor on)	3.3V	No load, f _{AP} =24.567MHz (Note2)	_	25	_	mA	
	Standby Current	3V	No load,	_	_	1		
	(LIRC off, LXT off, PLL off: PLLEN=0&CLKMOD=1)	5V	MCU powered down	_	_	2	μA	
	Standby Current	3V	No load,	_	_	5		
I _{STB}	(LIRC on, LXT off, PLL off: PLLEN=0&CLKMOD=1)	5V	MCU powered down	_	_	10	μA	
	Standby Current	3V	No load,	_	_	5		
	(LIRC off, LXT on, PLL off: PLLEN=0&CLKMOD=1)	5V	MCU powered down, LXT slowly start-up	_	_	10	μA	
V _{IL}	Input Low Voltage for I/O Ports	_	_	0	_	$0.3V_{DD}$	V	
VIL	Input Low Voltage for RES pin	_	_	0	_	$0.4V_{\text{DD}}$	V	

Cumbal	Boundary		Test Conditions	B.41	Tyrn	Mex	Ho!4
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
	Input High Voltage for I/O Ports	_	_	0.7V _{DD}	_	V_{DD}	V
V _{IH}	Input High Voltage for RES pin	_	_	0.9V _{DD}	_	V_{DD}	V
	NO Savera Comment	3V	V _{OH} =0.9V _{DD}	-2	-4	_	^
Іон	I/O Source Current	5V	VOH=0.9VDD	-5	-10	_	mA
	I/O Sink Current	3V	Voi =0.1Vpp	4	8	_	mA
loL	I/O Sink Current	5V	VOL-U.IVDD	10	20	_	mA
Б	Dull high Posistanes for I/O Ports	3V		20	60	100	LO.
R _{PH}	Pull-high Resistance for I/O Ports	5V	_	10	30	50	kΩ
V _{DEMOD}	DEMOD Input Voltage Range	3.3V	PGA Gain=0dB	_	_	±1100	mV
V _{MIC}	MIC Input Voltage Range	3.3V	PGA Gain=0dB	_	_	±1100	mV
V _{AUX}	AUX Input Voltage Range	3.3V	PGA Gain=0dB	_	_	±1100	mV
V _{AUDO}	AUDO Output Voltage Range	3V	No load	0.01	_	0.99	V_{DD}
V _{MODO}	MODO Output Voltage Range	3V	No load	1/4	_	3/4	V_{DD}
V _{SMOD}	SMOD Output Voltage Range	3V	No load	1/4	_	3/4	V_{DD}
I _{AUDOH}	AUDO Source Current	3V	V _{OH} =0.9V _{DD}	_	-4	_	mA
I _{AUDOL}	AUDO Sink Current	3V	V _{OL} =0.1V _{DD}	_	8	_	mA
R _{AUX_ON}	AUX Input Resistance When Channel Turn On	_	_	_	300	_	Ω
R _{AUX_OFF}	AUX Input Resistance When Channel Turn Off	_	_	1	_	_	ΜΩ
R _{DEMOD_ON}	DEMOD Input Resistance When MUX Channel Turn On	_	_	_	300	_	kΩ
R _{DEMOD_OFF}	DEMOD Input Resistance When MUX Channel Turn Off	_	_	1	_	_	ΜΩ
R _{MODO_ON}	MODO Output Resistance When DAO1 OPA Turn On	_	_	_	300	_	Ω
R _{MODO_OFF}	MODO Output Resistance When DAO1 OPA Turn Off	_	_	_	500	_	kΩ
R _{SMOD_ON}	SMOD Output Resistance When DAO2 OPA Turn On	_	_	_	300	_	Ω
R _{SMOD_OFF}	SMOD Output Resistance When DAO2 OPA Turn Off	_	_	_	500	_	kΩ
RL	Load Resistance for MODO and SMOD	_	_	20	_	_	kΩ
V _{AG}	Audio ADC analog ground output	_	_	-5%	V _{DD} /2	+5%	V

Note: 1. Each of the PA0~PA6 pins is connected to an external pull-up resistor when the RES pin is low.

2. The ADC and DAC in the MCU, Audio Scrambler, CTCSS, DCS, compandor and pre-emphasis/de-emphasis are disabled, while all the other digital circuits including the main clock PLL are enabled. A single analog path is enabled through the device.

Rev. 1.20 14 November 26, 2019

A.C. Characteristics

Ta=25°C

0	Downworton	Te	st Conditions	NA!			Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	
			M[1:0]=00		24.576		
,		0.0)/ 5.5)/	M[1:0]=01	40/	32.768	. 40/	
f _{PLL}	PLL Clock	3.3V~5.5V	M[1:0]=10	-1%	40.960	+1%	MHz
			M[1:0]=11		49.152		
f _{SYS}	System Clock (LXT)	_	_	_	32768	_	Hz
		2.2V~5.5V	_	0	_	4	
f _{TIMER}	Timer Input Frequency (TMRn)	3.3V~5.5V	_	0	_	8	MHz
		4.5V~5.5V	_	0	_	12	
		5V	Ta=25°C	-10%	32	+10%	
f _{LIRC}	Low Speed RC Oscillator Clock	5V±0.5V	Ta= -40°C~85°C	-40%	32	+40%	kHz
		2.2V~5.5V	Ta= -40°C~85°C	-50%	32	+60%	
	MCU External Reset Low Pulse Width	_	_	10	_	_	μs
t _{RES}	Audio Processor Reset (AUPRST) Low Pulse Width	_	_	1	_	_	μs
t _{SST1}	MCU System Start-up Time Period (Power On Reset or Wake-up from Power Down Mode)	_	MCU f _{SYS} =32768Hz	-10%	1024	_	t _{sys}
t _{SST2}	Audio Processor System Start-up Time Period (Wake-up from Reset)	_	_	100	_	_	ms
t _{INT}	Interrupt Pulse Width	_	_	1	_	_	μs
	PLL Settling Time (32768Hz to	3.3V					
t _{FUP}	24.576/32.768/40.96/49.152MHz, PLL Frequency Deviation < ±0.1%)	5V	LXT on, PLL off→on	_	_	10	ms
t _{RSTD}	System Reset Delay Time (Power On Reset, LVR Hardware Reset, LVRC/WDTC Software Reset)	_	_	25	50	100	ms
	System Reset Delay Time (RES pin reset, WDT hardware reset, IAP reset)	_	_	8.3	16.7	33.3	ms

Note: 1. $t_{SYS}=1/f_{SYS}$

2. M[1:0] are PLLCR register bit 1 and bit 0.

LVR/LVD Electrical Characteristics

Ta=25°C

Symbol Parameter			Test Conditions	Min.	Turn	May	I Imia
Symbol	Parameter	V_{DD}	Conditions	IVIII.	Тур.	Max.	Unit
		_	LVR enable, voltage select 2.1V		2.1		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Low Voltage Boost Voltage	_	LVR enable, voltage select 2.55V	-5%	2.55	+5%	V
V _{LVR}	Low Voltage Reset Voltage	_	LVR enable, voltage select 3.15V	-5%	3.15	+5%	V
		_	LVR enable, voltage select 3.8V		3.8		
		_	LVD enable, voltage select 2.0V		2.0		
	Low Voltage Detection Voltage	_	LVD enable, voltage select 2.2V	-5%	2.2	+5%	
		_	LVD enable, voltage select 2.4V		2.4		
VIVD		_	LVD enable, voltage select 2.7V		2.7		V
VLVD		_	LVD enable, voltage select 3.0V	-5%	3.0	T370	\ \ \
		_	LVD enable, voltage select 3.3V		3.3		
		_	LVD enable, voltage select 3.6V		3.6		
		_	LVD enable, voltage select 4.0V		4.0		
t _{LVR}	Low Voltage Width to Reset		_	120	240	480	μs
	LVDO Stable Time	_	LVR enable, LVD off → on	_	_	15	μs
t _{LVDS}	LVDO Stable Time	_	LVR disable, LVD off \rightarrow on	_	_	150	μs

Rev. 1.20 16 November 26, 2019

A/D Converter Characteristics

Ta=25°C

Cumbal	Parameter	T	est Conditions	B.d.:	T		Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	
AV_{DD}	Operating Voltage	_	V _{REF} =AV _{DD}	2.7	5.0	5.5	V
V _{AD}	A/D Converter Input Voltage	_	V _{REF} =AV _{DD}	0	_	AV _{DD}	V
		3V	V _{REF} =AV _{DD} =V _{DD}				
DNL	A/D Differential New linearity	5V	t _{AD} =0.5µs	-3		+3	LSB
DINL	A/D Differential Non-linearity	3V	V _{REF} =AV _{DD} =V _{DD}	-3		+3	LOD
		5V	t _{AD} =10µs				
	A/D Integral Non-linearity	3V	V _{REF} =AV _{DD} =V _{DD}	-4	_	+4	
INL		5V	t _{AD} =0.5µs				LSB
IINL		3V	V_{REF} = AV_{DD} = V_{DD}				LOD
		5V	t _{AD} =10µs				
	Operating Current (only A/D	3V	No load (t. =0 Eus)	_	1.0	2.0	m A
I _{ADC}	enable, others disable)	5V	No load (t _{AD} =0.5μs)	_	1.5	3.0	mA
t _{AD}	A/D Converter Clock Period	2.7V~5.5V	_	0.5	_	10	μs
t _{ADC}	A/D Conversion Time (Include Sample and Hold Time)	2.7V~5.5V	_	_	16	_	t _{AD}
t _{ADS}	A/D Sampling Time	2.7V~5.5V	_	_	4	_	t _{AD}
t _{ON2ST}	A/D Converter On-to-Start Time	2.7V~5.5V	_	2	_	_	μs

Note: A/D conversion time $(t_{ADC}) = n$ (bits A/D) + 4 (sampling time), the conversion for each bit needs one A/D clock (t_{AD}) .

D/A Converter Characteristics

Ta=25°C

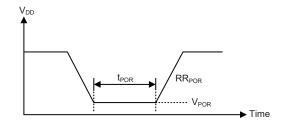
Cumbal	Parameter		Test Conditions	Min.	Tren	Max.	Unit
Symbol	Parameter	V _{DD}	V _{DD} Conditions		Тур.	IVIAX.	Unit
AV _{DD}	Operating Voltage	_	_	2.7	5.0	5.5	V
DNL	D/A Differential Non-linearity	5V	V _{REF} =AV _{DD} =V _{DD}	-0.5	_	+0.5	LSB
INL	D/A Integral non-linearity	5V	V _{REF} =AV _{DD} =V _{DD}	-1	_	+1	LSB
	Operating Current	3V	No lood \/ = \/ =\/	_	300	_	
IDAC	Operating Current	5V	No load, V _{REF} =AV _{DD} =V _{DD}	_	300	_	μA
Ro	R2R Output Resistance	5V	_	_	10	_	kΩ

Audio Processor Characteristics

Operating Temperature: -40°C~85°C, Ta=25°C, V_{DD}=3.3V Input stage gain=0dB. Output stage attenuation=0dB LXT frequency=32768Hz \pm 0.01% (100ppm), f_{SYS} drift < \pm 0.1% Reference signal level is 300mVrms at 1kHz with V_{DD}=3.3V

			Test Conditions				
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
CTSS Re	ceiver					l	
	Sensitivity (Pure Tone)	3.3V	_	_	20	_	mV _{P-P}
	Response Time	3.3V	_	_	150	_	ms
	De-response Time	3.3V	_	_	DT1+154	_	ms
DT1	Dropout Immunity	3.3V	_	0	300	8192	ms
	Frequency Range	3.3V	_	60	_	260	Hz
DCS Rec	eiver						
	Sensitivity	3.3V	_	60	_	_	mV _{P-P}
	Response Time	3.3V	_	_	150	_	ms
	De-response Time	3.3V	_	_	DT2+120	_	ms
DT2	Dropout Immunity	3.3V	_	0	_	8192	ms
Selective	Call / User Tone & Audio Tone Rece	iver					
	Sensitivity (Pure Tone)	3.3V	_	_	16	_	mVrms
	Response Time	3.3V	_	_	32	_	ms
	De-response Time	3.3V	_	_	30	_	ms
	Dropout Immunity	3.3V	_	_	25	_	ms
	Frequency Range	3.3V	_	400	_	3000	Hz
DTMF Re	ceiver						
	Sensitivity	3.3V	_	_	25	_	mVrms
	Response Time	3.3V	_	_	35	_	ms
	De-response Time	3.3V	_	_	35	_	ms
	Frequency Tolerance	3.3V	_	_	±2.5	_	%
	Frequency Rejection	3.3V	_	_	±3.5	_	%
Audio Co	mpandor						
	Attack Time	3.3V	_	_	4	_	ms
	Decay Time	3.3V	_	_	14	_	ms
	0dB Point	3.3V	_	_	100	_	mVrms
	Compression/Expansion Ratio	3.3V	_	_	2:1	_	
CTCSS G	enerator						
	Frequency Range	3.3V	_	60	_	260	Hz
	Frequency Accuracy	3.3V	_			±0.3	%
	Amplitude Tolerance	_	_	-1.0	0	+1.0	dB
	Harmonic Distortion		_		2.0	4.0	%
Audio Ch	annel Filter				·		
	Received Audio HPF	3.3V	_	300	_	3400	Hz
	12.5kHz Channel Transmitted Audio	3.3V	_	300	_	2550	Hz
	25kHz Channel Transmitted Audio	3.3V	<u> </u>	300	_	3000	Hz

Rev. 1.20 18 November 26, 2019

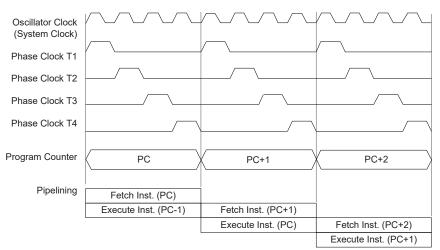


Cumbal	Parameter		Test Conditions	Min.	Tien	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	wax.	Offic
	Pass-band Gain	3.3V	Frequency=1.0kHz	_	0	_	dB
	Pass-band Ripple	3.3V	Frequency=1.0kHz	-2.0	0	+0.5	dB
	Stop-band Attenuation	3.3V	For 12.5kHz channel, stop band at 3.4kHz; For 25kHz channel, stop band at 3.7kHz;	30	_	_	dB
	Residual Hum and Noise	3.3V	BV —		-50	_	dB
	De-emphasis	3.3V	_	_	+6	_	dB/oc
	Pre-emphasis	3.3V	_	_	-6	_	dB/oc
Audio Sc	rambler						
	Inversion Frequency	3.3V	_	_	3300	_	Hz
	Pass Band	3.3V	_	300	_	3000	Hz
Audio Ex	Audio Expandor						
	Input Signal Range	3.3V	_	_	300	_	mVrms

Power-on Reset Characteristics

Ta=25°C

Cumbal	Parameter		est Conditions	Min.	Typ.	Max.	Unit
Symbol			Conditions	WIIII.	iyp.	wax.	Unit
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	_	_	_	_	100	mV
RR _{POR}	V _{DD} Rising Rate to Ensure Power-on Reset	_	_	0.035	_	_	V/ms
t _{POR}	Minimum Time for V _{DD} Stays at V _{POR} to Ensure Power-on Reset	_	_	1	_	_	ms


System Architecture

A key factor in the high-performance features of the Holtek range of microcontrollers is attributed to the internal system architecture. The range of device take advantage of the usual features found within RISC microcontrollers providing increased speed of operation and enhanced performance. The pipelining scheme is implemented in such a way that instruction fetching and instruction execution are overlapped, hence instructions are effectively executed in one cycle, with the exception of branch or call instructions. An 8-bit wide ALU is used in practically all operations of the instruction set. It carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions, etc. The internal data path is simplified by moving data through the Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and can be directly or indirectly addressed. The simple addressing methods of these registers along with additional architectural features ensure that a minimum of external components is required to provide a functional I/O and A/D system with maximum reliability and flexibility.

Clocking and Pipelining

The main system clock, derived from the LXT oscillator or PLL is subdivided into four internally generated non-overlapping clocks, T1~T4.The Program Counter is incremented at the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction cycle. Although the fetching and execution of instructions takes place in consecutive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are effectively executed in one instruction cycle. The exception to this are instructions where the contents of the Program Counter are changed, such as subroutine calls or jumps, in which case the instruction will take one more instruction cycle to execute.

For instructions involving branches, such as jump or call instructions, two instruction cycles are required to complete instruction execution. An extra cycle is required as the program takes one cycle to firstly obtain the actual jump or call address and then another cycle to actually execute the branch. The requirement for this extra cycle should be taken into account by programmers in timing sensitive applications.

System Clocking and Pipelining

Rev. 1.20 20 November 26, 2019

1	MOV A, [12H]
2	CALL DELAY
3	CPL [12H]
4	:
5	:
6 DELAY:	NOP

Fetch Inst. 1	Execute Inst. 1			
	Fetch Inst. 2	Execute Inst. 2		
		Fetch Inst. 3	Flush Pipeline	
			Fetch Inst. 6	Execute Inst. 6
				Fetch Inst. 7

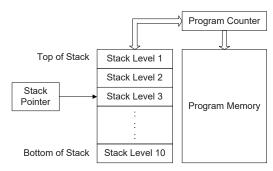
Instruction Fetching

Program Counter - PC

During program execution, the Program Counter is used to keep track of the address of the next instruction to be executed. It is automatically incremented by one each time an instruction is executed except for instructions, such as "JMP" or "CALL" that demand a jump to a nonconsecutive Program Memory address. As the device memory capacity is greater than 8K words, the Program Memory address may be located in a certain program memory bank which is selected by the program memory bank pointer bits, PMBP1~PMBP0. It must be noted that only the lower 8 bits, known as the Program Counter Low Register, are directly addressable by user.

When executing instructions requiring jumping to non-consecutive addresses such as a jump instruction, a subroutine call, interrupt or reset, etc, the microcontroller manages program control by loading the required address into the Program Counter. For conditional skip instructions, once the condition has been met, the next instruction, which has already been fetched during the present instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is obtained.

Program Counter						
High Byte of Program Low Byte of Program						
PMBP1~PMBP0, PC12~PC8	PCL7~PCL0					


The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is available for program control and is a readable and writeable register. By transferring data directly into this register, a short program jump can be executed directly. However, as only this low byte is available for manipulation, the jumps are limited in the present page of memory, which have 256 locations. When such program jumps are executed it should also be noted that a dummy cycle will be inserted. The lower byte of the Program Counter is fully accessible under program control. Manipulating the PCL might cause program branching, so an extra cycle is needed to pre-fetch.

Rev. 1.20 21 November 26, 2019

Stack

This is a special part of the memory which is used to save the contents of the Program Counter only. The device stack is neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

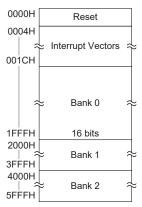
If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI, the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily. However, when the stack is full, a CALL subroutine instruction can still be executed which will result in a stack overflow. Precautions should be taken to avoid such cases which might cause unpredictable program branching.

Arithmetic and Logic Unit - ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU receives related instruction codes and performs the required arithmetic or logical operations after which the result will be placed in the specified register. As these ALU calculation or operations may result in carry, borrow or other status changes, the status register will be correspondingly updated to reflect these changes. The ALU supports the following functions:

- · Arithmetic operations: ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA
- · Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA
- Rotation: RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC
- Increment and Decrement: INCA, INC, DECA, DEC
- Branch decision: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI.

Rev. 1.20 22 November 26, 2019


Flash Program Memory

The Program Memory is the location where the user code or program is stored. For the device the Program Memory is Flash type, which means it can be programmed and re-programmed a large number of times, allowing the user the convenience of code modification on the same device. By using the appropriate programming tools, the Flash device offers users the flexibility to conveniently debug and develop their applications while also offering a means of field programming and updating.

Structure

The Program Memory has a capacity of 24K×16 bits. The Program Memory is addressed by the Program Counter and also contains data, table information and interrupt entries information. Table data, which can be set in any location within the Program Memory, is addressed by a separate table pointer register.

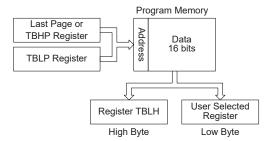
The device has its Program Memory divided into three Banks, Bank 0, Bank 1 and Bank 2. The required Bank is selected using the Bit 6~5 bits of the BP register.

Program Memory Structure

Special Vectors

Within the Program Memory, certain locations are reserved for the reset and interrupts. The location 0000H is reserved for use by the device reset for program initialisation. After a device reset is initiated, the program will jump to this location and begin execution.

Rev. 1.20 23 November 26, 2019



Look-up Table

Any location within the Program Memory can be defined as a look-up table where programmers can store fixed data. To use the look-up table, the table pointer must first be set by placing the address of the look up data to be retrieved in the table pointer register, TBLP and TBHP. These registers define the total address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the Program Memory using the "TABRD[m]" or "TABRDL[m]" instructions, respectively. When the instruction is executed, the lower order table byte from the Program Memory will be transferred to the user defined Data Memory register [m] as specified in the instruction. The higher order table data byte from the Program Memory will be transferred to the TBLH special register. Any unused bits in this transferred higher order byte will be read as "0".

The accompanying diagram illustrates the addressing data flow of the look-up table.

Table Program Example

The accompanying example shows how the table pointer and table data is defined and retrieved from the device. This example uses raw table data located in the Program Memory which is stored there using the ORG statement. The value at this ORG statement is "1F00H" which is located in ROM Bank 2 and refers to the start address of the last page within the 24K words Program Memory of the device.

The table pointer low byte register is set here to have an initial value of "06H". This will ensure that the first data read from the data table will be at the Program Memory address "5F06H" or 6 locations after the start of the last page. Note that the value for the table pointer is referenced to the first address of the specific page pointed by the TBHP register if the "TABRD[m]" instruction is being used. The high byte of the table data which in this case is equal to zero will be transferred to the TBLH register automatically when the "TABRDL [m]" instruction is executed.

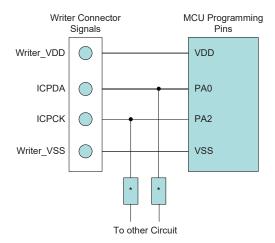
Because the TBLH register is a read-only register and cannot be restored, care should be taken to ensure its protection if both the main routine and Interrupt Service Routine use the table read instructions. If using the table read instructions, the Interrupt Service Routines may change the value of TBLH and subsequently cause errors if used again by the main routine. As a rule it is recommended that simultaneous use of the table read instructions should be avoided. However, in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any main routine table-read instructions. Note that all table related instructions require two instruction cycles to complete their operation.

Rev. 1.20 24 November 26, 2019

Table Read Program Example

```
rombank 2 code2
ds .section 'data'
tempreg1 db? ; temporary register #1
tempreg2 db? ; temporary register #2
code0 .section 'code'
mov a,06h ; initialise table pointer - note that this address is referenced
mov tblp,a
               ; to the last page or the page that TBHP pointed
mov a,05fh
               ; initialise high table pointer
mov tbhp,a
                 ; it is not necessary to set TBHP if executing tabrdl
tabrd tempreg1
                 ; transfers value in table referenced by table pointer
                  ; register pair to tempreg1
tabrdl tempreg1
                 ; data at program memory address "5F06H" transferred to
                 ; tempreg1 and TBLH
dec tblp
                 ; reduce value of table pointer by one
tabrd tempreg2
                 ; transfers value in table referenced by table pointer
                 ; register pair to tempreg2
               ; data at program memory address "5F05H" transferred to
tabrdl tempreg2
                  ; tempreg2 and TBLH
                  ; in this example the data "1AH" is transferred to
                  ; tempreg1 and data "OFH" to tempreg2
                  ; the value "OOH" will be transferred to the high byte register TBLH
code2 .section 'code'
org 1F00h ; sets initial address of last page
dc 00Ah,00Bh,00Ch,00Dh,00Eh,00Fh,01Ah,01Bh
```

In Circuit Programming - ICP


The provision of Flash type Program Memory provides the user with a means of convenient and easy upgrades and modifications to their programs on the same device.

As an additional convenience, Holtek has provided a means of programming the microcontroller incircuit using a 4-pin interface. This provides manufacturers with the possibility of manufacturing their circuit boards complete with a programmed or un-programmed microcontroller, and then programming or upgrading the program at a later stage. This enables product manufacturers to easily keep their manufactured products supplied with the latest program releases without removal and reinsertion of the device.

Holtek Writer Pins	MCU Programming Pins	Pin Description
ICPDA	PA0	Programming Serial Data/Address
ICPCK	PA2	Programming Clock
VDD	VDD	Power Supply
VSS	VSS	Ground

The Program Memory can be programmed serially in-circuit using this 4-wire interface. Data is downloaded and uploaded serially on a single pin with an additional line for the clock. Two additional lines are required for the power supply and one line for the reset. The technical details regarding the in-circuit programming of the device is beyond the scope of this document and will be supplied in supplementary literature.

During the programming process, the user must take care of the ICPDA and ICPCK pins for data and clock programming purposes to ensure that no other outputs are connected to these two pins.

Note: * may be resistor or capacitor. The resistance of * must be greater than $1k\Omega$ or the capacitance of * must be less than 1nF.

On-Chip Debug Support - OCDS

There is an EV chip named HT98V069 which is used to emulate the HT98F069 device. The EV chip device also provides an "On-Chip Debug" function to debug the real MCU device during the development process. The EV chip and the real MCU device are almost functionally compatible except for "On-Chip Debug" function. Users can use the EV chip device to emulate the real chip device behavior by connecting the OCDSDA and OCDSCK pins to the Holtek HT-IDE development tools. The OCDSDA pin is the OCDS Data/Address input/output pin while the OCDSCK pin is the OCDS clock input pin. When users use the EV chip for debugging, other functions which are shared with the OCDSDA and OCDSCK pins in the device will have no effect in the EV chip. However, the two OCDS pins which are pin-shared with the ICP programming pins are still used as the Flash Memory programming pins for ICP. For more detailed OCDS information, refer to the corresponding document named "Holtek e-Link for 8-bit MCU OCDS User's Guide".

Holtek e-Link Pins	EV Chip Pins	Pin Description			
OCDSDA	OSDA OCDSDA On-Chip Debug Support Data/Addre				
OCDSCK	OCDSCK	On-Chip Debug Support Clock input			
VDD	VDD	Power Supply			
VSS	VSS	Ground			

In Application Programming - IAP

The device offers IAP function to update data or application program to Flash ROM. Users can define any ROM location for IAP, but there are some features which user must notice in using IAP function.

Erase Page: 64 words/page
Writing Word: 64 words/time
Reading Word: 1 word/time

Rev. 1.20 26 November 26, 2019

In Application Programming Registers

The Address registers, FARL and FARH, and the Data registers, FD0L/FD0H, FD1L/FD1H, FD2L/FD2H, FD3L/FD3H, together with the Control registers, FC0, FC1 and FC2, located in Data Memory Bank 1, are the corresponding Flash access registers for IAP. As indirect addressing is the only way to access all these registers, all read and write operations to the registers must be performed using the Indirect Addressing Register, IAR1, and the Memory Pointer, MP1. Because the data, address and control registers are located at the address of 31H~3DH in Data Memory Bank 1, the desired value ranged from 31H~3DH must be written into the MP1 Memory Pointer and the value "01H" must also be written into the Bank Pointer, BP.

Register				В	it			
Name	7	6	5	4	3	2	1	0
FC0	CFWEN	FMOD2	FMOD1	FMOD0	FWPEN	FWT	FRDEN	FRD
FC1	D7	D6	D5	D4	D3	D2	D1	D0
FC2	_	_	_	_	_	_	_	CLWB
FARL	A7	A6	A5	A4	A3	A2	A1	A0
FARH	_	A14	A13	A12	A11	A10	A9	A8
FD0L	D7	D6	D5	D4	D3	D2	D1	D0
FD0H	D15	D14	D13	D12	D11	D10	D9	D8
FD1L	D7	D6	D5	D4	D3	D2	D1	D0
FD1H	D15	D14	D13	D12	D11	D10	D9	D8
FD2L	D7	D6	D5	D4	D3	D2	D1	D0
FD2H	D15	D14	D13	D12	D11	D10	D9	D8
FD3L	D7	D6	D5	D4	D3	D2	D1	D0
FD3H	D15	D14	D13	D12	D11	D10	D9	D8

IAP Registers List

• FC0 Register

Bit	7	6	5	4	3	2	1	0
Name	CFWEN	FMOD2	FMOD1	FMOD0	FWPEN	FWT	FRDEN	FRD
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 **CFWEN**: Flash Memory Write enable control

0: Flash Memory write function is disabled

1: Flash Memory write function has been successfully enabled

When this bit is cleared to 0 by application program, the Flash Memory write function is disabled. Note that writing a "1" into this bit results in no action. This bit is used to indicate that the Flash Memory write function status. When this bit is set to 1 by hardware, it means that the Flash Memory write function is enabled successfully. Otherwise, the Flash Memory write function is disabled as the bit content is zero.

Bit 6~4 FMOD2~FMOD0: Mode selection

000: Write Program Memory

001: Page erase Program Memory

010: Reserved

011: Read Program Memory

100: Reserved 101: Reserved

110: FWEN mode - Flash Memory write function enable mode

111: Reserved

Bit 3 FWPEN: Flash Memory Write procedure enable control

0: Disable 1: Enable

When this bit is set to 1 and the FMOD field is set to "110", the IAP controller will execute the "Flash memory write function enable" procedure. Once the Flash memory write function is successfully enabled, it is not necessary to set the FWPEN bit any more

Bit 2 FWT: Flash ROM write control bit

0: Do not initiate Flash Memory write or Flash Memory write process is completed

1: Initiate Flash Memory write process

This bit can be set by software only, when the write process is completed, hardware will clear the FWT bit.

Bit 1 FRDEN: Flash Memory read enabled bit

0: Flash Memory read disable

1: Flash Memory read enable

Bit 0 FRD: Flash Memory read control bit

0: Do not initiate Flash Memory read or Flash Memory read process is completed

1: Initiate Flash Memory read process

This bit can be set by software only, when the read process is completed, hardware will clear the FRD bit.

• FC1 Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D7\simD0**: whole chip reset

When user writes 55H to this register, it will generate a reset signal to reset whole chip.

· FC2 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	CLWB
R/W	_	_	_	_	_	_	_	R/W
POR	_	_	_	_	_	_	_	0

Bit 7~1 Unimplemented, read as "0"

Bit 0 CLWB: Flash Memory Write buffer clear control

0: Do not initiate Write Buffer Clear or Write Buffer Clear process is completed

1: Initiate Write Buffer Clear process

This bit can be set by software only, when the clear write buffer process is completed, hardware will clear the CLWB bit.

• FARL Register

Bit	7	6	5	4	3	2	1	0
Name	A7	A6	A5	A4	A3	A2	A1	A0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 Flash Memory Address [7:0]

Rev. 1.20 28 November 26, 2019

• FARH Register

Bit	7	6	5	4	3	2	1	0
Name	_	A14	A13	A12	A11	A10	A9	A8
R/W	_	R/W						
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0" Bit 6~0 Flash Memory Address [14:8]

• FD0L Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 The first Flash Memory data [7:0]

• FD0H Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 The first Flash Memory data [15:8]

• FD1L Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 The second Flash Memory data [7:0]

• FD1H Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 The second Flash Memory data [15:8]

• FD2L Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 The third Flash Memory data [7:0]

FD2H Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 The third Flash Memory data [15:8]

· FD3L Register

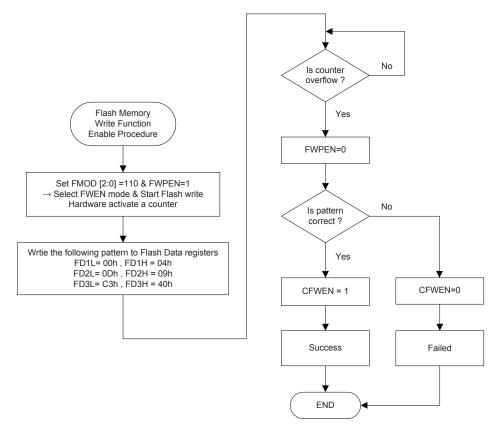
Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 The fourth Flash Memory data [7:0]

FD3H Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ The fourth Flash Memory data [15:8]

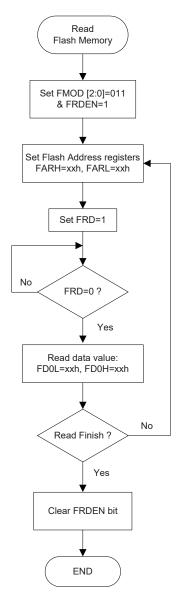

Flash Memory Write Function Enable Procedure

In order to allow users to change the Flash Memory data through the IAP control registers, users must first enable the Flash Memory write operation by the following procedure:

- Step 1. Write "110" into the FMOD2~FMOD0 bits to select the FWEN mode.
- Step 2. Set the FWPEN bit to "1". The step 1 and step 2 can be executed simultaneously.
- Step 3. The pattern data with a sequence of 00H, 04H, 0DH, 09H, C3H and 40H must be written into the FD1L, FD1H, FD2L, FD2H, FD3L and FD3H registers respectively.
- Step 4. A counter with a time-out period of 300μs will be activated to allow users writing the correct pattern data into the FD1L/FD1H~FD3L/FD3H register pairs. The counter clock is derived from the LIRC oscillator.
- Step 5. If the counter overflows or the pattern data is incorrect, the Flash Memory write operation will not be enabled and users must again repeat the above procedure. Then the FWPEN bit will automatically be cleared to 0 by hardware.
- Step 6. If the pattern data is correct before the counter overflows, the Flash Memory write operation will be enabled and the FWPEN bit will automatically be cleared to 0 by hardware. The CFWEN bit will also be set to 1 by hardware to indicate that the Flash Memory write operation is successfully enabled.
- Step 7. Once the Flash Memory write operation is enabled, the user can change the Flash ROM data through the Flash control register.
- Step 8. To disable the Flash Memory write operation, the user can clear the CFWEN bit to 0.

Rev. 1.20 30 November 26, 2019

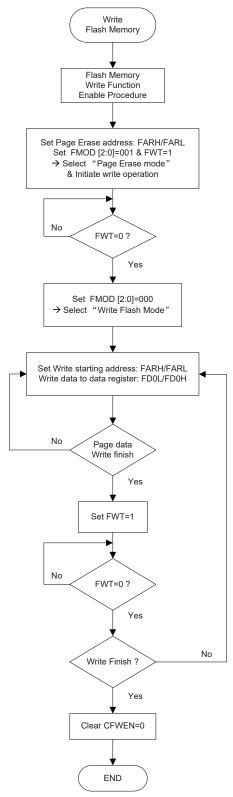
Flash Memory Write Function Enable Procedure


Flash Memory Read/Write Procedure

After the Flash Memory write function is successfully enabled through the preceding IAP procedure, users must first erase the corresponding Flash Memory page and then initiate the Flash Memory write operation. For the device the number of the page erase operation is 64 words per page, the available page erase address is only specified by FARH register and the content of the FARL[7:6] bit field.

Erase Page	FARH	FARL[7:6]	FARL[5:0]
0	0000 0000	00	XX XXXX
1	0000 0000	01	XX XXXX
2	0000 0000	10	XX XXXX
3	0000 0000	11	XX XXXX
4	0000 0001	00	XX XXXX
5	0000 0001	01	XX XXXX
:	:	:	:
:	:	:	:
254	0011 1111	10	XX XXXX
255	0011 1111	11	XX XXXX
:	:	:	:
:	:	:	:
382	0101 1111	10	XX XXXX
383	0101 1111	11	XX XXXX

"x": don't care


Erase Page Number and Selection

Read Flash Memory Procedure

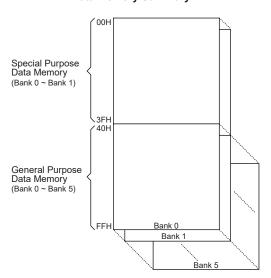
Rev. 1.20 32 November 26, 2019

Write Flash Memory Procedure

Note: When the FWT or FRD bit is set to 1, the MCU is stopped.

RAM Data Memory

The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where temporary information is stored.


Structure

Divided into two sections, the first of these is an area of RAM where special function registers are located. These registers have fixed locations and are necessary for correct operation of the device. Many of these registers can be read from and written to directly under program control, however, some remain protected from user manipulation. The second area of Data Memory is reserved for general purpose use. All locations within this area are read and write accessible under program control.

The Data Memory is subdivided into six banks, all of which are implemented in 8-bit wide RAM. The address range of the Special Purpose Data Memory for the device is from 00H to 3FH while the General Purpose Data Memory address range is from 40H to FFH.

Special Purpose Data Memory	General Purpose Data Memory	
Located Banks	Capacity	Bank: Address
0, 1	1152×8	0: 40H~FFH 1: 40H~FFH : : 4: 40H~FFH 5: 40H~FFH

Data Memory Summary

Data Memory Structure

Rev. 1.20 34 November 26, 2019

General Purpose Data Memory

All microcontroller programs require an area of read/write memory where temporary data can be stored and retrieved for use later. It is this area of RAM Memory that is known as General Purpose Data Memory. This area of Data Memory is fully accessible by the user program for both reading and writing operations. By using the bit operation instructions individual bits can be set or reset under program control giving the user a large range of flexibility for bit manipulation in the Data Memory.

Special Purpose Data Memory

This area of Data Memory is where registers, necessary for the correct operation of the microcontroller, are stored. Most of the registers are both readable and writeable but some are protected and are readable only, the details of which are located under the relevant Special Function Register section. Note that for locations that are unused, any read instruction to these addresses will return the value "00H".

	Bank 0	Bank 1
00H	IAR0	
01H	MP0	
02H	IAR1	
03H	MP1	
04H	BP	
05H	ACC	
06H	PCL	
07H	TBLP	
08H	TBLH	
09H		
0AH	STATUS	
0BH	INTC0	
0CH	TMR0	
0DH	TMR0C	
0EH	TMR1	
0FH	TMR1C	
10H	PA	
11H	PAC	
12H	PAPU	
13H	PAWK	
14H	PB	
15H	PBC	
16H	PBPU	
17H	PC PC	
	PCC	
18H 19H		
	PCPU	
1AH	CTRL0 CTRL1	
1BH 1CH	CIRLI	
1DH	INTC1	
1EH 1FH		
20H	ANCSR ADRL	
	ADRH	
21H 22H	ADCR	
23H	ACSR	
24H	TBHP	
25H	PD	
26H	PDC	
	PDPU	
27H	PE	
28H		
29H 2AH	PEC PEPU	
2BH		
2BH 2CH	PF	
2DH	PFC PFPU	
2EH	TMR2L	
2FH	TMR2L TMR2H	
30H	TIVINZIT	
31H	CTDL 2	FCO
32H	CTRL2	FC0
	TMR2C DACR	FC1 FC2
33H	DACR DA0R	FARL
34H 35H	DAUR DA1R	FARH
	DATR DA2R	FD0L
36H		FD0L FD0H
37H	DA3R	
38H	SPICR	FD1L
39H	BDR	FD1H
3AH	LVDC	FD2L
3BH	WDTC	FD2H
3CH	LVRC	PD3L
3DH		FD3H
3EH		
3FH		

: Unused, read as 00H

Special Purpose Data Memory

Rev. 1.20 36 November 26, 2019

Special Function Registers

Most of the Special Function Register details will be described in the relevant functional section, however several registers require a separate description in this section.

Indirect Addressing Registers - IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM register, do not actually physically exist as normal registers. The method of indirect addressing for RAM data manipulation is using these Indirect Addressing Registers and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified. Actions on the IAR0 and IAR1 registers will result in no actual read or write operation to these registers but rather to the memory location specified by their corresponding Memory Pointers, MP0 or MP1. Acting as a pair, IAR0 and MP0 can together access data only from Bank 0 while the IAR1 register together with the MP1 register can access data from any Data Memory Bank. As the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing Registers indirectly will return a result of "00H" and writing to the registers indirectly will result in no operation.

Memory Pointers - MP0, MP1

Two Memory Pointers, known as MP0 and MP1 are provided. These Memory Pointers are physically implemented in the Data Memory and can be manipulated in the same way as normal registers providing a convenient way with which to indirectly address and track data. When any operation to the relevant Indirect Addressing Registers is carried out, the actual address which the microcontroller is directed to is the address specified by the related Memory Pointer. MP0, together with Indirect Addressing Register, IAR0, are used to access data from Bank 0, while MP1 and IAR1 are used to access data from all banks according to the BP register. Direct Addressing can only be used with Bank 0, all other banks must be addressed indirectly using MP1 and IAR1.

The following example shows how to clear a section of four Data Memory locations already defined as locations adres1 to adres4.

Indirect Addressing Program Example

```
data .section 'data'
adres1 db?
adres2 db ?
adres3 db ?
adres4 db ?
block db?
code. section at 0 code
org 00h
start:
mov a,04h
                         ; set size of block
mov block, a
mov a, offset adres1
                         ; Accumulator loaded with first RAM address
                         ; set memory pointer with first RAM address
mov mp0,a
loop:
clr IAR0
                         ; clear the data at address defined by MPO
inc mp0
                         ; increment memory pointer
sdz block
                         ; check if last memory location has been cleared
jmp loop
continue:
```

The important point to note here is that in the example shown above, no reference is made to specific Data Memory addresses.

Bank Pointer - BP

For this device, the Program and Data Memory are divided into several banks. Selecting the required Program and Data Memory area is achieved using the Bank Pointer. Bits 6~5 of the Bank Pointer is used to select Program Memory Bank 0, 1 or 2, while bits 2~0 are used to select Data Memory Banks 0~5.

The Data Memory is initialised to Bank 0 after a reset, except for a WDT time-out reset in the Power Down Mode, in which case, the Data Memory bank remains unaffected. Directly addressing the Data Memory will always result in Bank 0 being accessed irrespective of the value of the Bank Pointer. Accessing data from other banks must be implemented using Indirect Addressing.

As both the Program Memory and Data Memory share the same Bank Pointer Register, care must be taken during programming.

BP Register

Bit	7	6	5	4	3	2	1	0
Name	_	PMBP1	PMBP0	_	_	DMBP2	DMBP1	DMBP0
R/W	_	R/W	R/W	_	_	R/W	R/W	R/W
POR	_	0	0	_	_	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6~5 PMBP1~PMBP0: Program Memory Bank Pointer

00: Bank 0 01: Bank 1 10: Bank 2 11: Undefined

Bit 4~3 Unimplemented, read as "0"

Bit 2~0 **DMBP2~DMBP0**: Data Memory Bank Pointer

000: Bank 0 001: Bank 1 010: Bank 2 011: Bank 3 100: Bank 4 101: Bank 5 11x: Undefined

Accumulator - ACC

The Accumulator is central to the operation of any microcontroller and is closely related with operations carried out by the ALU. The Accumulator is the place where all intermediate results from the ALU are stored. Without the Accumulator it would be necessary to write the result of each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory resulting in higher programming and timing overheads. Data transfer operations usually involve the temporary storage function of the Accumulator; for example, when transferring data between one user-defined register and another, it is necessary to do this by passing the data through the Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register - PCL

To provide additional program control functions, the low byte of the Program Counter is made accessible to programmers by locating it within the Special Purpose area of the Data Memory. By manipulating this register, direct jumps to other program locations are easily implemented. Loading a value directly into this PCL register will cause a jump to the specified Program Memory location, however as the register is only 8-bit wide only jumps within the current Program Memory page are permitted. When such operations are used, note that a dummy cycle will be inserted.

Rev. 1.20 38 November 26, 2019

Look-up Table Registers - TBLP, TBHP, TBLH

These three special function registers are used to control operation of the look-up table which is stored in the Program Memory. TBLP and TBHP are the table pointers and indicate the location where the table data is located. Their value must be setup before any table read commands are executed. Their value can be changed, for example using the "INC" or "DEC" instructions, allowing for easy table data pointing and reading. TBLH is the location where the high order byte of the table data is stored after a table read data instruction has been executed. Note that the lower order table data byte is transferred to a user defined location.

Status Register - STATUS

This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PDF flag. In addition, operations related to the status register may give different results due to the different instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or by executing the "CLR WDT" or "HALT" instruction. The PDF flag is affected only by executing the "HALT" or "CLR WDT" instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

- C is set if an operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
- AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction; otherwise AC is cleared.
- Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.
- OV is set if an operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa; otherwise OV is cleared.
- PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by executing the "HALT" instruction.
- TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will not be pushed onto the stack automatically. If the contents of the status registers are important and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

Rev. 1.20 39 November 26, 2019

STATUS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	TO	PDF	OV	Z	AC	С
R/W	_	_	R	R	R/W	R/W	R/W	R/W
POR	_	_	0	0	Х	х	Х	Х

"x": unknown

Bit 7~6 Unimplemented, read as "0"
Bit 5 **TO**: Watchdog Time-Out flag

0: After power up or executing the "CLR WDT" or "HALT" instruction

1: A watchdog time-out occurred.

Bit 4 **PDF**: Power down flag

0: After power up or executing the "CLR WDT" instruction

1: By executing the "HALT" instruction

Bit 3 **OV**: Overflow flag

0: No overflow

1: An operation results in a carry into the highest-order bit but not a carry out of the

highest-order bit or vice versa.

Bit 2 Z: Zero flag

0: The result of an arithmetic or logical operation is not zero

1: The result of an arithmetic or logical operation is zero

Bit 1 AC: Auxiliary flag

0: No auxiliary carry

1: An operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction

Bit 0 C: Carry flag

0: No carry out

1: An operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation

The C flag is also affected by a rotate through carry instruction.

System Control Registers - CTRL0, CTRL1, CTRL2

These registers are used to provide control for various internal functions. These internal functions include the PFD function, Audio Processor control, certain system clock options, LXT oscillator low power control, external interrupt edge trigger type selection, Time Base function division ratio and the LXT oscillator on/off control after execution of HALT instruction.

CTRL0 Register

Bit	7	6	5	4	3	2	1	0
Name	PCFG	PFDCS	_	_	_	PFDC	LXTLP	CLKMOD
R/W	R/W	R/W	_	_	_	R/W	R/W	R/W
POR	0	0	_	_	_	0	0	1

Bit 7 **PCFG**: I/O configuration

0: INT/TMR0/PFD pin-shared with PA3/PA2/PA1 1: INT/TMR0/PFD pin-shared with PB4/PB5/PB6

Bit 6 **PFDCS**: PFD clock source

0: Timer 0

1: Timer 1

Bit 5~3 Unimplemented, read as "0"

Bit 2 **PFDC**: I/O or PFD selection

0: I/O 1: PFD

Bit 1 LXTLP: LXT oscillator low power control

0: Quick start-up mode 1: Low power mode

Rev. 1.20 40 November 26, 2019

Bit 0 CLKMOD: System clock mode selection

0: High system clock – PLL mode

1: Low system clock – LXT is used as the system clock

CTRL1 Register

Bit	7	6	5	4	3	2	1	0
Name	INTEG1	INTEG0	TBSEL1	TBSEL0	_	_	_	_
R/W	R/W	R/W	R/W	R/W	_	_	_	_
POR	1	0	0	0	_	_	_	_

Bit 7~6 INTEG1~INTEG0: External interrupt edge type selection

00: Disable

01: Rising edge trigger 10: Falling edge trigger

11: Dual edge trigger

Bit 5~4 TBSEL1~TBSEL0: Time Base period selection

00: $2^{10}/f_{TP0}$

 $\begin{array}{c} 01 \colon 2^{11}/f_{TP0} \\ 10 \colon 2^{12}/f_{TP0} \end{array}$

11: 2¹³/f_{TP0}

Bit 3~2 Unimplemented, read as "0"

CTRL2 Register

Bit	7	6	5	4	3	2	1	0
Name	M1	M0	PLLD2	AUPRST	PLLEN	PLLD1	PLLD0	LXTEN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	1	0	0	1	1	0

Bit 7~6 M1~M0: PLL output frequency selection

00: 24.576MHz

01: 32.768MHz

10: 40.96MHz

11: 49.152MHz

When the PLLEN bit is 0, PLL output clock is logic low. When the PLLEN bit is 1, PLL output clock is determined by $M1\sim M0$ bits.

Bit 5 PLLD2: PLL output frequency divider selection (for Audio Processor)

0: PLL output frequency divided by 2

1: PLL output frequency divided by 4

The detailed output frequencies are shown in the following table.

Bit 4 AUPRST: Audio Processor hardware reset bit

1→0→1: Audio Processor hardware reset

Bit 3 PLLEN: PLL enable control

0: Disable

1: Enable

Bit 2~1 **PLLD1~PLLD0**: PLL output frequency divider selection (for MCU)

00: PLL output frequency divided by 2

01: PLL output frequency divided by 4

10: PLL output frequency divided by 8

11: PLL output frequency divided by 16

Note that when the PLL frequency is 40.96/49.152MHz, setting these bits to "00" is useless, the hardware will force them to "01".

Bit 0 LXTEN: LXT oscillator on/off control after execution of HALT instruction

0: LXT off - Sleep mode

1: LXT on - Idle mode

PLL output frequencies corresponding to the M1 and M0 settings are shown below.

PLLEN	M1	M0	Clock Output
0	Х	х	Low (Logic state)
1	0	0	24.576MHz
1	0	1	32.768MHz
1	1	0	40.96MHz
1	1	1	49.152MHz

x: Don't care.

Divided PLL output frequency for MCU system clock.

		PLLD1, PLLD0	0,0	0,1	1,0	1,1
		Divide	2	4	8	16
	24.576		12.288	6.144	3.072	1.536
PLL freq.	32.768	f (MALL-)	16.384	8.192	4.096	2.048
(MHz)	40.96	f _{SYS} (MHz)	10.24 ^(Note)	10.24	5.12	2.56
	49.152		12.288 ^(Note)	12.288	6.144	3.072

Note: When the PLL frequency is 40.96/49.152MHz, PLLD1~PLLD0 = 00 is useless, they will be forced to "01" by hardware.

Divided PLL output frequency for Audio Processor system clock.

		PLLD2	0	1
		Divide	2	4
	24.576	fap (MHz)	12.288	6.144
PLL freq.	32.768		16.384	8.192
(MHz)	40.96		20.48	10.24
	49.152		24.576	12.288

Rev. 1.20 42 November 26, 2019

Oscillators

Various oscillator options offer the user a wide range of functions according to their various application requirements. The flexible features of the oscillator functions ensure that the best optimization can be achieved in terms of speed and power saving. Oscillator selections and operation are selected through registers.

System Oscillator Overview

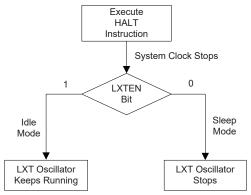
In addition to being the source of the main system clock the external oscillator LXT also provides clock source for the Watchdog Timer function, Timer/Event counters and Time Base. The external oscillator requires some external components while the integrated internal oscillator, requires no external components. The system clock can be provided from a choice of two oscillator modes, LXT crystal oscillator mode and LXT crystal oscillator together with PLL mode, which is selected by application program. The LIRC oscillator is mainly used for the Watchdog Timer function.

Туре	Name	Frequency	Pins
External Low Speed Crystal	LXT	32.768kHz	XIN/XOUT
Internal Low Speed RC	LIRC	32kHz	_

Oscillator Types

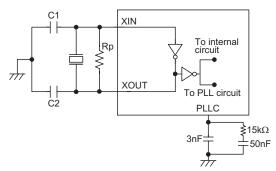
Internal PLL Frequency Generator

The internal PLL frequency generator is used to generate frequency for the MCU normal mode system clock and Audio Processor system clock. This PLL generator can be enabled or disabled by the PLL control bit PLLEN in the CTRL2 register. After a power on reset, the PLL control bit will be cleared to 0 to disable the PLL generator. To select the PLL output to be the high speed system clock, the CLKMOD bit in the CTRL0 register should be cleared to zero. The PLL generator will provide a range of frequencies, the selection of which is implemented using the M1~M0 bits in the CTRL2 register. And the PLL output frequency division for the MCU and Audio Processor are determined by the PLLD1~PLLD0 bits and PLLD2 bit respectively.


External 32768Hz Crystal Oscillator - LXT

The LXT oscillator is used both as the slow system clock and also as a selectable source clock for some peripheral functions including the Watchdog Timer, Time Base, Timer/Event Counters functions etc.

To select the LXT oscillator to be the low speed system oscillator, the CLKMOD bit in the CTRL0 register should be set high. When a HALT instruction is executed, the system clock is stopped, but the LXTEN bit in the CTRL2 register determines if the LXT oscillator continues running when the microcontroller powers down. Setting the LXTEN bit high will enable the LXT to keep running after a HALT instruction is executed and enable the LXT oscillator to remain as a possible clock source for the Watchdog Timer, the Time-Base and the Timer/Event Counters.


The LXT oscillator is implemented using a 32768Hz crystal connected to pins XIN/XOUT. However, for some crystals and to ensure oscillation and accurate frequency generation, it is normally necessary to add two small value external capacitors, C1 and C2. The exact values of C1 and C2 should be selected in consultation with the crystal or resonator manufacturer specification. The external parallel feedback resistor, Rp, may also be required.

Rev. 1.20 43 November 26, 2019

LXTEN Bit Function

For oscillator stability and to minimise the effects of noise and crosstalk, it is important to ensure that the crystal and any associated resistors and capacitors along with interconnecting lines are all located as close to the MCU as possible.

LXT Oscillator C1 and C2 Values					
C1	C2				
10pF	10pF				
	C1				

Note: 1. C1 and C2 values are for guidance only.

32768 Hz Crystal Recommended Capacitor Values

LXT Oscillator Low Power Function

The LXT oscillator can function in one of two modes, the Quick Start Mode and the Low Power Mode. The mode selection is executed using the LXTLP bit in the CTRL0 register.

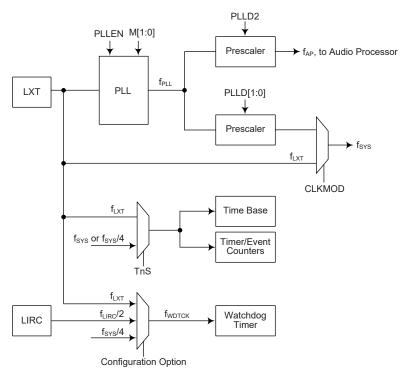
LXTLP Bit	LXT Mode
0	Quick Start
1	Low-power

After power on, the LXTLP bit will be automatically cleared to zero ensuring that the LXT oscillator is in the Quick Start operating mode. In the Quick Start Mode the LXT oscillator will power up and stabilise quickly. However, after the LXT oscillator has fully powered up it can be placed into the Low-power mode by setting the LXTLP bit high. The oscillator will continue to run but with reduced current consumption, as the higher current consumption is only required during the LXT oscillator start-up. In power sensitive applications, such as battery applications, where power consumption must be kept to a minimum, it is therefore recommended that the application program sets the LXTLP bit high about 2 seconds after power-on. It should be noted that, no matter what condition the LXTLP bit is set to, the LXT oscillator will always function normally, the only difference is that it will take more time to start up if in the Low-power mode.

Rev. 1.20 44 November 26, 2019

^{2.} $R_P=10M\Omega$ is recommended.

Internal 32kHz Oscillator - LIRC


The Internal 32kHz oscillator is served as one of Watchdog Timer clock source. It is a fully integrated RC oscillator with a typical frequency of 32kHz at 5V, requiring no external components for its implementation. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised. The LIRC is enabled once the Watchdog Timer or the LVR function is enabled, and it is disabled if both the Watchdog Timer and the LVR function are disabled.

Operating Modes

By using the LXT low frequency oscillator in combination with PLL, the system can be selected to operate in a number of different modes. These Modes are Normal, Slow, Idle and Sleep.

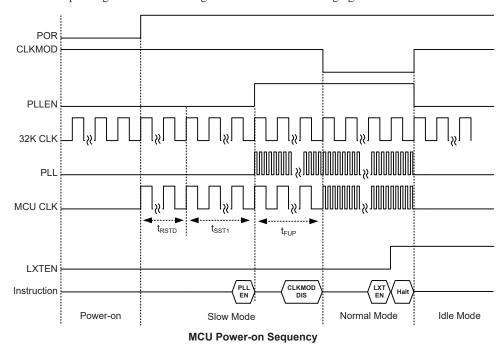
Mode Types and Selection

For this device the LXT oscillator can run together with PLL. The CLKMOD bit in the CTRL0 register can be used to switch the system clock from the selected PLL mode or the low speed LXT oscillator. When the HALT instruction is executed the LXT oscillator can be chosen to run or not, using the LXTEN bit in the CTRL2 register.

Note: The Time Base clock source is selected using the T0S bit. Refer to the associated section for Time Base and Timer/Event Counters clock source selection details.

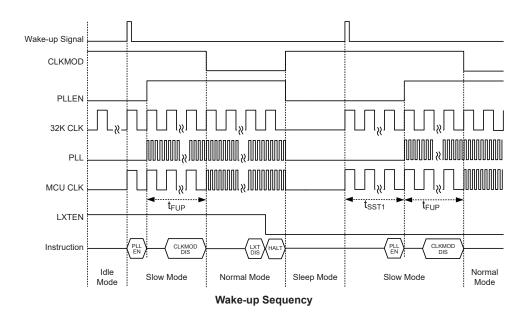
Device Clock Configurations

Rev. 1.20 45 November 26, 2019

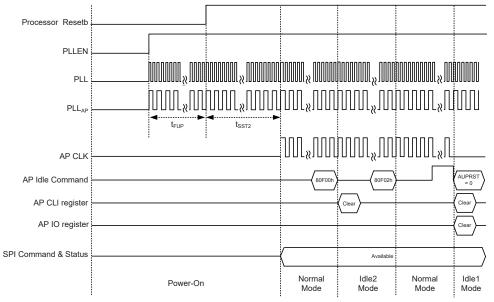


MC	CU	Audio Pro	ocessor	Re	gister Setti	ing	LXT HALT		IDLE
Mode	System Clock	Mode	System Clock	PLLEN bit	CLKMOD bit	LXTEN bit	Oscillator	Instruction	COMMAND for AP
	PLL	Normal	PLL _{AP}	1	0	х	On	Non	Non executed
Normal	PLL	Idle1	HALT	1	0	х	On		executed
	PLL	ldle2	PLLAP	1	0	х	On		executed
	LXT	Normal	PLL _{AP}	1	1	х	On	executed	Non executed
Slow	LXT	Idle1	HALT	1	1	х	On		Executed
	LXT	Idle2	PLLAP	1	1	х	On		Executed
Idle	HALT	ldle1	HALT	0	1	1	On	Executed	X
Sleep	HALT	ldle1	HALT	0	1	0	Off	LACCULEU	Χ

"x": Don't care


- Note: 1. The LXT oscillator is the 32768Hz oscillator.
 - 2. t_{SST1} for the LXT oscillator is 1024 clocks.
 - 3. If PLLEN=0, the CLKMOD bit will be set.
 - 4.To disable PLL (PLLEN bit = 0) before MCU executing the HALT instruction.
 - 5.Clear bit AUPRST of CTRL2 register of internal MCU to enter Idle1 and clear I/O and CLI command register value of audio processor.
 - 6. Make 80F00 of I/O command to enter idle2 and clear CLI command register value of audio processor.
 - 7. f_{AP} : PLL divided frequency to Audio processor. PLL_{AP} = 1/ f_{AP} .

The MCU operating mode switch timing are shown in the following figures:



Rev. 1.20 46 November 26, 2019

The Audio Processor operating mode switch timing are shown in the following figures:

Audio Processor Power-on Sequency

Mode Switching

The device is switched between one mode and another using a combination of the CLKMOD bit in the CTRL0 register and the HALT instruction. The CLKMOD bit chooses whether the system runs in either the Normal or Slow Mode by selecting the system clock to be sourced from LXT crystal oscillator or PLL. The HALT instruction forces the system into either the Idle or Sleep Mode, depending upon whether the LXT oscillator is running or not. The HALT instruction operates independently of the CLKMOD bit condition.

When a HALT instruction is executed and the LXT oscillator is not running, the system enters the Sleep mode and the following conditions exist:

- The system oscillator will stop running and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The WDT will be cleared and resume counting if the WDT clock source is selected to come from the LIRC or LXT oscillator. The WDT will stop if its clock source originates from the system clock.
- The I/O ports will maintain their present condition.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.

Standby Current Considerations

As the main reason for entering the Idle/Sleep Mode is to keep the current consumption of the MCU to as low a value as possible, perhaps only in the order of several micro-amps, there are other considerations which must also be taken into account by the circuit designer if the power consumption is to be minimised. Special attention must be made to the I/O pins on the device. All high-impedance input pins must be connected to either a fixed high or low level as any floating input pins could create internal oscillations and result in increased current consumption. Care must also be taken with the loads, which are connected to I/O pins, which are setup as outputs. These should be placed in a condition in which minimum current is drawn or connected only to external circuits that do not draw current, such as other CMOS inputs.

If the configuration option or the related register has enabled the Watchdog Timer then the internal LIRC oscillator will continue to run when in the Idle/Sleep Mode and will thus consume some power. For power sensitive applications it may be therefore preferable to use the system clock source for the Watchdog Timer. The LXT oscillator, if configured for use, will also consume a limited amount of power, as it continues to run when the device enters the Idle Mode. To keep the LXT power consumption to a minimum level the LXTLP bit in the CTRL0 register, which controls the low power function, should be set high.

Rev. 1.20 48 November 26, 2019

Wake-up

After the system enters the Idle/Sleep Mode, it can be woken up from one of various sources listed as follows:

- · An external reset
- · An external falling edge on PA0 to PA7
- · A system interrupt
- A WDT overflow

If the system is woken up by an external reset, the device will experience a full system reset, however, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated. Although both of these wake-up methods will initiate a reset operation, the actual source of the wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a system power-up or executing the clear Watchdog Timer instructions and is set when executing the "HALT" instruction. The TO flag is set if a WDT time-out occurs, and causes a wake-up that only resets the Program Counter and Stack Pointer, the other flags remain in their original status.

Pins PA0 to PA7 can be setup via the PAWK register to permit a negative transition on the pin to wake-up the system. When a PA0 to PA7 pin wake-up occurs, the program will resume execution at the instruction following the "HALT" instruction. If the system is woken up by an interrupt, then two possible situations may occur. The first is where the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the program will resume execution at the instruction following the "HALT" instruction. In this situation, the interrupt which woke-up the device will not be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled or when a stack level becomes free. The other situation is where the related interrupt is enabled and the stack is not full, in which case the regular interrupt response takes place. If an interrupt request flag is set to "1" before entering the Idle/Sleep Mode, then any future interrupt requests will not generate a wake-up function of the related interrupt will be ignored.

Wake up Source	Oscillator Type
Wake-up Source	Crystal
External RES	t _{RSTD} + t _{SST}
PA Port	
Interrupt	t _{sst}
WDT Overflow	

Note: 1. t_{RSTD} (reset delay time), t_{SYS} (system clock)

2. t_{RSTD} is power-on delay, typical time = 50ms

3. $t_{SST} = 1024 t_{SYS}$

Wake-up Delay Time

Rev. 1.20 49 November 26, 2019

Watchdog Timer

The Watchdog Timer, also known as the WDT, is provided to prevent program malfunctions or sequences from jumping to unknown locations, due to certain uncontrollable external events such as electrical noise.

Watchdog Timer Clock Source

The Watchdog Timer clock source is provided by the internal LIRC oscillator clock division, $f_{LIRC}/2$, the system clock division, $f_{SYS}/4$, or the LXT oscillator, which is selected by the configuration option. The Watchdog Timer source clock is then subdivided by a ratio of 2^8 to 2^{18} to give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the WDTC register. The LIRC oscillator has an approximate period frequency of 32kHz at a supply voltage of 5V. However, it should be noted that this specified internal clock period can vary with V_{DD} , temperature and process variations. The LXT oscillator is supplied by an external 32.768kHz crystal.

Watchdog Timer Control Registers

A single register, WDTC, controls the required timeout period as well as the enable/disable operation. This register together with several configuration options control the overall operation of the Watchdog Timer.

WDTC Register

Bit	7	6	5	4	3	2	1	0
Name	WE4	WE3	WE2	WE1	WE0	WS2	WS1	WS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	0	1	1

Bit 7~3 **WE4~WE0**: WDT enable/disable control

10101: Disable 01010: Enable

Other values: MCU reset

When these bits are changed by the environmental noise to reset the microcontroller, the reset operation will be activated after 2~3 WDTCK clock cycles.

Bit 2~0 WS2~WS0: WDT Time-out period selection

000: 28/fwdtck 001: 2¹⁰/fwdtck 010: 2¹²/fwdtck 011: 2¹⁴/fwdtck 100: 2¹⁵/fwdtck

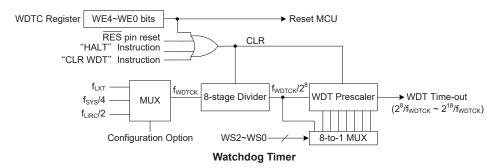
101: 2¹⁶/f_{WDTCK} 110: 2¹⁷/f_{WDTCK} 111: 2¹⁸/f_{WDTCK}

These three bits determine the division ratio of the Watchdog Timer source clock, which in turn determines the timeout period.

Rev. 1.20 50 November 26, 2019

Watchdog Timer Operation

The Watchdog Timer operates by providing a device reset when its timer overflows. This means that in the application program and during normal operation the user has to strategically clear the Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is done using the clear watchdog instruction. If the program malfunctions for whatever reason, jumps to an unknown location, or enters an endless loop, this clear instruction will not be executed in the correct manner, in which case the Watchdog Timer will overflow and reset the device. Note that if the Watchdog Timer function is not enabled, then any instruction related to the Watchdog Timer will result in no operation.


Setting the various Watchdog Timer options are controlled via the configuration options and the internal register WDTC. Enabling the Watchdog Timer can be controlled by both a configuration option and the WE4~WE0 bits in the internal WDTC register in the Data Memory. The Watchdog Timer will be disabled if bits WE4~WE0 in the WDTC register are written with the binary value 10101B while the WDT Timer will be enabled if these bits are written with the binary value 01010B. If these bits are written with the other values except 10101B and 01010B, the MCU will be reset.

WDT Configuration Option	WE4~WE0 Bits	WDT Function	
WDT always enable	XXXXX	Enable	
	10101B	Disable	
By software control	01010B	Enable	
·	Any other value	Reset MCU	

Watchdog Timer Enable/Disable Control

Under normal program operation, a Watchdog Timer time-out will initialise a device reset and set the status bit TO. However, if the system is in the Idle/Sleep Mode, when a Watchdog Timer time-out occurs, the device will be woken up, the TO bit in the status register will be set and only the Program Counter and Stack Pointer will be reset. Four methods can be adopted to clear the contents of the Watchdog Timer. The first is an external hardware reset, which means a low level on the external RES reset pin, the second is a WDT software reset, which means a certain value except 10101B and 01010B written into the WE4~WE0 bits, the third is using the Clear Watchdog Timer software instruction and the fourth is via a "HALT" instruction.

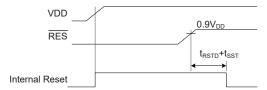
There is only one method of using software instruction to clear the Watchdog Timer. That is to use the single "CLR WDT" instruction to clear the WDT.

Rev. 1.20 51 November 26, 2019

Reset and Initialisation

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to some predetermined condition irrespective of outside parameters. The most important reset condition is after power is first applied to the microcontroller. In this case, internal circuitry will ensure that the microcontroller, after a short delay, will be in a well-defined state and ready to execute the first program instruction. After this power-on reset, certain important internal registers will be set to defined states before the program commences. One of these registers is the Program Counter, which will be reset to zero forcing the microcontroller to begin program execution from the lowest Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a reset condition when the microcontroller is running. One example of this is where after power has been applied and the microcontroller is already running, the $\overline{\text{RES}}$ line is forcefully pulled low. In such a case, known as a normal operation reset, some of the microcontroller registers remain unchanged allowing the microcontroller to deal with normal operation after the reset line is allowed to return high.


Another type of reset is when the Watchdog Timer overflows and resets the microcontroller. All types of reset operations result in different register conditions being set. Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the \overline{RES} reset is implemented in situations where the power supply voltage falls below a certain threshold.

Reset Functions

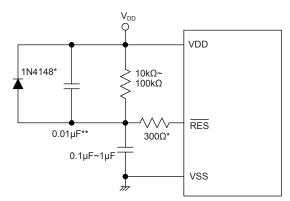
There are six ways in which a microcontroller reset can occur, through events occurring both internally and externally:

Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to the microcontroller. As well as ensuring that the Program Memory begins execution from the first memory address, a power-on reset also ensures that certain other registers are preset to known conditions. All the I/O port and port control registers will power up in a high condition ensuring that all pins will be first set to inputs.

Note: t_{RSTD} is power-on delay, typical time=50ms **Power-On Reset Timing Chart**

Rev. 1.20 52 November 26, 2019

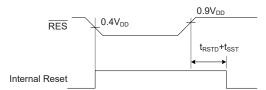


RES Pin Reset

As the reset pin is shared with PA7, the reset function must be selected using a configuration option. Although the microcontroller has an internal RC reset function, if the VDD power supply rise time is not fast enough or does not stabilise quickly at power-on, the internal reset function may be incapable of providing proper reset operation. For this reason it is recommended that an external RC network is connected to the $\overline{\text{RES}}$ pin, whose additional time delay will ensure that the $\overline{\text{RES}}$ pin remains low for an extended period to allow the power supply to stabilise. During this time delay, normal operation of the microcontroller will be inhibited. After the $\overline{\text{RES}}$ line reaches a certain voltage value, the reset delay time t_{RSTD} is invoked to provide an extra delay time after which the microcontroller will begin normal operation. The abbreviation SST in the figures stands for System Start-up Timer.

For most applications a resistor connected between VDD and the \overline{RES} pin and a capacitor connected between VSS and the \overline{RES} pin will provide a suitable external reset circuit. Any wiring connected to the \overline{RES} pin should be kept as short as possible to minimise any stray noise interference.

For applications that operate within an environment where more noise is present the reset circuit shown is recommended.

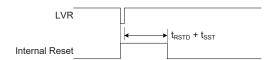

Note: "*" It is recommended that this component is added for added ESD protection.

"**" It is recommended that this component is added in environments where power line noise is significant.

External RES Circuit

More information regarding external reset circuits is located in Application Note HA0075E on the Holtek website.

This type of reset occurs when the microcontroller is already running and the \overline{RES} pin is forcefully pulled low by hardware circuit. In this case of other reset, the Program Counter will reset to zero and program execution initiated from this point.


Note: t_{RSTD} is power-on delay, typical time=16.7ms \overline{RES} Reset Timing Chart

Rev. 1.20 53 November 26, 2019

Low Voltage Reset - LVR

The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the device and provides an MCU reset should the value fall below a certain predefined level. The LVR function is always enabled with a specific LVR voltage V_{LVR} . If the supply voltage of the device drops to within a range of $0.9V\sim V_{LVR}$ such as might occur when changing a battery, the LVR will automatically reset the device internally. For a valid LVR signal, a low voltage, i.e., a voltage in the range between $0.9V\sim V_{LVR}$ must exist for greater than the value t_{LVR} specified in the LVR/LVD characteristics. If the low voltage state does not exceed t_{LVR} , the LVR will ignore it and will not perform a reset function. The actual V_{LVR} value can be selected by the LVS bits in the LVRC register. If the LVS7~LVS0 bits are changed to some different values by environmental noise, the LVR will reset the device after 2~3 f_{LIRC} clock cycles. Note that the LVR function will automatically be disabled when the MCU enters the Power Down Mode.

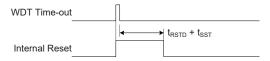
Note: t_{RSTD} is power-on delay, typical time=50ms Low Voltage Reset Timing Chart

LVRC Register

Bit	7	6	5	4	3	2	1	0
Name	LVS7	LVS6	LVS5	LVS4	LVS3	LVS2	LVS1	LVS0
R/W								
POR	0	1	0	1	0	1	0	1

Bit 7~0 LVS7~LVS0: LVR Voltage Select control

01010101: 2.1V 00110011: 2.55V 10011001: 3.15V 10101010: 3.8V


Any other value: Generates MCU reset – register is reset to POR value

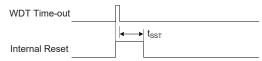
When an actual low voltage condition occurs, as specified by one of the four defined LVR voltage values above, an MCU reset will be generated. The reset operation will be activated after $2\sim3~f_{LIRC}$ clock cycles. In this situation the register contents will remain the same after such a reset occurs.

Any register value, other than the four defined LVR values above, will also result in the generation of an MCU reset. The reset operation will be activated after $2{\sim}3~f_{LIRC}$ clock cycles. However in this situation the register contents will be reset to the POR value.

Watchdog Time-out Reset during Normal Operation

The Watchdog time-out Reset during normal operation is the same as a hardware $\overline{\text{RES}}$ pin reset except that the Watchdog time-out flag TO will be set to "1".

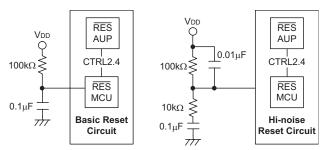
Note: t_{RSTD} is power-on delay, typical time=16.7ms


WDT Time-out Reset during Normal Operation Timing Chart

Rev. 1.20 54 November 26, 2019

Watchdog Time-out Reset during Idle/Sleep Mode

The Watchdog time-out Reset during Idle/Sleep Mode is a little different from other kinds of reset. Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer will be cleared to "0" and the TO flag will be set to "1". Refer to the A.C. Characteristics for t_{SST} details.



Note: t_{SST} is 1024 clock cycles for the system clock source provided by LXT.

WDT Time-out Reset during Idle/Sleep Timing Chart

Audio Processor Reset

The Audio Processor function is reset by the AUPRST bit in the CTRL2 control register.

Note: "*" Make the length of the wring, which is connected to the RES pin as short as possible, to avoid noise interference.

Audio Processor Reset Circuit

Reset Initial Conditions

The different types of reset described affect the reset flags in different ways. These flags, known as PDF and TO are located in the status register and are controlled by various microcontroller operations, such as the Idle/Sleep Mode function or Watchdog Timer. The reset flags are shown in the table:

ТО	PDF	RESET Conditions				
0	0	Power-on reset				
u	u	RES or LVR reset during NORMAL Mode operation				
1	u	WDT time-out reset during NORMAL Mode operation				
1	1	WDT time-out reset during Idle or Sleep Mode operation				

Note: "u" stands for unchanged

The following table indicates the way in which the various components of the microcontroller are affected after a power-on reset occurs.

Item	Condition After RESET		
Program Counter	Reset to zero		
Interrupts	All interrupts will be disabled		
WDT Clear after reset, WDT begins counting			
Timer/Event Counter	Timer Counter will be turned off		
Precaler	The Timer Counter Prescaler will be cleared		
Input/Output Ports	I/O ports will be set as inputs		
Stack Pointer	Stack Pointer will point to the top of the stack		

Rev. 1.20 55 November 26, 2019

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller is in after a particular reset occurs. The following table describes how each type of reset affects the microcontroller internal registers.

Power On		RES or LVR Reset	RES or LVR Reset		WDT Time-out
Register	Reset	(Normal Operation)	(Idle/Sleep)	(Normal Operation)	(Idle/Sleep)
MP0	xxxx xxxx	XXXX XXXX	XXXX XXXX	XXXX XXXX	uuuu uuuu
MP1	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
BP	-00000	-00000	-00000	-00000	- u u - - u u u
ACC	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TBLP	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
ТВНР	-xxx xxxx	-uuu uuuu	-uuu uuuu	-uuu uuuu	-uuu uuuu
TBLH	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
STATUS	00 xxxx	uu uuuu	01 uuuu	1u uuuu	11 uuuu
INTC0	-000 0000	-000 0000	-000 0000	-000 0000	-uuu uuuu
INTC1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
TMR0	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
TMR0C	0000 1000	0000 1000	0000 1000	0000 1000	uuuu uuuu
TMR1	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
TMR1C	0000 1	0000 1	0000 1	0000 1	uuuu u
TMR2L	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
TMR2H	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
TMR2C	0000 1000	0000 1000	0000 1000	0000 1000	uuuu uuuu
PA	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PAC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PAWK	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PAPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PB	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PBC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PBPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PCC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PCPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PD	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PDC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PDPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PE	11	11	11	11	u u
PEC	11	11	11	11	u u
PEPU	0 0	00	00	0 0	u u
PF	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PFC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PFPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
CTRL0	0000 0001	0000 0001	0000 0001	0000 0001	uuuu uuuu
CTRL1	1000	1000	1000	1000	uuuu
CTRL2	0010 0110	0010 0110	0010 0110	0010 0110	uuuu uuuu
ADRL	x x x x	x x x x	x x x x	x x x x	uuuu
ADRH	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
ADCR	00 0000	00 0000	00 0000	00 0000	uu uuuu
ACSR	11000	11000	11000	11000	uuuuu

Rev. 1.20 56 November 26, 2019

Dogiotor	Power On	RES or LVR Reset	RES or LVR Reset	WDT Time-out	WDT Time-out
Register	Reset	(Normal Operation)	(Idle/Sleep)	(Normal Operation)	(Idle/Sleep)
ANCSR	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
DACR	0000	0000	0000	0000	uuuu
DA0R	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
DA1R	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
DA2R	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
DA3R	xxxx xxxx	xxxx xxxx	xxxx xxxx	xxxx xxxx	uuuu uuuu
BDR	00	00	0 0	00	u u
SPICR	1-01 00xx	1-01 00xx	1-01 00xx	1-01 00xx	u-uu uuxx
LVDC	00 -000	00 -000	00 -000	00 -000	uu -uuu
WDTC	0101 0011	0101 0011	0101 0011	0101 0011	uuuu uuuu
LVRC	0101 0101	0101 0101	0101 0101	0101 0101	uuuu uuuu
FC0	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FC1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FC2	0	0	0	0	u
FARL	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FARH	-000 0000	-000 0000	-000 0000	-000 0000	-uuu uuuu
FD0L	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FD0H	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FD1L	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FD1H	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FD2L	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FD2H	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FD3L	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
FD3H	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu

Note: "-" not implement
"u" means "unchanged"
"x" means "unknown"

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. Most pins can have either an input or output designation under user program control. Additionally, as there are pull-high resistors and wake-up software configurations, the user is provided with an I/O structure to meet the needs of a wide range of application possibilities.

The device provides bidirectional input/output lines labeled with port names PA~PF. These I/O ports are mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of instruction "MOV A, [m]", where m denotes the port address. For output operation, all the data is latched and remains unchanged until the output latch is rewritten.

Register				В	it			
Name	7	6	5	4	3	2	1	0
PA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
PAC	PAC7	PAC6	PAC5	PAC4	PAC3	PAC2	PAC1	PAC0
PAPU	PAPU7	PAPU6	PAPU5	PAPU4	PAPU3	PAPU2	PAPU1	PAPU0
PAWK	PAWK7	PAWK6	PAWK5	PAWK4	PAWK3	PAWK2	PAWK1	PAWK0
PB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
PBC	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0
PBPU	PBPU7	PBPU6	PBPU5	PBPU4	PBPU3	PBPU2	PBPU1	PBPU0
PC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
PCC	PCC7	PCC6	PCC5	PCC4	PCC3	PCC2	PCC1	PCC0
PCPU	PCPU7	PCPU6	PCPU5	PCPU4	PCPU3	PCPU2	PCPU1	PCPU0
PD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
PDC	PDC7	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
PDPU	PDPU7	PDPU6	PDPU5	PDPU4	PDPU3	PDPU2	PDPU1	PDPU0
PE	_	_	_	_	_	_	PE1	PE0
PEC	_	_	_	_	_	_	PEC1	PEC0
PEPU	_	_	_	_	_	_	PEPU1	PEPU0
PF	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
PFC	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0
PFPU	PFPU7	PFPU6	PFPU5	PFPU4	PFPU3	PFPU2	PFPU1	PFPU0

"—": Unimplemented, read as "0"

I/O Basic Function Registers List

Rev. 1.20 58 November 26, 2019

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when configured as an input have the capability of being connected to an internal pull-high resistor. These pull-high resistors are selected using registers PAPU~PFPU located in the Data Memory. The pull-high resistors are implemented using weak PMOS transistors.

PxPU Register

Bit	7	6	5	4	3	2	1	0
Name	PxPU7	PxPU6	PxPU5	PxPU4	PxPU3	PxPU2	PxPU1	PxPU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PxPUn: I/O Port x Pin pull-high function control

0: Disable 1: Enable

The PxPUn bit is used to control the pin pull-high function. Here the "x" can be A, B, C, D, E and F. However, the actual available bits for each I/O Port may be different.

Port A Wake-up

If the HALT instruction is executed, the device will enter the Idle/Sleep Mode, where the system clock will stop resulting in power being conserved, a feature that is important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of which is to change the logic condition on one of the PA0~PA7 pins from high to low. After a HALT instruction forces the microcontroller into entering the Idle/Sleep Mode, the processor will remain idle or in a low-power state until the logic condition of the selected wake-up pin on Port A changes from high to low. This function is especially suitable for applications that can be woken up via external switches. Note that pins PA0~PA7 can be selected individually to have this wake-up feature using an internal register known as PAWK, located in the Data Memory.

PAWK Register

Bit	7	6	5	4	3	2	1	0
Name	PAWK7	PAWK6	PAWK5	PAWK4	PAWK3	PAWK2	PAWK1	PAWK0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PAWKn: Port A Pin wake-up function control

0: Disable 1: Enable

I/O Port Control Registers

Each I/O port has its own control register known as PAC~PFC, to control the input/output configuration. With this control register, each I/O pin with or without pull-high resistors can be reconfigured dynamically under software control. For the I/O pin to function as an input, the corresponding bit of the control register must be written as a "1". This will then allow the logic state of the input pin to be directly read by instructions. When the corresponding bit of the control register is written as a "0", the I/O pin will be set as a CMOS output. If the pin is currently set as an output, instructions can still be used to read the output register. However, it should be noted that the program will in fact only read the status of the output data latch and not the actual logic status of the output pin.

Rev. 1.20 59 November 26, 2019

PxC Register

Bit	7	6	5	4	3	2	1	0
Name	PxC7	PxC6	PxC5	PxC4	PxC3	PxC2	PxC1	PxC0
R/W								
POR	1	1	1	1	1	1	1	1

PxCn: I/O Port x Pin type selection

0: Output1: Input

The PxCn bit is used to control the pin type selection. Here the "x" can be A, B, C, D, E and F. However, the actual available bits for each I/O Port may be different.

Pin-shared Functions

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function. Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions, many of these difficulties can be overcome. For some pins, the chosen function of the multi-function I/O pins is set by configuration options while for others the function is set by application program control.

External Reset Pin

The external reset pin, \overline{RES} , is pin-shared with PA7. Whether to use the pin as an external reset pin or not is determined by the associated configuration option.

External Interrupt Input

The external interrupt pin, INT, is pin-shared with an I/O pin. To use the pin as an external interrupt input the correct bits in the INTC0 register must be programmed. The pin must also be setup as an input by setting the PAC3 bit in the Port Control Register. A pull-high resistor can also be selected via the appropriate port pull-high resistor register. Note that even if the pin is setup as an external interrupt input the I/O function still remains.

External Timer/Event Counter Inputs

The Timer/Event Counter pins, TMR0, TMR1 and TMR2 are pin-shared with I/O pins. For these shared pins to be used as Timer/Event Counter inputs, the Timer/Event Counter must be configured to be in the Event Counter or Pulse Width Capture Mode. This is achieved by setting the appropriate bits in the Timer/Event Counter Control Register. The pins must also be setup as inputs by setting the appropriate bit in the Port Control Register. Pull-high resistor options can also be selected using the port pull-high resistor registers. Note that even if the pin is setup as an external timer input the I/O function still remains.

PFD Output

The PFD function output is pin-shared with an I/O pin. The output function of this pin is chosen using the CTRL0 register. Note that the corresponding bit of the port control register, must setup the pin as an output to enable the PFD output. If the port control register has setup the pin as an input, then the pin will function as a normal logic input with the usual pull-high selection, even if the PFD function has been selected.

Rev. 1.20 60 November 26, 2019

A/D Inputs

The device has 8 inputs to the A/D converter. All of these analog inputs are pin-shared with I/O pins. If these pins are to be used as A/D inputs and not as I/O pins then the corresponding PCRn bits in the ANCSR register, must be properly setup. There are no configuration options associated with the A/D converter. If chosen as I/O pins, then full pull-high resistor options remain, however if used as A/D inputs then any pull-high resistor configurations associated with these pins will be automatically disconnected.

D/A Outputs

The device has 4 outputs from the D/A converter. All of these analog outputs are pin-shared with I/O pins. If these pins are to be used as D/A outputs and not as I/O pins then the corresponding ENn bits in the DACR register, must be properly setup. There are no configuration options associated with the D/A converter.

SPI Pins

The SPI associated pins are pin-shared with I/O pins. This function is controlled using the IEMC bit in the SPICR register.

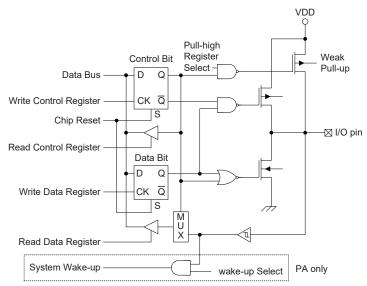
Audio processor Pins

Pins PB4~PB7 on Port B can be used as Audio processor I/O pins. This function is controlled using the ERAM bit in the SPICR register.

Pin Remapping Configuration

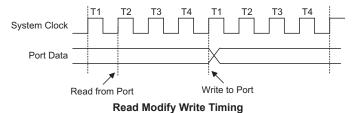
The pin remapping function enables the function pins INT, TMR0 and PFD to be located on different port pins. It is important not to confuse the Pin Remapping function with the Pin-shared function, these two functions have no interdependence.

The PCFG bit in the CTRL0 register allows the three function pins INT, TMR0 and PFD to be remapped to different port pins. After power up, this bit will be reset to zero, which will define the default port pins to which these three functions will be mapped. Changing this bit will move the functions to other port pins.


PCFG Bit Status									
PCFG Bit	0	1							
	INT/PA3	INT/PB4							
Pin Mapping	TMR0/PA2	TMR0/PB5							
	PFD/PA1	PFD/PB6							

Rev. 1.20 61 November 26, 2019

I/O Pin Structure


The accompanying diagram illustrates the internal structure of the I/O logic function. As the exact logical construction of the I/O pin may differ from this diagram, it is supplied as a guide only to assist with the functional understanding of the I/O logic function. The wide range of pin-shared structures does not permit all types to be shown.

Logic Function Input/Output Structure

Programming Considerations

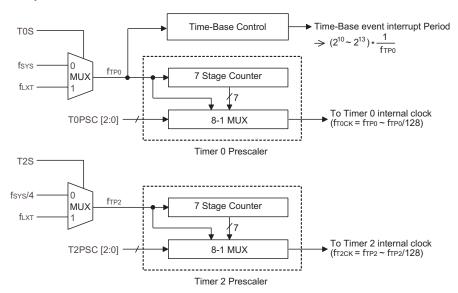
Within the user program, one of the first things to consider is port initialisation. After a reset, all of the I/O data registers and port control registers will be set to high. This means that all I/O pins will be defaulted to an input state, the level of which depends on the other connected circuitry and whether pull-high selections have been chosen. If the port control registers are then programmed to set some pins as outputs, these output pins will have an initial high output value unless the associated port data registers are first programmed. Selecting which pins are inputs and which are outputs can be achieved byte-wide by loading the correct values into the appropriate port control register or by programming individual bits in the port control register using the "SET [m].i" and "CLR [m].i" instructions. Note that when using these bit control instructions, a read-modify-write operation takes place. The microcontroller must first read in the data on the entire port, modify it to the required new bit values and then rewrite this data back to the output ports.

Pins PA0~PA7 each have wake-up functions, selected via the PAWK register. When the device is in the Idle/Sleep Mode, various methods are available to wake the device up. One of these is a high to low transition of any pins. Single or multiple pins on Port A can be set to have this function.

Rev. 1.20 62 November 26, 2019

Timer/Event Counters

The provision of timer form an important part of any microcontroller, giving the designer a means of carrying out time related functions. The device contains from two 8-bit and one 16-bit count-up timers. As the timers have three different operating modes, they can be configured to operate as a general timer, an external event counter or as a pulse width capture device. The provision of an internal prescaler to the clock circuitry on gives added range to the timers.


There are two types of registers related to the Timer/Event Counters. The first is the register that contains the actual value of the timer and into which an initial value can be preloaded. Reading from this register retrieves the contents of the Timer/Event Counter. The second type of associated register is the Timer Control Register which defines the timer options and determines how the timer is to be used. The device can have the timer clock configured to come from the internal clock source. In addition, the timer clock source can also be configured to come from an external timer pin.

Name	Bits	Data Register	Control Register
Timer/Event Counter 0	8	TMR0	TMR0C
Timer/Event Counter 1	8	TMR1	TMR1C
Timer/Event Counter 2	16	TMR2H/TMR2L	TMR2C

Configuring the Timer/Event Counter Input Clock Source

The Timer/Event Counter clock source can originate from various sources, an internal clock or an external pin. The internal clock source is used when the timer is in the timer mode. The internal clock source can be f_{SYS} , $f_{SYS}/4$ or the external low speed oscillator LXT, selected by the TnS bit in the register TMRnC register. For some Timer/Event Counters, this internal clock source is first divided by a prescaler, the division ratio of which is conditioned by the Timer Control Register bits TnPSC2 \sim TnPSC0.

An external clock source is used when the Timer/Event Counter is in the event counting mode, the clock source being provided on an external timer pin TMRn. Depending upon the condition of the TnEG bit, each high to low, or low to high transition on the external timer pin will increment the counter by one.

Clock Source for Timer 0/Timer 2/Time Base

Timer Registers - TMR0, TMR1, TMR2L, TMR2H

The timer registers are special function registers located in the Special Purpose Data Memory and is the place where the actual timer value is stored. These registers are known as TMR0, TMR1, TMR2L and TMR2H. The value in the timer registers increases by one each time an internal clock pulse is received or an external transition occurs on the external timer pin. The timer will count from the initial value loaded by the preload register to the full count of FFH for the 8-bit Timer/Event Counters or FFFFH for the 16-bit Timer/Event Counter, at which point the timer overflows and an internal interrupt signal is generated. The timer value will then reset with the initial preload register value and continue counting.

Note that to achieve a maximum full range count of FFH or FFFFH, the preload register must first be cleared. It should be noted that after power-on, the preload registers will be in an unknown condition. Note that if the Timer/Event Counter is in an OFF condition and data is written to its preload register, this data will be immediately written into the actual counter. However, if the counter is enabled and counting, any new data written into the preload data register during this period will remain in the preload register and will only be written into the actual counter the next time an overflow occurs.

Rev. 1.20 64 November 26, 2019

Timer Control Registers - TMR0C, TMR1C, TMR2C

The flexible features of the Holtek microcontroller Timer/Event Counters enable them to operate in three different modes, the options of which are determined by the contents of their respective control register.

The Timer Control Register is known as TMRnC. It is the Timer Control Register together with its corresponding timer register that controls the full operation of the Timer/Event Counter. Before the timer can be used, it is essential that the Timer Control Register is fully programmed with the right data to ensure its correct operation, a process that is normally carried out during program initialisation.

To select which of the three modes the timer is to operate in, either in the timer mode, the event counting mode or the pulse width capture mode, bits 7 and 6 of the Timer Control Register, which are known as the bit pair TnM1/TnM0, must be set to the required logic levels.

The timer-on bit, which is bit 4 of the Timer Control Register and known as TnON, provides the basic on/off control of the respective timer. Setting the bit to high allows the counter to run. Clearing the bit stops the counter. Bits $0\sim2$ of the Timer Control Register determine the division ratio of the input clock prescaler. The prescaler bit settings have no effect if an external clock source is used. If the timer is in the event count or pulse width capture mode, the active transition edge level type is selected by the logic level of bit 3 of the Timer Control Register which is known as TnEG. The TnS bit selects the internal clock source.

TMR0C Register

Bit	7	6	5	4	3	2	1	0
Name	T0M1	T0M0	T0S	T00N	T0EG	T0PSC2	T0PSC1	T0PSC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	1	0	0	0

Bit 7~6 **T0M1~T0M0**: Timer 0 operation mode selection

00: No mode available

01: Event counter mode

10: Timer mode

11: Pulse width capture mode

Bit 5 T0S: Timer 0 and Time Base clock source selection

0: f_{SYS}

1: LXT oscillator

Bit 4 **T00N**: Timer/event counter 0 counting enable

0: Disable

1: Enable

Bit 3 **T0EG**: Timer/Event Counter 0 active edge selection

In event counter mode ($T0M1 \sim T0M0 = 01$)

0: Count on rising edge

1: Count on falling edge

In pulse width measurement mode ($T0M1 \sim T0M0 = 11$)

0: Start counting on falling edge, stop on the rising edge

1: Start counting on rising edge, stop on the falling edge

Bit 2~0 TOPSC2~ TOPSC0: Timer 0 prescalar rate selection

000: f_{TP0}

 $\begin{array}{c} 001 \colon f_{TP0}/2 \\ 010 \colon f_{TP0}/4 \end{array}$

011: $f_{TP0}/8$

100: $f_{TP0}/16$

101: f_{TP0}/32 110: f_{TP0}/64

111: f_{TP0}/128

TMR1C Register

Bit	7	6	5	4	3	2	1	0
Name	T1M1	T1M0	T1S	T10N	T1EG	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	_	_	_
POR	0	0	0	0	1	_	_	_

Bit 7~6 T1M1~T1M0: Timer 1 operation mode selection

00: No mode available 01: Event counter mode

10: Timer mode

11: Pulse width capture mode

Bit 5 T1S: Timer 1 clock source selection

0: f_{SYS}/4

1: LXT oscillator

Bit 4 T10N: Timer/event counter 1 counting enable

0: Disable 1: Enable

Bit 3 T1EG: Timer/Event Counter 1 active edge selection

In event counter mode (T1M1 \sim T1M0 = 01)

0: Count on rising edge1: Count on falling edge

In pulse width measurement mode ($T1M1 \sim T1M0 = 11$)

0: Start counting on falling edge, stop on the rising edge

1: Start counting on rising edge, stop on the falling edge

Bit 2~0 Unimplemented, read as "0"

TMR2C Register

Bit	7	6	5	4	3	2	1	0
Name	T2M1	T2M0	T2S	T2ON	T2EG	T2PSC2	T2PSC1	T2PSC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	1	0	0	0

Bit 7~6 **T2M1~T2M0**: Timer 2 operation mode selection

00: No mode available

01: Event counter mode

10: Timer mode

11: Pulse width capture mode

Bit 5 T2S: Timer 2 clock source selection

 $0: f_{SYS}/4$

1: LXT oscillator

Bit 4 **T2ON**: Timer/event counter 2 counting enable

0: Disable1: Enable

Bit 3 T2EG: Timer/Event Counter 2 active edge selection

In event counter mode ($T2M1 \sim T2M0 = 01$)

0: Count on rising edge

1: Count on falling edge

In pulse width measurement mode (T2M1 \sim T2M0 = 11)

0: Start counting on falling edge, stop on the rising edge

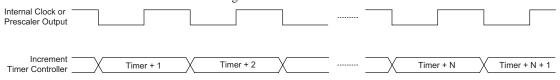
1: Start counting on rising edge, stop on the falling edge.

Bit 2~0 T2PSC2~ T2PSC0: Timer 2 prescalar rate selection

000: f_{TP2} 001: f_{TP2}/2 010: f_{TP2}/4 011: f_{TP2}/8 100: f_{TP2}/16 101: f_{TP2}/32 110: f_{TP2}/64

111: f_{TP2}/128

Rev. 1.20 66 November 26, 2019


Timer Mode

In this mode, the Timer/Event Counter can be utilised to measure fixed time intervals, providing an internal interrupt signal each time the Timer/Event Counter overflows. To operate in this mode, the Operating Mode Select bit pair, TnM1/TnM0, in the Timer Control Register must be set to the correct value as shown.

Bit7	Bit6
1	0

Control Register Operating Mode Select Bits for the Timer Mode

In this mode the internal clock is used as the timer clock. The timer input clock source is either f_{SYS} , $f_{SYS}/4$ or the LXT oscillator. However, for some timers, this timer clock source is further divided by a prescaler, the value of which is determined by the bits TnPSC2~TnPSC0 in the Timer Control Register. The timer-on bit, TnON must be set high to enable the timer to run. Each time an internal clock high to low transition occurs, the timer increments by one. When the timer is full and overflows, an interrupt signal is generated and the timer will reload the value already loaded into the preload register and continue counting. A timer overflow condition and corresponding internal interrupt are one of the wake-up sources. However, the internal interrupt can be disabled by ensuring that the TnE bits of the INTCn register are reset to zero.

Timer Mode Timing Chart

Event Counter Mode

In this mode, a number of externally changing logic events, occurring on the external timer TMRn pin, can be recorded by the Timer/Event Counter. To operate in this mode, the Operating Mode Select bit pair, TnM1/TnM0, in the Timer Control Register must be set to the correct value as shown.

Bit7	Bit6
0	1

Control Register Operating Mode Select Bits for the Event Counter Mode

In this mode, the external timer TMRn pin, is used as the Timer/Event Counter clock source, however it is not divided by the internal prescaler. After the other bits in the Timer Control Register have been set, the enable bit TnON, which is bit 4 of the Timer Control Register, can be set high to enable the Timer/Event Counter to run. If the Active Edge Select bit, TnEG, which is bit 3 of the Timer Control Register, is low, the Timer/Event Counter will increment each time the external timer pin receives a low to high transition. If the TnEG is high, the counter will increment each time the external timer pin receives a high to low transition. When it is full and overflows, an interrupt signal is generated and the Timer/Event Counter will reload the value already loaded into the preload register and continue counting. The interrupt can be disabled by ensuring that the Timer/Event Counter Interrupt Enable bit in the corresponding Interrupt Control Register. It is reset to zero.

Rev. 1.20 67 November 26, 2019

As the external timer pin is shared with an I/O pin, to ensure that the pin is configured to operate as an event counter input pin, two things have to happen. The first is to ensure that the Operating Mode Select bits in the Timer Control Register place the Timer/Event Counter in the Event Counting Mode. The second is to ensure that the port control register configures the pin as an input. It should be noted that in the event counting mode, even if the microcontroller is in the Idle/Sleep Mode, the Timer/Event Counter will continue to record externally changing logic events on the timer input TMRn pin. As a result when the timer overflows it will generate a timer interrupt and corresponding wake-up source.

Event Counter Mode Timing Chart (TnEG=1)

Pulse Width Capture Mode

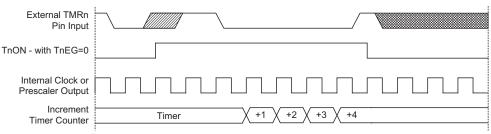
In this mode, the Timer/Event Counter can be utilised to measure the width of external pulses applied to the external timer pin. To operate in this mode, the Operating Mode Select bit pair, TnM1/TnM0, in the Timer Control Register must be set to the correct value as shown.

Bit7	Bit6					
1	1					

Control Register Operating Mode Select Bits for the Pulse Width Capture Mode

In this mode the internal clock, f_{SYS} , $f_{SYS}/4$ or LXT, is used as the internal clock for the 8-bit and 16-bit Timer/Event Counters. However, the clock source, f_{SYS} , $f_{SYS}/4$ or LXT, for the 8-bit timer 0 and 16-bit timer 2 is furtherly divided by a prescaler, the value of which is determined by the Prescaler Rate Select bits TnPSC2~TnPSC0, which are bit 2~0 of the Timer Control Register, After other bits in the Timer Control Register have been set, the enable bit TnON, which is bit 4 of the Timer Control Register, can be set high to enable the Timer/Event Counter, however it will not actually start counting until an active edge is received on the external timer pin.

If the Active Edge Select bit TnEG which is bit 3 of the Timer Control Register is low, once a high to low transition has been received on the external timer pin, the Timer/Event Counter will start counting until the external timer pin returns to its original high level. At this point the enable bit will be automatically reset to zero and the Timer/Event Counter will stop counting. If the Active Edge Select bit is high, the Timer/Event Counter will begin counting once a low to high transition has been received on the external timer pin and stop counting when the external timer pin returns to its original low level. As before, the enable bit will be automatically reset to zero and the Timer/Event Counter will stop counting. It is important to note that in the pulse width capture mode, the enable bit is automatically reset to zero when the external control signal on the external timer pin returns to its original level, whereas in the other two modes the enable bit can only be reset to zero under program control.


The residual value in the Timer/Event Counter, which can now be read by the program, therefore represents the length of the pulse received on the TMRn pin. As the enable bit has now been reset, any further transitions on the external timer pin will be ignored. The timer cannot begin further pulse width capture until the enable bit is set high again by the program. In this way, single shot pulse measurements can be easily made.

Rev. 1.20 68 November 26, 2019

It should be noted that in this mode the Timer/Event Counter is controlled by logical transitions on the external timer pin and not by the logic level. When the Timer/Event Counter is full and overflows, an interrupt signal is generated and the Timer/Event Counter will reload the value already loaded into the preload register and continue counting. The interrupt can be disabled by ensuring that the Timer/Event Counter Interrupt Enable bit in the corresponding Interrupt Control Register is reset to zero.

As the TMRn pin is shared with an I/O pin, to ensure that the pin is configured to operate as a pulse width capture pin, two things have to be implemented. The first is to ensure that the Operating Mode Select bits in the Timer Control Register place the Timer/Event Counter in the pulse width capture mode, the second is to ensure that the port control register configure the pin as an input.

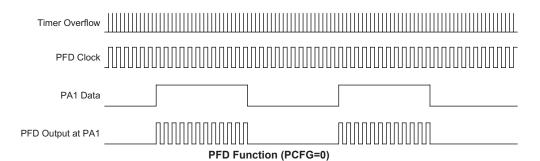
Pulse Width Capture Mode Timing Chart (TnEG=0)

Prescaler

Bits T0PSC2~T0PSC0 of the TMR0C register and bits T2PSC2~T2PSC0 of the TMR2C register can be used to define a division ratio for the internal clock source of the corresponding Timer/Event Counter enabling longer time out periods to be set.

PFD Function

The Programmable Frequency Divider provides a means of producing a variable frequency output suitable for application, such as piezo-buzzer driving or other interfaces requiring a precise frequency generator.


The Timer/Event Counter overflow signal is the clock source for the PFD function, which is controlled by PFDC bit in CTRL0. For this device the clock source can come from either Timer/Event Counter 0 or Timer/Event Counter 1. The output frequency is controlled by loading the required values into the timer prescaler and timer registers to give the required division ratio. The counter will begin to count-up from this preload register value until full, at which point an overflow signal is generated, causing the internal PFDn output to change state. Then the counter will be automatically reloaded with the preload register value and continue counting-up. If the CTRL0 register has selected the PFD function, then for PFD output to operate, it is essential for the Port A control register PAC to set the PFD pin as output. PA1 must be set high to activate the PFD. The output data bit can be used as the on/off control bit for the PFD output. Note that the PFD output will be low if the output data bit is cleared to zero.

When using this method of frequency generation, if the crystal oscillator is used for the system clock, very precise values of frequencies can be generated.

The PDF pin function, which is pin-shared with PA1 by default option, can be remapped to PB6 by setting the PCFG bit in the CTRL0 register to "1".

Rev. 1.20 69 November 26, 2019

I/O Interfacing

The Timer/Event Counter, when configured to run in the event counter or pulse width capture mode, requires the use of an external timer pin for its operation. As this pin is a shared pin, it must be configured correctly to ensure that it is set for use as a Timer/Event Counter input pin. This is achieved by ensuring that the mode selects bits in the Timer/Event Counter control register, either the event counter or pulse width capture mode. Additionally the corresponding Port Control Register bit must be set high to ensure that the pin is set as an input. Any pull-high resistor connected to this pin will remain valid even if the pin is used as a Timer/Event Counter input.

Programming Considerations

When the Timer/Event Counter is configured to run in the timer mode, the internal system clock is used as the timer clock source and is therefore synchronised with the overall operation of the microcontroller. In this mode when the appropriate timer register is full, the microcontroller will generate an internal interrupt signal directing the program flow to the respective internal interrupt vector. For the pulse width capture mode, the internal system clock can be used as the timer clock source but the timer will only run when the correct logic condition appears on the external timer input pin. As this is an external event and not synchronised with the internal timer clock, the microcontroller will only see this external event when the next timer clock pulse arrives. As a result, there may be small differences in measured values requiring programmers to take this into account during programming. The same applies if the timer is configured to be in the event counting mode, which again is an external event and not synchronised with the internal system or timer clock.

When the Timer/Event Counter is read, or if data is written to the preload register, the clock is inhibited to avoid errors, however as this may result in a counting error, this should be taken into account by the programmer. Care must be taken to ensure that the timers are properly initialised before using them for the first time. The associated timer interrupt enable bits in the interrupt control register must be properly set otherwise the internal interrupt associated with the timer will remain inactive. The edge select, timer mode and clock source control bits in timer control register must also be correctly set to ensure the timer is properly configured for the required application. It is also important to ensure that an initial value is first loaded into the timer registers before the timer is switched on, this is because after power-on the initial values of the timer registers are unknown. After the timer has been initialised the timer can be turned on and off by controlling the enable bit in the timer control register.

Rev. 1.20 70 November 26, 2019

When the Timer/Event Counter overflows, its corresponding interrupt request flag in the interrupt control register will be set. If the Timer/Event Counter interrupt is enabled this will in turn generate an interrupt signal. However irrespective of whether the interrupts are enabled or not, a Timer/Event Counter overflow will also generate a wake-up signal if the device is in a Power-down condition. This situation may occur if the Timer/Event Counter is in the Event Counting Mode and if the external signal continues to change state. In such a case, the Timer/Event Counter will continue to count these external events and if an overflow occurs the device will be woken up from its Power-down condition. To prevent such a wake-up from occurring, the timer interrupt request flag should first be set high before issuing the "HALT" instruction to enter the Idle/Sleep Mode.

Timer Program Example

The program shows how the Timer/Event Counter registers are set along with how the interrupts are enabled and managed. Note that how the Timer/Event Counter is turned on, by setting bit 4 of the Timer Control Register. The Timer/Event Counter can be turned off in a similar way by clearing the same bit. This example program sets the Timer/Event Counters to be in the timer mode, which uses the internal system clock as their clock source.

PFD Programming Example

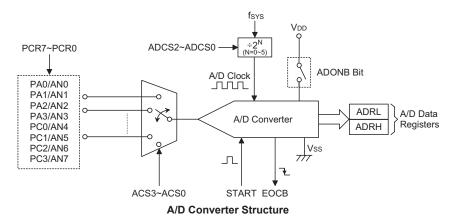
```
org 04h
                  ; external interrupt vector
org Och
                  ; Timer/Event Counter 0 interrupt vector
jmp tmr0int
                  ; jump here when Timer 0 overflows
org 20h
                  ; main program
                   ; internal Timer O interrupt routine
tmr0int:
:
                   ; Timer 0 main program placed here
begin:
                   ; set Timer O registers
mov a,09bh
                  ; set Timer 0 preload value
mov tmr0.a
mov a,081h
                  ; set Timer O control register
mov tmr0c,a
                  ; timer mode, f_{\text{SYS}} and prescaler set to /2
                  ; set interrupt register
mov a,009h
                  ; enable both master interrupt and timer 0 interrupt
mov intc0,a
     tmr0c.4
                  ; start Timer
```

Time Base

The device includes a Time Base function which is used to generate a regular time interval signal.

The Time Base time interval magnitude is determined using an internal 13 stage counter sets the division ratio of the clock source. This division ratio is controlled by both the TBSEL0 and TBSEL1 bits in the CTRL1 register. The clock source is selected using the T0S bit in the TMR0C register. The Time Base function is enabled/disabled once its clock source is enabled/disabled.

When the Time Base time out occurs, a Time Base interrupt signal will be generated. It should be noted that as the Time Base clock source is the same as the Timer/Event Counter clock source, care should be taken when programming.


Analog to Digital Converter

The need to interface to real world analog signals is a common requirement for many electronic systems. However, to properly process these signals by a microcontroller, they must first be converted into digital signals by A/D converters. By integrating the A/D conversion electronic circuitry into the microcontroller, the need for external components is reduced significantly with the corresponding follow-on benefits of lower costs and reduced component space requirements.

A/D Overview

The device contains an 8-channel analog to digital converter which can directly interface to external analog signals, such as that from sensors or other control signals and convert these signals directly into either a 12-bit digital value.

The accompanying block diagram shows the overall internal structure of the A/D converter, together with its associated registers.

A/D Converter Data Registers – ADRL, ADRH

The device, which has an internal 12-bit A/D converter, requires two data registers, a high byte register, known as ADRH, and a low byte register, known as ADRL. After the conversion process takes place, these registers can be directly read by the microcontroller to obtain the digitised conversion value. Only the high byte register, ADRH, utilises its full 8-bit contents. The low byte register utilises only 4 bits of its 8-bit contents as it contains only the lowest bits of the 12-bit converted value.

In the following table, D0~D11 is the A/D conversion data result bits.

ADRH, ADRL Register

Bit	ADRH						ADRL									
DIL	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Name	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	_	_	_	_
R/W	R	R	R	R	R	R	R	R	R	R	R	R	_	_	_	_
POR	х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	_	_	_	_

"x" unknown

"—": Unimplemented, read as "0"

D11~D0: A/D conversion data

Rev. 1.20 72 November 26, 2019

A/D Converter Control Registers - ADCR, ACSR, ANCSR

To control the function and operation of the A/D converter, three control registers known as ADCR, ACSR and ANCSR are provided. These 8-bit registers define functions such as the on/off function, the selection of which analog channel is connected to the internal A/D converter, which pins are used as analog inputs and which are used as normal I/Os, the A/D clock source as well as controlling the start function and monitoring the A/D converter end of conversion status.

The ACS3~ACS0 bits in the ADCR register define the channel number. As the device contains only one actual analog to digital converter circuit, each of the individual 8 analog inputs must be routed to the converter. It is the function of the ACS3~ACS0 bits in the ADCR register to determine which analog channel is actually connected to the internal A/D converter.

The PCR7~PCR0 bits contained in the ANCSR register determine which pins on PA0~PA3 and PC0~PC3 are used as analog inputs for the A/D converter and which pins are to be used as normal I/O pins. If the PCRn bit has a value of 1, then the corresponding pin, namely one of the AN0~AN7 analog inputs, will be set as analog inputs. Note that if the PCRn bit is set to zero, then the corresponding pin on PA0~PA3 or PC0~PC3 will be set as a normal I/O pin or other pin-shared function, the analog input channels will be all disabled and the A/D converter circuitry will be powered off.

ADCR Register

Bit	7	6	5	4	3	2	1	0
Name	START	EOCB	_	_	ACS3	ACS2	ACS1	ACS0
R/W	R/W	R	_	_	R/W	R/W	R/W	R/W
POR	0	0	_	_	0	0	0	0

Bit 7 START: Start the A/D conversion

 $0 \rightarrow 1 \rightarrow 0$: Start

 $0\rightarrow 1$: Reset the A/D converter and set EOCB to "1"

This bit is used to initiate an A/D conversion process. The bit is normally low but if set high and then cleared low again, the A/D converter will initiate a conversion process. When the bit is set high the A/D converter will be reset.

Bit 6 **EOCB**: End of A/D conversion flag

0: A/D conversion ended

1: A/D conversion in progress

This read only flag is used to indicate when an A/D conversion process has completed. When the conversion process is running, the bit will be high.

Bit 5~4 Unimplemented, read as "0"

Bit 3~0 ACS3~ACS0: A/D channel selection

0000: AN0 0001: AN1 0010: AN2 0011: AN3 0100: AN4 0101: AN5 0110: AN6

0111: AN7

1000~1111: undefined, can't be used

ACSR Register

Bit	7	6	5	4	3	2	1	0
Name	TEST	ADONB	_	_	_	ADCS2	ADCS1	ADCS0
R/W	R	R/W	_	_	_	R/W	R/W	R/W
POR	1	1	_	_	_	0	0	0

Bit 7 **TEST**: For test mode use only

Bit 6 ADONB: A/D Converter module on/off control bit

0: A/D Converter module is on 1: A/D Converter module is off

This bit controls the power to the A/D internal function. This bit should be cleared to zero to enable the A/D converter. If the bit is set high then the A/D converter will be switched off reducing the device power consumption. As the A/D converter will consume a limited amount of power, even when not executing a conversion, this may be an important consideration in power sensitive battery powered applications. It is recommended to set ADONB bit high before entering the Idle/Sleep Mode for saving power.

Bit 5~3 Unimplemented, read as "0"

Bit 2~0 ADCS2~ADCS0: Select A/D Converter clock source

 $\begin{array}{c} 000: \, f_{SYS}/2 \\ 001: \, f_{SYS}/8 \\ 010: \, f_{SYS}/32 \end{array}$

011: Undefined, can't be used

100: f_{SYS} 101: f_{SYS}/4 110: f_{SYS}/16

111: Undefined, can't be used

These three bits are used to select the clock source for the A/D converter.

ANCSR Register

Bit	7	6	5	4	3	2	1	0
Name	PCR7	PCR6	PCR5	PCR4	PCR3	PCR2	PCR1	PCR0
R/W								
POR	0	0	0	0	0	0	0	0

Bit 7 **PCR7**: Define PC3 is A/D input or not

0: Not A/D input 1: A/D input, AN7

Bit 6 **PCR6**: Define PC2 is A/D input or not

0: Not A/D input 1: A/D input, AN6

Bit 5 PCR5: Define PC1 is A/D input or not

0: Not A/D input 1: A/D input, AN5

Bit 4 **PCR4**: Define PC0 is A/D input or not

0: Not A/D input 1: A/D input, AN4

Bit 3 **PCR3**: Define PA3 is A/D input or not

0: Not A/D input 1: A/D input, AN3

Bit 2 **PCR2**: Define PA2 is A/D input or not

0: Not A/D input 1: A/D input, AN2

Rev. 1.20 74 November 26, 2019

Bit 1 **PCR1**: Define PA1 is A/D input or not

0: Not A/D input 1: A/D input, AN1

Bit 0 **PCR0**: Define PA0 is A/D input or not

0: Not A/D input 1: A/D input, AN0

A/D Operation

The START bit in the register is used to start and reset the A/D converter. When the microcontroller sets this bit from low to high and then low again, an analog to digital conversion cycle will be initiated. When the START bit is brought from low to high but not low again, the EOCB bit in the ADCR register will be set to a "1" and the analog to digital converter will be reset. It is the START bit that is used to control the overall start operation of the internal analog to digital converter.

The EOCB bit in the ADCR register is used to indicate when the analog to digital conversion process is complete. This bit will be automatically set to "0" by the microcontroller after a conversion cycle has ended. In addition, the corresponding A/D interrupt request flag will be set in the interrupt control register, and if the interrupts are enabled, an appropriate internal interrupt signal will be generated. This A/D internal interrupt signal will direct the program flow to the associated A/D internal interrupt address for processing. If the A/D internal interrupt is disabled, the microcontroller can be used to poll the EOCB bit in the ADCR register to check whether it has been cleared as an alternative method of detecting the end of an A/D conversion cycle.

The clock source for the A/D converter, which originates from the system clock f_{SYS} , is first divided by a division ratio, the value of which is determined by the ADCS2, ADCS1 and ADCS0 bits in the ACSR register.

Controlling the power on/off function of the A/D converter circuitry is implemented using the value of the ADONB bit.

Although the A/D clock source is determined by the system clock f_{SYS} , and by bits ADCS2, ADCS1 and ADCS0, there are some limitations on the maximum A/D clock source speed that can be selected. As the value of permissible A/D clock period, t_{AD} , is $0.5\mu s\sim 10\mu s$, care must be taken for system clock frequencies. For example, as the system clock speeds at a frequency of 4MHz, the ADCS2, ADCS1 and ADCS0 bits should not be set to "100". Doing so will give A/D clock periods that are less than the minimum A/D clock period which may result in inaccurate A/D conversion values. Refer to the following table for examples, where values marked with an asterisk * show where, depending upon the device, special care must be taken, as the values may be less than or larger than the specified A/D Clock Period range.

		_					
			A/D	Clock Period	(t _{AD})		
fsys	ADCS2, ADCS1, ADCS0 = 000 (fsys/2)	ADCS2, ADCS1, ADCS0 = 001 (fsys/8)	ADCS2, ADCS1, ADCS0 = 010 (fsys/32)	ADCS2, ADCS1, ADCS0 =100 (fsys)	ADCS2, ADCS1, ADCS0 = 101 (fsys/4)	ADCS2, ADCS1, ADCS0 = 110 (fsys/16)	ADCS2, ADCS1, ADCS0 = 011,111
1MHz	2µs	8µs	32µs*	1µs	4µs	16µs*	Undefined
2MHz	1µs	4µs	16µs*	500ns	2µs	8µs	Undefined
4MHz	500ns	2µs	8µs	250ns*	1µs	4µs	Undefined
8MHz	250ns*	1µs	4µs	125ns*	500ns	2µs	Undefined
12MHz	167ns*	667ns	2.67µs	83ns*	333ns*	1µs	Undefined

A/D Clock Period Examples

Rev. 1.20 75 November 26, 2019

A/D Input Pins

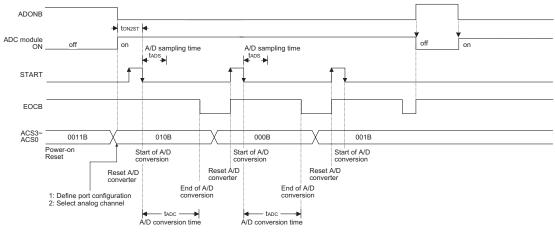
All of the A/D analog input pins are pin-shared with the I/O pins on Port A and Port C. Bits PCR7~PCR0 in the ANCSR register determine whether the input pins are set as normal input/output pins or whether they are set as analog inputs. In this way, pins can be changed under program control to change their function from normal I/O operation to analog inputs and vice versa. Pull-high resistors, which are set through register programming, apply to the input pins only when they are used as normal I/O pins, if set as A/D inputs the pull-high resistors will be automatically disconnected. Note that it is not necessary to first set the A/D pin as an input in the related I/O port control registers to enable the A/D input as when the PCR7~PCR0 bits enable an A/D input, the status of the port control register will be overridden.

Summary of A/D Conversion Steps

The following summarises the individual steps that should be executed in order to implement an A/D conversion process.

- Step 1
 Select the required A/D conversion clock by correctly programming bits ADCS2~ADCS0 in the ACSR register.
- Step 2
 Select which pins are to be used as A/D inputs and configure them as A/D input pins by correctly programming the PCR7~PCR0 bits in the ANCSR register.
- Step 3
 Enable the A/D by clearing the ADONB in the ACSR register to zero.
- Step 4
 Select which channel is to be connected to the internal A/D converter by correctly programming the ACS3~ACS0 bits which are contained in the ADCR register.
- Step 5

 If the interrupts are to be used, the interrupt control registers must be correctly configured to ensure the A/D converter interrupt function is active. The master interrupt control bit, EMI, in the INTC0 interrupt control register must be set to "1", the A/D converter interrupt bit, ADE, must also be set to "1".
- Step 6
 The analog to digital conversion process can now be initialised by setting the START bit in the ADCR register from low to high and then low again. Note that this bit should have been originally cleared to zero.
- Step 7
 To check when the analog to digital conversion process is complete, the EOCB bit in the ADCR register can be polled. The conversion process is complete when this bit goes low. When this occurs the A/D data registers ADRL and ADRH can be read to obtain the conversion value. As an alternative method, if the interrupts are enabled and the stack is not full, the program can wait for an A/D interrupt to occur.


Note: When checking for the end of the conversion process, if the method of polling the EOCB bit in the ADCR register is used, the interrupt enable step above can be omitted.

Rev. 1.20 76 November 26, 2019

The accompanying diagram shows graphically the various stages involved in an analog to digital conversion process and its associated timing.

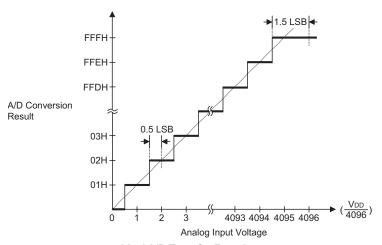
The setup and operation of the A/D converter function is fully under the control of the application program as there are no configuration options associated with the A/D converter. After an A/D conversion process has been initiated by the application program, the microcontroller internal hardware will begin to carry out the conversion, during which time the program can continue with other functions. The time taken for the A/D conversion is $16t_{AD}$ where t_{AD} is equal to the A/D clock period.

ote: A/D clock must be fsys, fsys/2, fsys/4, fsys/8, fsys/16 or fsys/32 tabs=4tab tabc= 16tab

A/D Conversion Timing

Programming Considerations

When programming, the special attention must be given to the PCR[7:0] bits in the register. If these bits are all cleared to zero, no external pins will be selected for use as A/D input pins allowing the pins to be used as normal I/O pins. When this happens, the internal A/D circuitry will be power down. Setting the ADONB bit high has the ability to power down the internal A/D circuitry, which may be an important consideration in power sensitive applications.


A/D Transfer Function

As the device contains a 12-bit A/D converter, its full-scale converted digitised value is equal to FFFH. Since the full-scale analog input value is equal to the V_{DD} voltage, this gives a single bit analog input value of V_{DD} divided by 4096. The diagram shows the ideal transfer function between the analog input value and the digitised output value for the A/D converter.

Note that to reduce the quantisation error, a 0.5 LSB offset is added to the A/D Converter input. Except for the digitised zero value, the subsequent digitised values will change at a point 0.5 LSB below where they would change without the offset, and the last full scale digitized value will change at a point 1.5 LSB below the V_{DD} level.

Rev. 1.20 77 November 26, 2019

Ideal A/D Transfer Function

A/D Programming Example

The following two programming examples illustrate how to set and implement an A/D conversion. In the first example, the method of polling the EOCB bit in the ADCR register is used to detect when the conversion cycle is complete, whereas in the second example, the A/D interrupt is used to determine when the conversion is complete.

Example: using an EOCB polling method to detect the end of conversion

```
clr ADE
                      ; disable A/D Converter interrupt
mov a,01h
mov ACSR, a
                      ; select f_{\text{SYS}}/8 as A/D clock and ADONB=0
mov a,01h
mov ANCSR, a
                      ; setup ANCSR register to configure I/O Port PAO as A/D input
mov a,00h
mov ADCR, a
                      ; select ANO to be connected to the A/D converter
Start conversion:
clr START
set START
                      ; reset A/D
clr START
                      ; start A/D
Polling EOC:
     EOCB
                      ; poll the ADCR register EOCB bit to detect end
                      ; of A/D conversion
   polling EOC
                      ; continue polling
jmp
mov a,ADRL
                      ; read low byte conversion result value
mov adrl buffer,a
                      ; save result to user defined register
                      ; read high byte conversion result value
mov a, ADRH
    adrh buffer,a
                      ; save result to user defined register
jmp start conversion ; start next A/D conversion
```

Note: To power off A/D Converter module, it is necessary to set ADONB as "1".

Rev. 1.20 78 November 26, 2019

Example: using the interrupt method to detect the end of conversion

```
clr ADE
         ; disable A/D Converter interrupt
mov a,01h
mov ACSR,a
                  ; select f_{\text{SYS}}/8 as A/D clock and ADONB=0
mov a,01h
mov ANCSR,a
                  ; setup ANCSR register to configure I/O Port PAO as A/D input
mov a,00h
mov ADCR,a ; select ANO to be connected to the A/D converter
Start conversion:
clr START
set START
                  ; reset A/D
clr START
                  ; start A/D
                  ; clear A/D Converter interrupt request flag
clr ADF
                  ; enable A/D Converter interrupt
set ADE
set EMI
                  ; enable global interrupt
                   ; A/D Converter interrupt service routine
ADC ISR:
mov acc_stack,a ; save ACC to user defined memory
mov a,STATUS
mov status_stack,a ; save STATUS to user defined memory
mov a, ADRL ; read low byte conversion result value
mov adrl_buffer,a ; save result to user defined register
mov a, ADRH ; read high byte conversion result value
mov adrh buffer,a ; save result to user defined register
EXIT ISR:
mov a, status_stack
mov STATUS,a ; restore STATUS from user defined memory
mov a, acc_stack ; restore ACC from user defined memory
clr ADF
                  ; clear A/D Converter interrupt flag
reti
```

Note: To power off A/D Converter module, it is necessary to set ADONB as "1".

Interrupts

Interrupts are an important part of any microcontroller system. When an external event or an internal function such as a Timer/Event Counter requires microcontroller attention, their corresponding interrupt will enforce a temporary suspension of the main program allowing the microcontroller to direct attention to their respective needs.

The device contains only one external interrupt and multiple internal interrupts. The external interrupt is controlled by the action of the external interrupt pin, while the internal interrupt is controlled by the Timer/Event Counter, the A/D converter interrupt, Timer Base interrupt and Audio Processor.

Interrupt Register

Overall interrupt control, which means interrupt enabling and request flag setting, is controlled by using registers, INTC0 and INTC1. By controlling the appropriate enable bits in the register each individual interrupt can be enabled or disabled. Also when an interrupt occurs, the corresponding request flag will be set by the microcontroller. The global enable flag cleared to zero will disable all interrupts.

Each register contains a number of enable bits to enable or disable individual registers as well as interrupt flags to indicate the presence of an interrupt request. The naming convention of these follows a specific pattern. First is listed an abbreviated interrupt type, then the (optional) number of that interrupt followed by either an "E" for enable/disable bit or "F" for request flag.

Function	Enable Bit	Request Flag	Note
Global	EMI	_	_
INT Pin	EIF	EEI	_
Timer/Event Counter	TnE	TnF	n=0~2
A/D Converter	ADE	ADF	_
Timer Base	TBE	TBF	_
Audio Processor	AUPE	AUPF	_

Interrupt Register Bit Naming Conventions

Register		Bit									
Name	7	6	5	4	3	2	1	0			
INTC0	_	T0F	AUPF	EIF	T0E	AUPE	EEI	EMI			
INTC1	TBF	ADF	T2F	T1F	TBE	ADE	T2E	T1E			

Interrupt Registers List

INTC0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	T0F	AUPF	EIF	T0E	AUPE	EEI	EMI
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6 T0F: Timer/Event Counter 0 interrupt request flag

0: No request1: Interrupt request

Bit 5 AUPF: Audio Processor interrupt request flag

0: No request1: Interrupt request

Rev. 1.20 80 November 26, 2019

Bit 4 EIF: INT pin interrupt request flag

0: No request1: Interrupt request

Bit 3 T0E: Timer/Event Counter 0 interrupt control

0: Disable 1: Enable

Bit 2 AUPE: Audio Processor interrupt control

0: Disable 1: Enable

Bit 1 **EEI**: INT pin interrupt control

0: Disable 1: Enable

Bit 0 **EMI**: Global interrupt control

0: Disable 1: Enable

INTC1 Register

Bit	7	6	5	4	3	2	1	0
Name	TBF	ADF	T2F	T1F	TBE	ADE	T2E	T1E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 **TBF**: Time Base interrupt request flag

0: No request1: Interrupt request

Bit 6 ADF: A/D converter interrrupt request flag

0: No request1: Interrupt request

Bit 5 T2F: Timer/Event Counter 2 interrupt request flag

0: No request1: Interrupt request

Bit 4 T1F: Timer/Event Counter 1 interrupt request flag

0: No request1: Interrupt request

Bit 3 TBE: Time Base interrupt control

0: Disable 1: Enable

Bit 2 **ADE**: A/D converter interrupt control

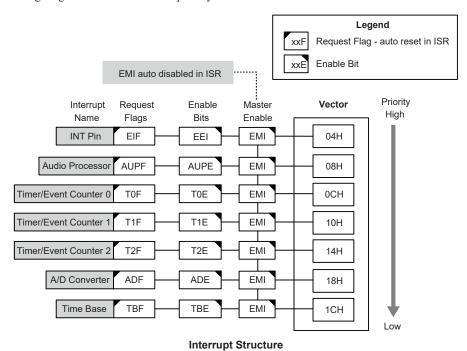
0: Disable 1: Enable

Bit 1 T2E: Timer/Event Counter 2 interrupt control

0: Disable 1: Enable

Bit 0 T1E: Timer/Event Counter 1 interrupt control

0: Disable 1: Enable

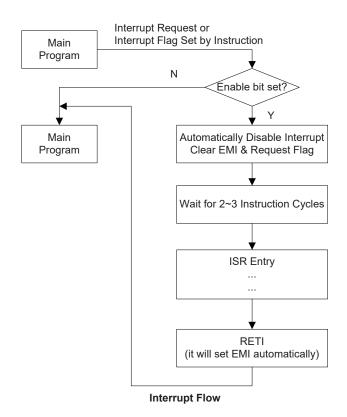


Interrupt Operation

A Timer/Event Counter overflow, a completion of A/D conversion or an active edge on the external interrupt pin, etc., will all generate an interrupt request by setting their corresponding request flag, if their appropriate interrupt enable bit is set. When this happens, the Program Counter, which stores the address of the next instruction to be executed, will be transferred onto the stack. The Program Counter will then be loaded with a new address which will be the value of the corresponding interrupt vector. The microcontroller will then fetch its next instruction from this interrupt vector.

The instruction at this vector will usually be a JMP statement which will jump to another section of program which is known as the interrupt service routine. Here is located the code to control the appropriate interrupt. The interrupt service routine must be terminated with a RETI instruction, which retrieves the original Program Counter address from the stack and allows the microcontroller to continue with normal execution at the point where the interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the following diagram with their order of priority.



Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the EMI bit will be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if other interrupt requests occur during this interval, although the interrupt will not be immediately serviced, the request flag will still be recorded. If an interrupt requires immediate servicing while the program is already in another interrupt service routine, the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired, the stack must be prevented from becoming full.

When an interrupt request is generated it takes 2 or 3 instruction cycles before the program jumps to the interrupt vector. If the device is in the Sleep Mode and is woken up by an interrupt request then it will take 3 cycles before the program jumps to the interrupt vector.

Rev. 1.20 82 November 26, 2019

Interrupt Priority

Interrupts, occurring in the interval between the rising edges of two consecutive T2 pulses, will be serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In case of simultaneous requests, the following table shows the priority that is applied. These can be masked by resetting the EMI bit.

Interrupt Source	Priority	Vector		
External interrupt	1	04H		
Audio Processor interrupt	2	08H		
Timer/Event Counter 0 overflow	3	0CH		
Timer/Event Counter 1 overflow	4	10H		
Timer/Event Counter 2 overflow	5	14H		
A/D converter complete	6	18H		
Time Base Overflow	7	1CH		

In cases where both external and internal interrupts are enabled and where an external and internal interrupt occurs simultaneously, the external interrupt will always have priority and will therefore be serviced first. Suitable masking of the individual interrupts using the interrupt registers can prevent simultaneous occurrences.

Rev. 1.20 83 November 26, 2019

External Interrupt

The INT pin function, which is pin-shared with PA3 by default option, can be remapped to PB4 by setting the PCFG bit in the CTRL0 register to "1".

For an external interrupt to occur, the global interrupt enable bit, EMI, and external interrupt enable bit, EEI, must first be set. An actual external interrupt will take place when the external interrupt request flag, EIF is set, a situation that will occur when an edge transition appears on the external INT pin. The type of transition that will trigger an external interrupt, whether high to low, low to high or both is determined by the INTEG0 and INTEG1 bits, which are bits 6 and 7 respectively in the CTRL1 control register. These two bits can also disable the external interrupt function.

INTEG1	INTEG0 Edge Trigg	
0	0	External interrupt disable
0	1	Rising edge trigger
1	0	Falling edge trigger
1	1	Dual edge trigger

The external interrupt pin is pin-shared with the I/O pin and can only be used as an external interrupt pin if the corresponding external interrupt enable bit in the INTC0 register has been set and the edge trigger type has been selected using the CTRL1 register. The pin must also be set as an input by setting the corresponding bit in the port control register. When the interrupt is enabled, the stack is not full and a transition appears on the external interrupt pin, a subroutine call to the external interrupt vector, will take place. When the interrupt is serviced, the external interrupt request flag, EIF, will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-high resistor connections on this pin will remain valid even if the pin is used as an external interrupt input.

Timer/Event Counter Interrupt

For a Timer/Event Counter interrupt to occur, the global interrupt enable bit, EMI and the corresponding timer interrupt enable bit TnE must first be set. An actual Timer/Event Counter interrupt will take place when the Timer/Event Counter request flag TnF is set, a situation that will occur when the relevant Timer/Event Counter overflows. When the interrupt is enabled, the stack is not full and a Timer/Event Counter overflow occurs, a subroutine call to the relevant timer interrupt vector, will take place. When the interrupt is serviced, the timer interrupt request flag TnF will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts.

A/D Converter Interrupt

For an A/D interrupt to occur, the global interrupt enable bit EMI and the corresponding interrupt enable bit ADE must be first set. An actual A/D interrupt will take place when the A/D converter request flag ADF is set, a situation that will occur when an A/D conversion process has completed. When the interrupt is enabled, the stack is not full and an A/D conversion process finishes execution, a subroutine call to the relevant A/D interrupt vector, will take place. When the interrupt is serviced, the A/D interrupt request flag ADF will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts.

Rev. 1.20 84 November 26, 2019

Time Base Interrupt

For a Time Base interrupt to occur, the global interrupt enable bit EMI and the corresponding interrupt enable bit TBE, must first be set. An actual Time Base interrupt will take place when the Time Base request flag TBF is set, a situation that will occur when the Time Base overflows. When the interrupt is enabled, the stack is not full and a Time Base overflow occurs a subroutine call to Time Base interrupt vector will take place. When the interrupt is serviced, the Time Base interrupt flag TBF will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts.

Audio Processor Interrupt

The Audio Processor interrupt is initialised by setting the Audio Processor request flag, AUPF. When the Audio Processor returns a data, the SPIRQ bit in the SPICR register transits from "1" to "0", which will trigger an interrupt request. If the interrupt is enabled, the stack is not full and the AUPF is set, a subroutine call to the Audio Processor interrupt vector will occur. When the interrupt is serviced, the related interrupt request flag AUPF will be reset and the EMI bit will be automatically cleared to disable further interrupts.

Interrupt Wake-up Function

Each of the interrupt functions has the capability of waking up the microcontroller when in the Sleep or Idle Mode. A wake-up is generated when an interrupt request flag changes from low to high and is independent of whether the interrupt is enabled or not. Therefore, even though the device is in the Sleep or Idle Mode and its system oscillator is stopped, situations such as external edge transitions on the external interrupt pins may cause their respective interrupt flag to be set high and consequently generate an interrupt. Care must therefore be taken if spurious wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then the corresponding interrupt request flag should be set high before the device enters the Sleep Mode. The interrupt enable bits have no effect on the interrupt wake-up function.

Programming Considerations

By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being serviced, however, once an interrupt request flag is set, it will remain in this condition in the interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by the application program.

It is recommended that programs do not use the "CALL" instruction within the interrupt service subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately. If only one stack is left and the interrupt is not well controlled, the original control sequence will be damaged once a CALL subroutine is executed in the interrupt subroutine.

Every interrupt has the capability of waking up the microcontroller when it is in Sleep or Idle Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is required to prevent a certain interrupt from waking up the microcontroller then its respective request flag should be first set high before entering the Sleep or Idle Mode.

As only the Program Counter is pushed onto the stack, then if the contents of the accumulator, status register or other registers are altered by the interrupt service program, which may corrupt the desired control sequence, then the contents should be saved in advance.

To return from an interrupt subroutine, either a RET or RETI instruction may be executed. The RETI instruction in addition to executing a return to the main program also automatically sets the EMI bit high to allow further interrupts. The RET instruction however only executes a return to the main program leaving the EMI bit in its present zero state and therefore disabling the execution of further interrupts.

Rev. 1.20 85 November 26, 2019

Low Voltage Detector - LVD

The device has a Low Voltage Detector function, also known as LVD. This enabled the device to monitor the power supply voltage, V_{DD} , and provide a warning signal should it fall below a certain level. This function may be especially useful in battery applications where the supply voltage will gradually reduce as the battery ages, as it allows an early warning battery low signal to be generated.

LVD Register

The Low Voltage Detector function is controlled using a single register with the name LVDC. Three bits in this register, $V_{LVD2} \sim V_{LVD0}$, are used to select one of eight fixed voltages below which a low voltage condition will be determined. A low voltage condition is indicated when the LVDO bit is set. If the LVDO bit is low, this indicates that the V_{DD} voltage is above the preset low voltage value. The LVDEN bit is used to control the overall on/off function of the low voltage detector. Setting the bit high will enable the low voltage detector. Clearing the bit to zero will switch off the internal low voltage detector circuits. As the low voltage detector will consume a certain amount of power, it may be desirable to switch off the circuit when not in use, an important consideration in power sensitive battery powered applications.

LVDC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	LVDO	LVDEN	_	VLVD2	VLVD1	VLVD0
R/W	_	_	R	R/W	_	R/W	R/W	R/W
POR	_	_	0	0	_	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5 LVDO: LVD Output flag

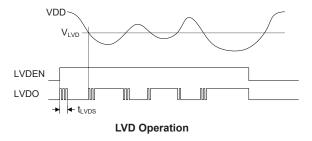
0: No Low Voltage Detected1: Low Voltage Detected

Bit 4 LVDEN: Low Voltage Detector Enable control

0: Disable 1: Enable

Bit 3 Unimplemented, read as "0"

Bit 2~0 VLVD2~VLVD0: LVD Voltage selection


000: 2.0V 001: 2.2V 010: 2.4V 011: 2.7V 100: 3.0V 101: 3.3V 110: 3.6V 111: 4.0V

Rev. 1.20 86 November 26, 2019

LVD Operation

The Low Voltage Detector function operates by comparing the power supply voltage, V_{DD} , with a pre-specified voltage level stored in the LVDC register. This has a range of between 2.0V and 4.0V. When the power supply voltage, V_{DD} , falls below this pre-determined value, the LVDO bit will be set high indicating a low power supply voltage condition. The Low Voltage Detector function is supplied by a reference voltage which will be automatically enabled. When the device is powered down, the low voltage detector will remain active if the LVDEN bit is high. After enabling the Low Voltage Detector, a time delay $t_{\rm LVDS}$ should be allowed for the circuitry to stabilise before reading the LVDO bit. Note also that as the $V_{\rm DD}$ voltage may rise and fall rather slowly, at the voltage nears that of $V_{\rm LVD}$, there may be multiple bit LVDO transitions.

SPI Function

The SPI interface is one method to communicate with Audio Processor. The command group types can be referred in chapter of MCU Interfacing.

SPI format and control register are shown below.

SPICR Register

Bit	7	6	5	4	3	2	1	0
Name	IEMC	_	ERAM	SPISS	SPICK	MOSI	MISO	SPIRQ
R/W	R/W	_	R/W	R/W	R/W	R/W	R	R
POR	1	_	0	1	0	0	Х	Х

"x": unknown

Bit 7 **IEMC**: Mode control bit

0: External MCU mode (pad control) – PA5/PC4/PC5/PC6/PC7 pins are used as MISO/MOSI/ SPIRQ/SPICK/SPISS pin functions respectively

1: Internal mode (MCU control)

In the external MCU mode, the Audio Processor can be controlled by an external MCU via the SPI interface. SPISS/SPICK/MOSI cannot be read or written and MISO/SPIRQ is read only when an SPIRQ falling edge occurs, it will not affect AUPF flag to generate an interrupt.

Bit 6 Unimplemented, read as "0"

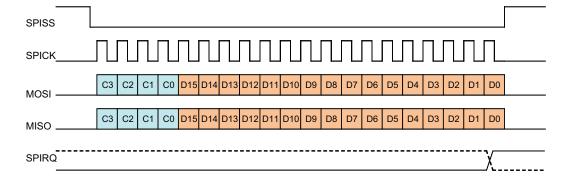
Bit 5 ERAM: PB4/PB5/PB6/PB7 pins are used as Audio Processor GPIO0/1/2/3 respectively

0: Disable 1: Enable

Bit 4 SPISS: Select Audio Processor

0: Select 1: Not select

Bit 3 SPICK: SPI clock output to Audio Processor


0: Low 1: High

Bit 2 MOSI: Output command/data into Audio Processor

0: Low 1: High

Bit 1 MISO: Input command/data from Audio Processor

Bit 0 SPIRQ: This bit is cleared to 0 by Audio processor when the Audio processor interrupt occurs. This bit will be set to 1 by Audio processor after the MCU has read command/data successfully.

BEEP Function

This function uses application program to build a square wave on speaker or Audio Processor through BEEP0/1 pad.

BDR Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	BEEP1	BEEP0
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1 BEEP1: output signal

> 0: Low 1: High

When the BEEP1 function is useful and is selected as Audio Processor source, the

BEEP 1 pad is connected to Audio Processor.

Bit 0 BEEP0: output signal

> 0: Low 1: High

When the BEEP0 function is useful and is selected as Audio Processor source, the BEEP 0 pad is connected to speaker.

These two bits are output pin signals, setting or clearing BDR register data can modify the BEEP0/BEEP1 status. If the two functions are not useful, modifying the BEEP0/ BEEP1 data will not affect the BEEP0/BEEP1 pad status.

Digital to Analog Converter - DAC

The device includes a 4-channel 8-bit Digital to Analog Converter function. This function allows digital data contained in the device to generate audio signals.

Operation

The data to be converted is stored in four registers, DA0R, DA1R, DA2R and DA3R. The four bits in the control register DACR provides DACn on/off control. The DACn outputs are channeled to pins DAO0~DAO3 which are pin-shared with I/O pins PB0~PB3. When the DACn is enabled by setting the ENn high, then the original I/O function will be disabled, along with any pull-high resistor options. The DAC output reference voltage is the power supply voltage V_{DD} .

DACR Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	EN3	EN2	EN1	EN0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

EN3: DAC3 disable/enable control Bit 3

> 0: Disable 1: Enable

Bit 2 EN2: DAC2 disable/enable control

> 0: Disable 1: Enable

Bit 1 EN1: DAC1 disable/enable control

0: Disable1: Enable

Bit 0 EN0: DAC0 disable/enable control

0: Disable 1: Enable

DA3R Register

Bit	7	6	5	4	3	2	1	0
Name	DA37	DA36	DA35	DA34	DA33	DA32	DA31	DA30
R/W								
POR	Х	Х	Х	Х	Х	Х	Х	Х

"x" unknown

Bit 7~0 **DA37~DA30**: DAC3 output data

DA2R Register

Bit	7	6	5	4	3	2	1	0
Name	DA27	DA26	DA25	DA24	DA23	DA22	DA21	DA20
R/W								
POR	Х	Х	Х	Х	Х	Х	Х	Х

"x" unknown

Bit 7~0 **DA27~DA20**: DAC2 output data

DA1R Register

Bit	7	6	5	4	3	2	1	0
Name	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10
R/W								
POR	Х	х	Х	Х	Х	х	Х	Х

"x" unknown

Bit 7~0 **DA17~DA10**: DAC1 output data

DA0R Register

Bit	7	6	5	4	3	2	1	0
Name	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00
R/W								
POR	Х	Х	Х	Х	Х	х	Х	Х

"x" unknown

Bit 7~0 **DA07~DA00**: DAC0 output data

Rev. 1.20 90 November 26, 2019



Audio Processor

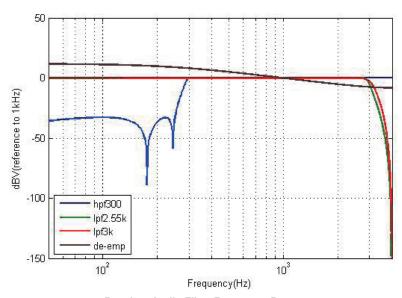
The device includes an audio processor function for processing of signals received on the RF carrier. Aiming specifically at low cost radio communication products, the audio processor section contains all the transmitter and receiver functions required to process the necessary in-band audio signals such as compression, expansion, scrambling and de-scrambling.

Audio Receiver

The following diagram shows the main functional blocks of the receiver audio processor.

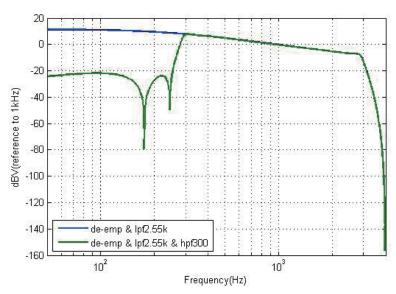
Note: "I/O: XXH" stands for I/O command, "CLI: xxx" stands for CLI command.

Receiver Block Diagram


Rev. 1.20 91 November 26, 2019

Receiver Audio Filters

The incoming signal is first filtered, as shown in the block diagram, to remove sub-audio components and to filter out high frequency noise. After this low and high pass filtering is executed, the residual audio signal is then routed to the Audio output pin, AUDO. Individual filters are available for the following:


- 300Hz High Pass for rejection of sub audio signals
- 2.55kHz Low Pass for Narrow Bandwidth channel operation
- · 3.0kHz Low Pass for Wide Bandwidth channel operation

Receiver Audio Filter Frequency Response

Receiver De-emphasis

The device includes a selectable de-emphasis filter with a response as shown in the following figure.

Audio Frequency De-emphasis

Rev. 1.20 92 November 26, 2019

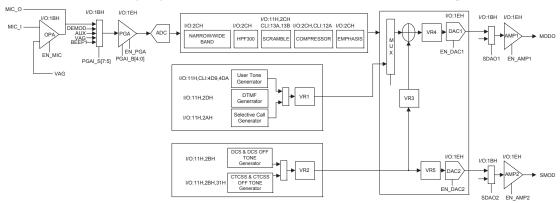
Receiver De-scrambler

If desired, the transmitter section of the device can be setup to scramble the transmitted audio signals by inversing the transmitted audio frequencies. In the receiver mode, a descrambler is used to convert the received scrambled signals back to their original audio frequency content. The inversion central frequency can be programmed using the CLI Scrambler Inversion Frequency registers. The default inversion central frequency value is 3300Hz.

Receiver Expander

The receiver section includes an expander function to expand any signals that may have been compressed by the transmitter. This function is optional and is only used if the transmitter is transmitting compressed signals. Compressing and expanding the audio signals increase the signal dynamic range greatly.

Receiving and Decoding CTCSS or DCS Codes

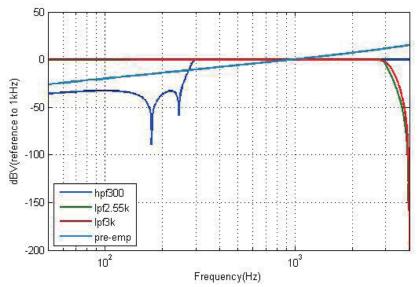

The device can accurately detect valid CTCSS tones rapidly which prevents losing the start of audio or data transmissions. It can also continuously monitor the detected tones to ensure low risk of false drop out. The DCS code is in NRZ format and is transmitted at a rate of 134.4±0.4bps. The device is able to decode any 23-bit pattern in either of the two DCS modulation modes as defined by TIA/ EIA-603. The device can also detect valid DCS code quickly enough to avoid losing the beginning of audio transmissions.

Rx In-Band Tone Decoder

The in-band tone can be summarised into Selective call, DTMF and User-tone categories. For Selective call, the device will decode a set of EEA defined tone sets, however this may be changed by the users to any valid tone sets within its operational range by setting the related registers. This ensures that the device can remain compatible with all available tone systems in use. The device does not implement automatic repeat tone insertion or deletion as this depends upon the user protocol.

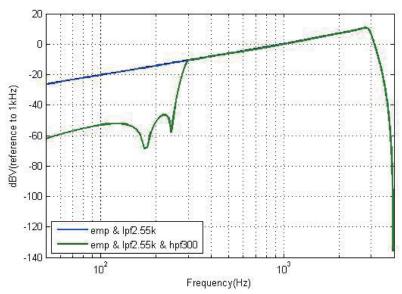
Audio Transmitter

The following diagram shows the main function blocks of the transmitter audio processor.


Note: "I/O: XXH" stands for I/O command, "CLI: xxx" stands for CLI command.

Transmitter Block Diagram

Transmitter Audio Filters


The transmitter audio filters include a 25kHz wide-band and a 12.5kHz narrow-band channel filter. The filter frequency responses are shown in the following figure.

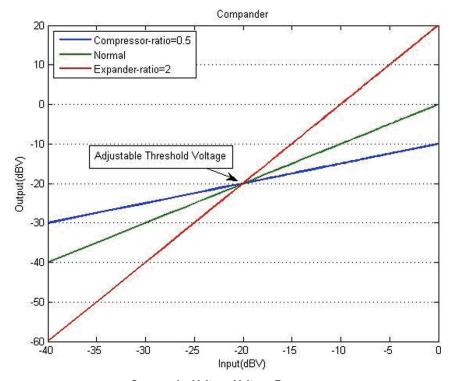
Transmitter Audio Filter Frequency Response

Transmitter Pre-emphasis

The device includes a selectable pre-emphasis filter with +6dB per octave from 300Hz to 3000Hz, with a response as shown in the following figure.

Transmitter Audio Frequency Pre-emphasis

Rev. 1.20 94 November 26, 2019



Transmitter Scrambler

The device includes an optional frequency inversion scrambler for both transmit and receive modes. It scrambles the transmitted audio band signals, which can then be de-scrambled in the receiver. The central inversion frequency is programmed using registers. The default value is 3300Hz. The central inversion frequency can be changed not only in the Idle mode but also in the active Rx or Tx mode.

Transmitter Compressor

The device incorporates an optional syllabic compandor for both transmit and receive mode. It compresses the audio band signals before transmission to enhance the overall dynamic range. The relationship between the input and output voltage of the compandor is shown in the following figure.

Compander Voltage-Voltage Response

Transmitter Sub-audio Encoders

Sub-audio signaling is available in the audio band below 260Hz. When sub-audio signaling is enabled, the 300Hz HPF in the audio section should also be enabled to remove the sub-audio signaling from the actual audio signals (for both Tx and Rx). Both CTCSS tones and DCS codes are supported. In addition to the 51 defined CTCSS tones, users can define their specified tones using registers. The DCS coder/decoder includes a 23-bit mode with both normal and inverse modulation formats and a 134Hz end of transmission burst.

Transmitter In-Band Signaling

The device includes a programmable in-band tone set or an arbitrary single user-tone between 300Hz and 3000Hz. By default, the device will use an EEA selective call defined tone set, however this may be changed to any valid tone within its operational range using registers. In addition to the selective call defined tone sets, standard dual tone multiple frequency, DTMF, is also supported in the in-band signaling mode.

Rev. 1.20 95 November 26, 2019

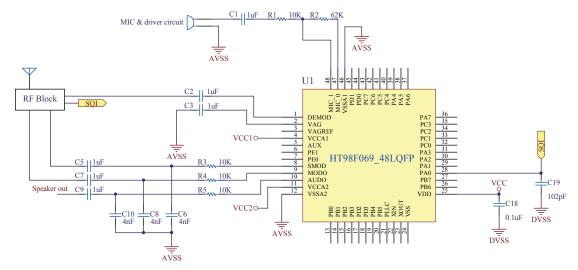
Supported Different Combination Functions

Receiver

Voice Band Processing	Sub Tone	Audio Tone (DTMF/Selective Call/User-tone)
	inv DCS, DCS/ User-defined DCS Decoder	DTMF Decoder
Basic Voice Filter	CTCSS/ User-defined CTCSS Decoder	DTMF Decoder
Dasic voice i liter	inv DCS, DCS/ User-defined DCS Decoder	Selective Call / User-tone Decoder
	CTCSS/ User-defined CTCSS Decoder	Selective Call / User-tone Decoder
	inv DCS, DCS/ User-defined DCS Decoder	DTMF Decoder
Basic Voice Filter	CTCSS/ User-defined CTCSS Decoder	DTMF Decoder
+ De-emphasis	inv DCS, DCS/ User-defined DCS Decoder	Selective Call Decoder/ User-tone
	CTCSS/ User-defined CTCSS Decoder	Selective Call Decoder/ User-tone
	inv DCS, DCS/ User-defined DCS Decoder	DTMF Decoder
Basic Voice Filter	CTCSS/ User-defined CTCSS Decoder	DTMF Decoder
+ Expander	inv DCS, DCS/ User-defined DCS Decoder	Selective Call Decoder/ User-tone
	CTCSS/ User-defined CTCSS Decoder	Selective Call Decoder/ User-tone
	inv DCS, DCS/ User-defined DCS Decoder	DTMF Decoder
Basic Voice Filter	CTCSS/ User-defined CTCSS Decoder	DTMF Decoder
+ De-emphasis + Expander	inv DCS, DCS/ User-defined DCS Decoder	Selective Call Decoder/ User-tone
	CTCSS/ User-defined CTCSS Decoder	Selective Call Decoder/ User-tone
Basic Voice Filter	inv DCS, DCS/ User-defined DCS Decoder	DTMF Decoder
+ De-emphasis + Expander + De-Scramble	CTCSS/ User-defined CTCSS Decoder	DTMF Decoder

Transmitter

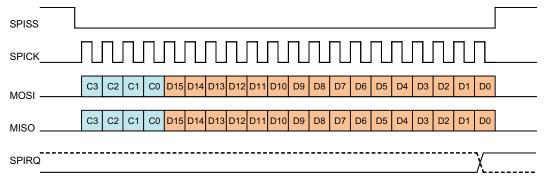
Voice Band Processing	Sub Tone	Audio Tone (DTMF/Selective Call/User-tone)
	inv DCS, DCS/ User-defined DCS Encoder	DTMF Encoder
Basic Voice	CTCSS/ User-defined CTCSS Encoder	DTMF Encoder
Filter	inv DCS, DCS/ User-defined DCS Encoder	Selective Call / User-tone Encoder
	CTCSS/ User-defined CTCSS Encoder	Selective Call / User-tone Encoder
	inv DCS, DCS/ User-defined DCS Encoder	DTMF Encoder
Basic Voice Filter	CTCSS/ User-defined CTCSS Encoder	DTMF Encoder
+ Emphasis	inv DCS, DCS/ User-defined DCS Encoder	Selective Call / User-tone Encoder
	CTCSS/ User-defined CTCSS Encoder	Selective Call / User-tone Encoder
	inv DCS, DCS/ User-defined DCS Encoder	DTMF Encoder
Basic Voice Filter	CTCSS/ User-defined CTCSS Encoder	DTMF Encoder
+ Compress	inv DCS, DCS/ User-defined DCS Encoder	Selective Call / User-tone Encoder
	CTCSS/ User-defined CTCSS Encoder	Selective Call / User-tone Encoder
	inv DCS, DCS/ User-defined DCS Encoder	DTMF Encoder
Basic Voice Filter	CTCSS/ User-defined CTCSS Encoder	DTMF Encoder
+ Emphasis + Compress	inv DCS, DCS/ User-defined DCS Encoder	Selective Call / User-tone Encoder
J	CTCSS/ User-defined CTCSS Encoder	Selective Call / User-tone Encoder
Basic Voice Filter	inv DCS, DCS/ User-defined DCS Encoder	DTMF Encoder
+ Emphasis + Compress + Scramble	CTCSS/ User-defined CTCSS Encoder	DTMF Encoder


Note: The voice band and audio tone must be processed separately in the transmitter.

Rev. 1.20 96 November 26, 2019

Audio Signal Routing

The device has a flexible audio signal routing input and output structure to route signals to and from the audio processor. The routing setup path is controlled using the path selection register which is described in a different section. The gain of the internal Programmable Gain Amplifier shown in the block diagram is also setup using a register, the details of which are described in a different section.



Audio Signal Routing Block Diagram

MCU Interfacing

The Audio Processor communicates with the integrated MCU using a series of command registers. Communication with external MCUs is conducted using the SPICR register and the PC4~PC7 I/O lines which have shared use as an SPI interface.

SPISS from the MCU: This pin is an input pin and is active low.

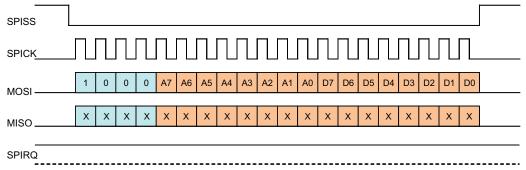
SPICK from the MCU: This pin is the clock source input pin.

MOSI (SMOSI) from the MCU: This pin is the slave SPI input data pin. MOSI refers to Master Output Slave Input.

MISO (SMISO) from the Audio Processor: This pin is the slave SPI output data pin. MISO refers to Master Input Slave Output.

SPIRQ from the Audio Processor: This pin is the slave SPI output pin. It is used to improve the CLI interface access data speed.

The first half byte C3~C0 form the SPI command which is followed by two bytes of data D15~D0.

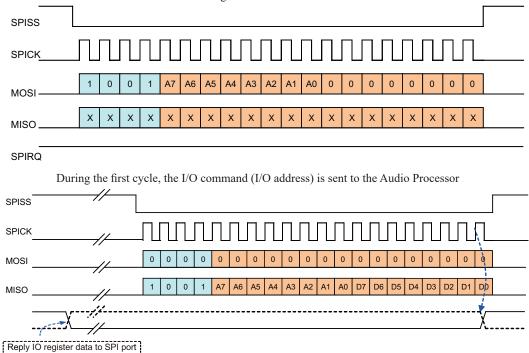

Command Groups

There are two types of command for the host to communicate with the audio processor. One is an I/O command group and the other is a CLI command group. The I/O command group is related to the switching on/off function. The CLI command group is related to the audio processing functions.

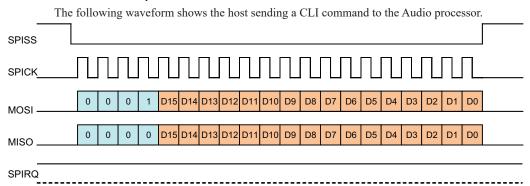
I/O Command Group

• I/O Command Group Write - C [3:0] ="1000"

The MCU will send 8 bits of I/O command address and 8 bits of I/O command data to Audio Processor. The host device sends I/O register write command to Audio Processor. The waveform is shown as follows.



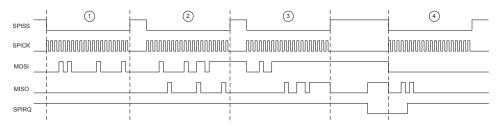
Rev. 1.20 98 November 26, 2019


• I/O Command Group Read - C [3:0] ="1001"

The host device will read 8 bits of I/O command address and 8 bits of I/O command data from the Audio Processor. The I/O command group requires a dual SPI command cycle. During the first cycle, the I/O read command (I/O address) is sent to the Audio Processor. During the second cycle, the Audio Processor returns its I/O command data back to the host. The following two waveforms show the I/O command read timing.

During the second cycle, the Audio Processor returns its I/O command data to the host During I/O command R/W, user can issue SPI control waveform to Read/Write, without checking the SPIRQ status.

CLI Command Group

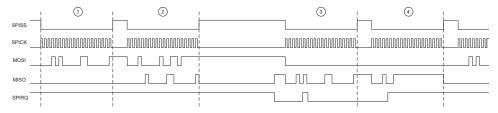

· Write CMD Details

Phase	CLI_CMD	Major	Minor	Multi	Length		
1	4'b0001	4'b0100	4'b0000	4'b1000	4'b0010		
2	4'b0001	Address[15:0]					
3	4'b0001		Data[15:0]				

Reply:

Phase	CLI_CMD	Major	Minor	Multi	Length
(4)	4'b0001	4'b0100	4'b0000	4'b0000	4'b0000

Note: When the audio processor replies with "14000", this means that the write data condition has been met.


After CLI Command SPI write command phase 3, the SPIRQ will be low. User must check SPIRQ status to issue SPI read phase 4. The return data will be '14000'.

Read CMD Details

Phase	CLI_CMD	Major	Minor	Multi	Length		
1	4'b0001	4'b0100	4'b0001	4'b1000	4'b0001		
2	4'b0001	Address[15:0]					

Reply:

Phase	CLI_CMD	Major	Minor	Multi	Length	
1	4'b0001	4'b0100	4'b0001	4'b1000	4'b0001	
2	4'b0001	Data[15:0]				

After CLI Command SPI read command phase 1 and 2, the SPIRQ will be low. User must check SPIRQ status to issue SPI read phase 3 and 4. In phase 3, the HT98F069 will return '14181. In phase 4, the requested data will be returned.

Rev. 1.20 100 November 26, 2019

I/O Command Group Summary

The I/O Commands are summarised in the following table.

Address / Bit	7	6	5	4	3	2	1	0	
00~0E				Rese	erved				
0F				Bit7	-Bit0				
10				Rese	erved				
11	_	TRX Opera	ation Mode	Audio Band Mode Sub Aud				lio Mode	
12~19				Reserved					
1A		_		PGA_B					
1B		PGAI_S		AUDO_S SDAO2 SDAO1					
1C~1D				Rese	erved				
1E	/EN_DAC2	/EN_DAC1	EN_AMP2	EN_AMP1	EN_BUF	EN_MIC	EN_PGA	1'b1	
1F~21			•	Reserved					
22	- IRQ DTMF			Selective call INT	CTCSS INT	DCS INT	Off_Tone INT	VOX INT	
23	DTMF Event			Selective call Event	CTCSS Event	DCS Event	Off_Tone Event	VOX Event	
24~28				Rese	erved				
29			_	_			VOX Thres	hold Status	
2A		_	_	Selective Call					
2B	Sub_Inv			Sub Audio Tone					
2C	EN_Scram	EN_Comp	EN_Emp	EN_NBW EN_WBW EN_ EN_ VO				EN_AGC	
2D		_	_			DTMF	Tone		
2E		_	_			Selective	Call Finder		
2F		_	_			DTMF	Finder		
30				_				CTC_Anti- tone Event	
31			_	_			EN_CTC_ Rx_Anti- tone	EN_CTC_ Tx_Anti- tone	

I/O Command Group Detail

The details behind each I/O command are provided in the following tables.

Software Internal Reset Control - 0Fh Address

Bit	7	6	5	4	3	2	1	0
Name	Bit7~Bit0							

Bit 7~0 **00000000:** Software reset audio processor, the corresponding I/O command is 80F00 **00000010:** Software start audio processor, the corresponding I/O command is 80F02

Mode Control - 11h Address

Bit	7	6	5	4	3	2	1	0
Name	_	TRX Operation Mode		In-b	and Tone M	Sub Aud	lio Mode	

Bit 7 Unimplemented, ignore this value

Bit 6~5 TRX Operation Mode: Audio processor operation mode selection

10: TX mode 11: RX mode

Bit 4~2 **In-band Tone Mode**: In-band tone signal selection

001: User Tones (to DA1) 010: Selective Call signal

100: DTMF Others : All disable

Bit 1~0 **Sub Audio Mode**: Sub tone selection

01: DCS 10: CTCSS Others: All disable

PGA Gain Control - 1Ah Address

Bit	7	6	5	4	3	2	1	0	
Name		_		PGA_B					

Bit 7~5 Unimplemented, ignore this value

Bit 4~0 **PGA B**: PGA gain x setting

The PGA Gain adjustment range is defined as (1 + x/4), where $x = 0 \sim 31$.

Initial reset value is "00000".

Path Selection - 1Bh Address

Bit	7	6	5	4	3	2	1	0
Name	PGAI S		AUDO S			SDAO2	SDAO1	

Bit 7~5 **PGAI_S**: PGA input source selection

000: MICO 001: DEMOD 010: AUX 011: BEEP1 1xx: VAG

Bit 4~2 **AUDO_S**: AUDO output buffer source selection

001: DAC1 (output range = $1/4 \sim 3/4 V_{DD}$)

011: BEEP0

100: DAC common-mode bias (V_{DD}/2)

Other: Must not be used

Bit 1 SDAO2: DAC2 input source selection

0: DAO2 input = DAC

1: DAO2 input = internal common-mode bias

Bit 0 SDAO1: DAC1 input source selection

0: DAO1 input = DAC

1: DAO1 input = internal common-mode bias

Power Control - 1Eh Address

Bit	7	6	5	4	3	2	1	0		
Name	/EN_DAC2	/EN_DAC1	EN_AMP2	EN_AMP1	EN_BUF	EN_MIC	EN_PGA	1'b1		
Bit 7 /EN_DAC2: DAC2 on/off control 0: Enable										
	1: Disable									

Bit 6 /EN_DAC1: DAC1 on/off control 0: Enable

0: Enable 1: Disable

Bit 5 EN_AMP2: AMP2 on/off control

0: Disable 1: Enable

Bit 4 EN_AMP1: AMP1 on/off control

0: Disable 1: Enable

Bit 3 EN_BUF: Buffer on/off control

0: Disable 1: Enable

Bit 2 EN_MIC: MIC on/off control

0: Disable 1: Enable

Bit 1 EN_PGA: PGA on/off control

0: Disable 1: Enable

Bit 0 1'b1: Reserved bit, must be set high

Event Interrupt Mask - 22h Address

Bit	7	6	5	4	3	2	1	0		
Name		IRQ	DTMF INT	Selective call INT	CTCSS INT	DCS INT	Off_Tone INT	VOX INT		
Bit 7	Ţ	Jnimpl	emented, ig	nore this value						
Bit 6	I	RQ : In 0: Dis 1: Ens	sable	est – (DTMF, Select	ive call, CTC	, DCS, VO	X) issued on the	e MCU PE		
Bit 5	I	DTMF INT : DTMF event interrupt issue enable/disable selection 0: Disable 1: Enable								
Bit 4	Selective call INT: Selective Call event interrupt issue enable/disable selection 0: Disable 1: Enable									
Bit 3	(CTCSS INT: CTCSS event interrupt issue enable/disable selection 0: Disable 1: Enable								
Bit 2	I	DCS INT: DCS event interrupt issue enable/disable selection 0: Disable 1: Enable								
Bit 1	Off_Tone INT: Off_Tone event interrupt issue enable/disable selection 0: Disable 1: Enable									

Bit 0 **VOX INT**: VOX event interrupt issue enable/disable selection

0: Disable 1: Enable

Event Status - 23h Address

Bit	7	6	5	4	3	2	1	0
Name	_	_	DTMF Event	Selective Call Event	CTCSS Event	DCS Event	Off_Tone Event	VOX Event

Bit 7~6 Unimplemented, ignore this value

Bit 5 **DTMF Event**: DTMF code detection.

0: No DTMF event change detected

1: DTMF event status change has been detected

Bit 4 Selective Call Event: Selective Call detection.

0: No Selective call event change detected

1: Selective call event status cange has been detected

Bit 3 CTCSS Event: CTCSS code detection

0: No CTCSS event change detected

1: CTCSS event status change has been detected

Bit 2 DCS Event: DCS code detection

0: No DCS event change detected

1: DCS event status change has been detected

Bit1 Off_Tone Event: Off_Tone code detection

0: No Off Tone event change detected

1: VOX event status change has been detected

Bit 0 **VOX Event**: VOX signal above high or below low threshold

0: No VOX event change detected

1: VOX event status change has been detected

VOX Threshold Status - 29h Address

Bit	7	6	5	4	3	2	1	0
Name	— VOX Threshold State							

Bit 7~2 Unimplemented, ignore this value

Bit 1~0 **VOX Threshold Status**: VOX high/low threshold data compare result

01: Below Low Threshold 10: Above High Threshold Others: Don't care

Selective Call Tone - 2Ah Address

Bit	7	6	5	4	3	2	1	0
Name		_	_			Selecti	ve Call	

Bit 7~4 Unimplemented, ignore this value

Bit 3~0 **Selective Call**: Selective call tone number selection

 $0000 \sim 1111$ are assigned as selective call number $0 \sim F$ respectively, following EEA protocol.

The 16 number tones are indicated in the address range: $04E0 \sim 04FF$

Rev. 1.20 104 November 26, 2019

Sub-audio Tone - 2Bh Address

Bit	7	6	5	4	3	2	1	0	
Name	Sub_Inv		Sub Audio Tone						

Bit 7 **Sub_Inv**: DCS inverted select bit

In DCS mode:

0: Non-inverted DCS code 1: Inverted DCS code In CTCSS mode: Don't care

Bit 6~0 **Sub Audio Tone**: Sub Audio Tone Channel Number

These bits are used to select DCS or CTCSS tone number, refer to the following table.

Sub Audio Mode	Number (Dec)	Code (Dec) / Tone
	0	User defined DCS code
DCS	1-83	DCS code 1~83
DCS	85~126	No tone
	127	DCS turn off tone (to DA2)
	0	User defined CTCSS tone
CTCSS	1~51	CTCSS tone 1~51
	53~127	No tone

Sub-audio Tone Number Table

Audio Control - 2Ch Address

Bit		7	6		5		4		3		2		1		0	
Name	EN_	Scram	EN_	Comp	EN	Emp	EN_	NBW	EN_	WBW	EN_	HPF300	EN_	VOX	EN_	AGC

Bit 7 EN_Scram: Audio Scrambling on/off control

0: Disable

1: Enable

Bit 6 EN_Comp: Audio Compandor on/off control

0: Disable 1: Enable

Bit 5 EN_Emp: Audio Pre/De-emphasis on/off control

0: Disable 1: Enable

Bit 4 EN NBW: Narrow band-width channel on/off control

0: Disable 1: Enable

Bit 3 EN_WBW: Wide band-width channel on/off control

0: Disable 1: Enable

Bit 2 EN HPF300: Audio 300Hz HPF on/off control

0: Disable 1: Enable

Bit 1 EN VOX: VOX detected on/off control

0: Disable

1: Enable (in TX mode)

Bit 0 EN_AGC: AGC function on/off control

0: Disable 1: Enable

When the AGC is enabled, it is suggested that the mic op gain is set to 5. However, the corresponding gain should be scaled according to the operating voltage (i.e. * Volt/3.3)

DTMF Tone - 2Dh Address

Bit	7	6	5	4	3	2	1	0		
Name		_	_		DTMF Tone					

Bit 7~4 Unimplemented, ignore this value

Bit 3~0 **DTMF Tone**: DTMF number selection

0000 ~ 1111 are assigned as DTMF number, refer to the following table.

Low Group (Hz)	High Group (Hz)	Digital	B3,B2,B1,B0
697	1209	1	0001
697	1336	2	0010
697	1477	3	0011
770	1209	4	0100
770	1336	5	0101
770	1477	6	0110
852	1209	7	0111
852	1336	8	1000
852	1477	9	1001
941	1209	*	1010
941	1336	0	1011
941	1477	#	1100
697	1633	Α	1101
770	1633	В	1110
842	1633	С	1111
941	1633	D	0000

DTMF Data Output Table

Selective Call Finder - 2Eh Address

Bit	7	6	5	4	3	2	1	0			
Name		_	_		Selective Call Finder						

Bit 7~5 Unimplemented, ignore this value

Bit 4~0 Selective Call Finder: Detecting Selective Call number

These four bits indicate the detected Selective call tone number.

In the receiver mode, if the selective call mode is enabled, the processor will calculate the demodulation signal to check whether a tone exists or not. When a tone is detected, the calculation result will be automatically stored in the selective call finder register.

DTMF Finder - 2Fh Address

ĺ	Bit	7	6	5	4	3	2	1	0			
	Name		_	_	,	DTMF Finder						

Bit 7~5 Unimplemented, ignore this value

Bit 4~0 **DTMF Finder**: Detected DTMF tone number

These four bits indicate the detected DTMF tone number.

In the receiver mode, if the DTMF mode is enabled, the processor will calculate the demodulation signal to check whether a tone exists or not. When a tone is detected, the calculation result will be automatically stored in the DTMF finder register.

Rev. 1.20 106 November 26, 2019

Event2 Status - 30h Address

Bit	7	6	5	4	3	2	1	0
Name				_				CTC_Anti-tone Event

Bit 7~1 Unimplemented, ignore this value

Bit 0 CTC_Anti-tone Event: CTCSS Anti-tone detection 0: No CTCSS Anti-tone event change detected

1: CTCSS Anti-tone event status change has been detected

Event2 Control - 31h Address

Bit	7 6 5		4	3	2	1	0	
Name			_	_			EN_CTC_Rx_Anti-tone	EN_CTC_Tx_Anti-tone

Bit 7~2 Unimplemented, ignore this value

Bit 1 EN_CTC_Rx_Anti-tone: CTCSS Rx Anti-tone on/off control

0: Disable 1: Enable

Bit 0 EN_CTC_Tx_Anti-tone: CTCSS Tx Anti-tone on/off control

When the CTCSS is in the Tx mode, the EN_CTC_Anti bit can enable the CTCSS anti-tone signal. This control bit changing from 0 to 1 or from 1 to 0 both have anti-

tone effect (phase reversal 180°).

CLI Command Group Summary

The CLI Commands are summarised in the following table.

Address / Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
012a						(Comp	resso	r Thr	eshol	d						
012b							Ехр	ander	Thre	shold							
012c ~ 0133								Rese	rved								
0134							0							A	GC S	tep	
0135 ~ 0139								Rese	rved								
013a					S	cram	bler I	nv. Fr	eq. –	parar	neter	1					
013b		Scrambler Inv. Freq. – parameter 2															
013c ~ 0c3		Reserved DTMF Power Threshold															
01c4																	
01c5~01dc								Rese									
01dd								cepted									
01de					0	ff Ton	e Re	leased		age F	Regis	ter					
01df ~ 01e1								Rese									
01e2						DCS	Acce	pted \		je Re	giste	r					
01e3 ~ 0323					- "			Rese									
0324								ned To									
0325			Sel	ective	Call	/User	-defii	ned To		eleas	ed Vo	oltage	Regi	ster			
0326 ~ 04c9						TOO	. D	Rese		l Th		اما					
04ca 04cb		CTCSS Power Released Threshold															
04cb		VR1 VR2															
04cd							VOY	Thre		High							
04ce								(Thre									
04cf							V 07	Rese		LOW							
04d0						Us	er C	TCSS		amet	er1						
04d1								TCSS									
04d2					0							V	R3				
04d3			()				VR4									
04d4								Reserved									
04d5		,	()				VR5									
04d6						-	_	CTCSS Freq.								q.	
04d7 ~ 04d8								Rese	rved								
04d9						Use	r-Ton	e Fred	1. – p	aram	eter1						
04da								e Fred									
04db						C	TCS	S Pow	er Th	resho	old						
04dc						Use	r defi	ned D	CS c								
04dd					0						er de	fined	DCS	code	s[22:	16]	
04de		-					Dro	o Time									
04df	0	0				<u> </u>				imite							
04e0								_Call_		-							
04e1								_Call_									
04e2								_Call_									
04e3								_Call_									
04e4								_Call_									
04e5								_Call_									
04e6						Sele	cuve	_Call_	ა – p	aram	eter1						

Rev. 1.20 108 November 26, 2019

Address / Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
04e7						Sele	ctive_	_Call_	_3 – p	aram	eter2					
04e8						Sele	ctive_	Call	<u>4</u> – p	aram	eter1					
04e9						Sele	ctive_	Call	4 – p	aram	eter2					
04ea						Sele	ctive_	Call	_5 – p	aram	eter1					
04eb						Sele	ctive_	Call	5 – p	aram	eter2					
04ec						Sele	ctive_	Call	6 – p	aram	eter1					
04ed						Sele	ctive_	Call	6 – p	aram	eter2					
04ee						Sele	ctive_	Call	7 – p	aram	eter1					
04ef						Sele	ctive_	Call	7 – p	aram	eter2					
04f0						Sele	ctive_	Call	8 – p	aram	eter1					
04f1						Sele	ctive_	Call	8 – p	aram	eter2					
04f2						Sele	ctive_	Call	9 – p	aram	eter1					
04f3						Sele	ctive_	Call	9 – p	aram	eter2					
04f4						Sele	ctive_	Call	<u>A – p</u>	aram	eter1					
04f5						Sele	ctive_	Call	<u>A</u> – p	aram	eter2					
04f6						Seled	ctive_	Call	B – p	aram	eter1					
04f7						Selec	ctive_	Call	В – р	aram	eter2					
04f8						Selec	ctive_	Call_	C – p	aram	eter1					
04f9						Selec	ctive_	Call_	C – p	aram	eter2					
04fa						Selec	ctive_	Call_	D – p	aram	eter1					
04fb						Seled	ctive_	Call	D – p	aram	eter2					
04fc						Selec	ctive_	_Call_	E – p	aram	eter1					
04fd						Selec	ctive_	_Call_	E – p	aram	eter2					
04fe						Selec	ctive_	_Call_	F – p	aram	eter1					
04ff						Sele	ctive_	_Call_	F – p	aram	eter2					

Note: 1. When the different operation mode changes such as an Rx or Tx mode change, a soft_reset command "10000" and the initial parameters should be previously transmitted.

2. In the Rx mode, a mute path (except under Vox monitoring) should be selected before the RSSI signal is large enough. As the DCS/CTCSS detection time is also related with the RSSI signal detection, the RF module must take this RSSI detection response time into account.

The following is a CLI command programming example.

Ex: Adjust the in-band tone and the sub-audio band tone level to a maximum.

• Write condition:

Master write data:

14082 / Initialise the CLI write command

104CB / Setup the 04CB register to be written to

1FFFF / Write "FFFF" to the 04CB register.

Audio processor reply:

14000 / After receiving this reply, the above command is successfully accepted

• Read Condition:

Master read data:

14181 / Initialise the CLI read command

104CB / Setup the 04CB register to be read

Audio processor reply:

14181 / After receiving these two replies, the command 1FFFF is successfully accepted

CLI Command Group Detail

Tx Compandor Threshold - 012Ah Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							x Con	npand	or Thr	eshol	d					

Bit 15~0 Tx Compandor Threshold: Tx Compandor threshold setting

These 16 bits are used for setting the threshold voltage to determine if the signal is to be compressed or expanded. The default value is 0x515C (250mv@3.3V). When the input signal is larger than the threshold voltage, the signal will be compressed otherwise the signal will be expanded. When the input signal is equal to the threshold voltage, the signal will not be changed. After the compression and expansion process, the signal will be transmitted. Refer to the application notes for detailed register setting.

Rx Compandor Threshold - 012Bh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						R	x Cor	npand	or Thi	reshol	d					

Bit 15~0 Rx Compandor Threshold: Rx Compandor threshold setting

These 16 bits are used for setting the threshold voltage to determine if the signal is to be compressed or expanded The default value is 0x0595 (250mv@3.3V). When the received signal is larger than the threshold voltage, the signal will be expanded otherwise the signal will be compressed. When the received signal is equal to the threshold voltage, the signal will not be changed. After the compression and expansion process, the signal will revert back to the original input signal. Refer to the application notes for detailed register setting.

AGC Setup - 0134h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							0							AG	C Set	tup

Bit 15~3 0: Zero, must be cleared to zero.

Bit 2~0 AGC Setup: Setting AGC attack/released time

The corresponding bits influence the AGC attack and release time. These bits should be set before enabling the AGC function.

0x0000: no AGC (default)

0x0001: 3500ms 0x0002: 1600ms 0x0003: 1300ms 0x0004: 1100ms 0x0005: 900ms 0x0006: 800ms 0x0007: 600ms

Scrambler Inversion Frequency – 013ah Address

E	3it	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Na	ame					Scra	mbler	Invers	ion Fr	equer	ncy – į	param	eter1				

Bit 15~0 Scrambler Inversion Frequency – parameter1: Scrambler inversion central frequency parameter1

Rev. 1.20 110 November 26, 2019

Scrambler Inversion Frequency - 013bh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					Scrar	nbler	Invers	ion Fr	equer	псу – р	oaram	eter2				

Bit 15~0 Scrambler Inversion Frequency – parameter2:

Scrambler inversion central frequency parameter2

Scrambler inversion frequency range: 2.6kHz ~ 3.4kHz. Default: 3.3kHz

Note: if the user needs to self-define scrambler inversion central frequency, 013a and 013b addresses must be used at the same time.

DTMF Power Threshold - 01C4h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							DTMF	Powe	r Thre	eshold	1					

Bit 15~0 DTMF Power Threshold: DTMF power threshold detector

This register is used to setup the minimum detected DTMF signal level. The default value is Vth=0xff9b (200mVrms/600mVpp @3.3V) for both tones. Refer to the application notes for detailed register setting.

Off Tone Accepted Voltage Register - 01DDh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						Off To	ne Ac	cepted	l Volta	ige Re	egister					

Bit 15~0 Off Tone Accepted Voltage parameter [15:0]:

User defines the acknowledged Off Tone power bit $15 \sim$ bit 0. The default value is 0xff2b (28mV-peak@3.3V).

Off Tone Released Voltage Register - 01DEh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Off To	ne Re	leased	l Volta	age Re	egistei	r				

Bit 15~0 Off Tone Released Voltage parameter [15:0]:

User defines the deceased Off Tone power bit $15 \sim$ bit 0. The default value is 0xff05 (15mV-peak@3.3V).

DCS Accepted Voltage Register - 01E2h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						DCS	Acce	pted \	/oltag	e Reg	ister					

Bit 15~0 DCS Accepted Voltage parameter [15:0]:

User defines the sensitivity of DCS squelch signal. However, the corresponding value should be set greater than the overall system noise floor. The default value is 0x00ff (72mVrms/200mVp-p@3.3V).

Selective Call/User-defined Tone Accepted Voltage Register - 0324h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		Selective Call/User-defined Tone Accepted Voltage Register														

Bit 15~0 Selective Call/User-defined Tone Accepted Voltage parameter [15:0]:

User defines the acknowledged selective call/user-defined tone power bit $15 \sim$ bit 0. The default value is 0xff60 (72mV-peak@3.3V).

Rev. 1.20 111 November 26, 2019

Selective Call/User-defined Tone Released Voltage Register - 0325h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			5	Select	ive Ca	II/Use	r-defir	ned To	ne Re	lease	d Volta	age R	egiste	r		

Bit 15~0 Selective Call/User-defined Tone Released Voltage parameter [15:0]:

User defines the deceased selective call/user-defined tone power bit 15 ~ bit 0. The default value is 0xff30 (25mV-amplitude@3.3V).

CTCSS Power Released Threshold - 04CAh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						CTCS	S Pov	ver Re	lease	d Thre	eshold					

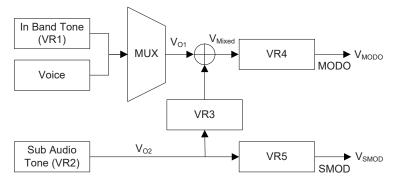
Bit 15~0 CTCSS Power Released Threshold Voltage

This register is used to set the minimum CTCSS signal level that is to be released. The default value is 0xff05 (15mV-peak @3.3V)

In-Band Tone/Sub-audio Tx Level - 04CBh Address

	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ν	lame				VF	T I							VI	R2			

Bit 15~8 VR1[7:0]: In-Band Tone Tx Level


This register is to adjust the user-tone, selective call and DTMF transmission volume. Refer to the "Modulation Path Block Diagram" for information on optimal parameter usage. The VR1 setting is based on the formula: $V_{\rm Ol} = V_{\rm voice} \times 1.1$ if bit2~bit4="000" in the I/O command address 11, otherwise $V_{\rm Ol} = 0.75 V_{\rm DD} \times (VR1)/256$; where $V_{\rm voice}$ is the ADC input voltage.

Note: The actual output voltage will be a little degraded due to the DAC1 filter circuit.

Bit 7~0 VR2[7:0]: Sub Audio Tone Tx Level

This register is to adjust the sub audio CTCSS and DCS transmission volume. Refer to the "Modulation Path Block Diagram" for information on optimal parameter usage. The VR2 setting is based on the formula: $V_{\rm O2}=V_{\rm DD}\times ({\rm VR2})/256$

Note: The actual output voltage will be a little degraded due to the DAC2 filter circuit.

Modulation Path Block Diagram

Rev. 1.20 112 November 26, 2019

Mixed Gain - 04D2h Address

	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ν	lame				()							VI	₹3			

Bit 15~8 0: Zero, must be cleared to zero.

Bit 7~0 VR3: Mixed Tone Gain Adjustment

This register is used to adjust the mixed tone gain levels.

Refer to the "Modulation path block diagram" for optimal parameter details.

The VR3 setting is based on the formula: $V_{mixed} = V_{O1} \times (512 \text{-VR3})/512 + V_{O2} \times (VR3/512)$

Note: $V_{\rm Ol}$ can be output from the In-band tone tuned by VR1 or Voice

MODO Gain - 04D3h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			()							VF	14				

Bit 15~10 **0**: Zero, must be cleared to zero.

Bit 9~0 VR4: MODO Gain Adjustment

This register is used to adjust MODO pin output gain levels.

Refer to the "Modulation Path Block Diagram" for optimal parameter details.

The VR4 setting is based on the formula: $V_{MODO} = V_{mixed} \times (VR4/1024)$

Note: The actual output voltage will be a little degraded due to the DAC1 filter circuit.

SMOD Gain - 04D5h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			()								₹5				

Bit 15~10 0: Zero, must be cleared to zero.

Bit 9~0 VR5: SMOD Gain Adjustment

This register is used to adjust the SMOD output pin gain levels.

Refer to the "Modulation Path Block Diagram" for optimal parameter details.

The VR5 setting is based on the formula: $V_{SMOD} = V_{O2} \times VR5/1024$

Note: The actual output voltage will be a little degraded due to the DAC2 filter circuit.

VOX Threshold High - 04CDh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							VOX	Thre	shold	High						

Bit 15~0 **VOX Threshold High:** VOX high level threshold

This register is used to set the VOX high level threshold voltage. The default value is 0x00CC (-15.17dBm @3.3V). When the input signal is larger than the threshold voltage, this means the input signal from microphone is valid. The transmission function will be on. At this time bit 0 and bit 1 in the I/O command register address 29 will reply with 0x02. Otherwise these two bits will reply with 0x01.

Refer to the application notes for detailed register setting.

VOX Threshold Low - 04CEh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							VOX	(Thre	shold	Low						

Bit 15~0 **VOX Threshold Low**: VOX low level threshold

This register is used to set the VOX low level threshold voltage. The default value is 0x0088 (-17.78dBm@3.3V). To avoid mistaking an input signal for noise and switching off the transmission, the low level threshold is used to setup the turn off threshold. When the input signal is less than the threshold voltage, bit 0 and bit 1 in the I/O command register address 29 will reply with 0x01. Otherwise these two bits will reply with 0x02.

Refer to the application notes for detailed register setting.

User CTCSS Tone_1/2 - 04D0h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						U	ser C	rcss	– para	amete	r1					

Bit 15~0 User defined CTCSS tone parameter1

Refer to the application notes for detailed register setting.

User CTCSS Tone_2/2 - 04D1h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						U	ser C	rcss	– para	mete	r2					

Bit 15~0 User defined CTCSS tone parameter2

Refer to the application notes for detailed register setting.

User Defined CTCSS Tone frequency range: 67Hz ~ 275Hz.

Note: If it is necessary to define a CTCSS tone by the user, registers 04d0 and 04d1 must be used at the same time.

CTCSS Frequency Accept Variance - 04D6h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							_							CTC	SS F	req.

Bit 15~2 Unimplemented, ignore this value

Bit 1~0 CTCSS Freq. accept: CTCSS frequency accept variance

3'b001: 0.595% ~ 1.975% 3'b010: 0.885% ~ 2.63% 3'b011: 1.195% ~ 3.01% 3'b100: 1.485% ~ 3.385% 3'b101: 1.77% ~ 3.545% 3'b10: 2.05% ~ 3.91%

User Audio Tone_1/2 - 04D9h Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						Use	er-Ton	e Fred	ן. – ра	rame	ter1					

Bit 15~0 User Tone Generator frequency parameter1

Refer to the application notes for detailed register setting.

User Audio Tone_2/2 - 04DAh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						Use	er-Ton	e Fred	1. – pa	ramet	ter2					

Bit 15~0 User Tone Generator frequency parameter2

Refer to the application notes for detailed register setting.

Default: 1kHz

Note: If it is necessary to define the user-tone frequency by the user, registers 04d9 and 04da must be used at the same time.

CTCSS Power Threshold - 04DBh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CTCSS Power Threshold															

Bit 15~0 CTCSS Power Threshold

This register is to set the minimum CTCSS signal level that is to be detected. The default value is 0Xff2b (28mV-peak@3.3V).

When the received signal larger than the threshold voltage, bit 3 in the I/O command register address 23 will be set to 1. Otherwise the bit will be cleared to 0.

Refer to the application notes for detailed register setting.

Rev. 1.20 114 November 26, 2019

User DCS Codes_1/2 - 04DCh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							User	DCS (Codes	[15:0]						

Bit 15~0 **User DCS parameter[15:0]**: User defined DCS parameter bit15~bit0 Refer to the application notes for detailed register setting.

User DCS Codes_2/2 - 04DDh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					0						User	DCS	param	eter[2	2:16]	

Bit 15~7 **0**: Zero, must be cleared to zero.

Bit 6~0 User DCS parameter [22:16]: User defined DCS parameter bit22~bit16

Refer to the application notes for detailed register setting.

Note: If it is necessary to define a DCS tone by the user, registers 04dc and 04dd must be used at the same time. If 4dc and 4dd register bits are set to 1, the output is 0, if the bits are set to 0, the output is 1.

Note:

The method to fill out User DCS Codes (23 bits):

Step1: Reverse the bit order of User DCS Codes.

Step2: After step 1, do the 1's complement of reversed User DCS Codes.

Step3: Fill out the address 04DCH with the 1's complement of reversed User DCS Codes[15:0] Fill out the address 04DDH with the 1's complement of reversed User DCS Codes[22:16]

For example:

DCS Codes Number = 036, the value is 0BE81EH (23 bits),

0BE81EH (Hex) = 000 1011 1110 1000 0001 1110B (Bin)

Step1: Reverse the bit order of User DCS Codes[22:0]

= 0111 1000 0001 0111 1101 000 B

Step2: Do the 1's complement of reversed User DCS Codes[22:0]

= 1000011111110100000101111 B

= 43 F 4 1 7 H

Step3: Fill out the address 04DCH with the 1's complement of reversed User DCS Codes[15:0]

= F417 (Hex)

Fill out the address 04DDH with the 1's complement of reversed User DCS Codes[22:16]

= 43 (Hex)

Please refer to the application note for more details.

Sub-audio Drop Time - 04DEh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							Drop	Time	Immı	unity						

Bit 15~0 **Drop Time Immunity**: DCS/CTCSS drop out time

The drop out time is the maximum allowed DCS/CTCSS detection loss duration after the Tx/Rx is connected.

The drop out time = Drop Time Immunity/4. The setting range is from 0 to 32767.

Default = b'0000 0100 1011 0000 (300ms).

MODO Amplitude Limiter - 04DFh Address

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	0	0							Soft L	.imiter						

Bit 15~14 **0**: Zero, must be filled with b"0"

Bit 13~0 **Soft Limiter**: Tx amplitude limiter threshold to VCO

In Tx mode, this limiter will constrain the MODO output voltage levels.

Refer to the application notes for detailed register setting.

Selective_Call_0-F

Address / Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
04E0						Sele	ective	_Call	_0: pa	rame	eter1					
04E1						Sele	ective	_Call	_0: pa	rame	eter2					
04E2						Sele	ective	_Call	_1: pa	rame	eter1					
04E3						Sele	ctive	Call	_1: pa	rame	eter2					
04E4						Sele	ctive	Call	_2: pa	rame	eter1					
04E5						Sele	ctive	_Call	_2: pa	rame	eter2					
04E6						Sele	ctive	Call	_3: pa	rame	ete1r					
04E7						Sele	ctive	Call	_3: pa	rame	eter2					
04E8						Sele	ctive	Call	_4: pa	rame	eter1					
04E9						Sele	ctive	Call	_4: pa	rame	eter2					
04EA						Sele	ctive	Call	_5: pa	rame	eter1					
04EB						Sele	ctive	Call	_5: pa	rame	eter2					
04EC						Sele	ctive	Call	_6: pa	rame	eter1					
04ED						Sele	ctive	Call	_6: pa	rame	eter2					
04EE						Sele	ctive	Call	_7: pa	rame	eter1					
04EF						Sele	ctive	Call	_7: pa	rame	eter2					
04F0						Sele	ctive	Call	_8: pa	rame	eter1					
04F1						Sele	ctive	Call	_8: pa	rame	eter2					
04F2						Sele	ctive	Call	_9: pa	rame	eter1					
04F3						Sele	ective	_Call	_9: pa	rame	eter2					
04F4						Sele	ctive	Call	_A: pa	arame	eter1					
04F5						Sele	ctive	Call	_A: pa	arame	eter2					
04F6						Sele	ctive	Call	_B: pa	arame	eter1					
04F7						Sele	ctive	Call	_B: pa	arame	eter2					
04F8						Sele	ctive	Call	_C: pa	arame	eter1					
04F9						Sele	ctive	Call	_C: pa	arame	eter2					
04FA						Sele	ctive	Call	_D: pa	arame	eter1					
04FB						Sele	ctive	Call	_D: pa	arame	eter2					
04FC						Sele	ctive	Call	_E: pa	arame	eter1					
04FD						Sele	ctive	Call	_E: pa	arame	eter2					
04FE						Sele	ctive	Call	_F: pa	rame	eter1					
04FF						Sele	ctive	Call	_F: pa	rame	eter2					

Rev. 1.20 116 November 26, 2019

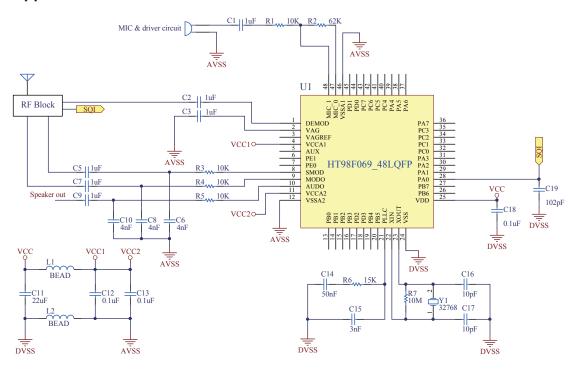
The address 04e0~04ff allow the user to define parameters for selective call tones from tone 0 to tone F. The adjustment frequency range is 3.5kHz~0.3kHz. The device follows the EEA protocol (refer to the accompanying table). Every selective call tone set has 2 parts: parameter1 and parameter2, which are put in two registers in the audio processor. For details regarding the register value settings, refer to the application notes.

Tone Number			Frequency (Hz)		
(HEX)	EIA	EEA	CCIR	ZVEI 1	ZVEI 2
0	600	1981	1981	2400	2400
1	741	1124	1124	1060	1060
2	882	1197	1197	1160	1160
3	1023	1275	1275	1270	1270
4	1164	1358	1358	1400	1400
5	1305	1446	1446	1530	1530
6	1446	1540	1540	1670	1670
7	1587	1640	1640	1830	1830
8	1728	1747	1747	2000	2000
9	1869	1860	1860	2200	2200
Α	2151	1055	2400	2800	885
В	2435	930	930	810	810
С	2010	2247	2247	970	740
D	2295	991	991	885	680
E	459	2110	2110	2600	970
F	No Tone	2400	1055	680	2600

Selective Call Reference Sets Table

Rev. 1.20 117 November 26, 2019

Configuration Options


Configuration options refer to certain options within the MCU that are programmed into the device during the programming process. During the development process, these options are selected using the HT-IDE software development tools. As these options are programmed into the device using the hardware programming tools, once they are selected they cannot be changed later using the application program. All options must be defined for proper system function, the details of which are shown in the table.

No.	Options
Reset Pin Option	
1	PA7 / RES pin option: 1. RES pin 2. I/O pin
Watchdog Timer Option	
2	Watchdog Timer function: Always enable By software control
3	Watchdog Timer clock source:

Rev. 1.20 118 November 26, 2019

Application Circuits

Instruction Set

Introduction

Central to the successful operation of any microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to perform certain operations. In the case of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are required. One instruction cycle is equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions would be implemented within 0.5µs and branch or call instructions would be implemented within 1µs. Although instructions which require one more cycle to implement are generally limited to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions which involve manipulation of the Program Counter Low register or PCL will also take one more cycle to implement. As instructions which change the contents of the PCL will imply a direct jump to that new address, one more cycle will be required. Examples of such instructions would be "CLR PCL" or "MOV PCL, A". For the case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then this will also take one more cycle, if no skip is involved then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used operations. Making use of three kinds of MOV instructions, data can be transferred from registers to the Accumulator and vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most important data transfer applications is to receive data from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature of most microcontroller applications. Within the Holtek microcontroller instruction set are a range of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the values in the destination specified.

Rev. 1.20 120 November 26, 2019

Logical and Rotate Operation

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction within the Holtek microcontroller instruction set. As with the case of most instructions involving data manipulation, data must pass through the Accumulator which may involve additional programming steps. In all logical data operations, the zero flag may be set if the result of the operation is zero. Another form of logical data manipulation comes from the rotate instructions such as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for serial port programming applications where data can be rotated from an internal register into the Carry bit from where it can be examined and the necessary serial bit set high or low. Another application which rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subroutine call, the program must return to the instruction immediately when the subroutine has been carried out. This is done by placing a return instruction "RET" in the subroutine which will cause the program to jump back to the address right after the CALL instruction. In the case of a JMP instruction, the program simply jumps to the desired location. There is no requirement to jump back to the original jumping off point as in the case of the CALL instruction. One special and extremely useful set of branch instructions are the conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program will continue with the next instruction or skip over it and jump to the following instruction. These instructions are the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek microcontrollers. This feature is especially useful for output port bit programming where individual bits or port pins can be directly set high or low using either the "SET [m].i" or "CLR [m].i" instructions respectively. The feature removes the need for programmers to first read the 8-bit output port, manipulate the input data to ensure that other bits are not changed and then output the port with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program Memory to be set as a table where data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as the "HALT" instruction for Power-down operations and instructions to control the operation of the Watchdog Timer for reliable program operations under extreme electric or electromagnetic environments. For their relevant operations, refer to the functional related sections.

Rev. 1.20 121 November 26, 2019

Instruction Set Summary

The following table depicts a summary of the instruction set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.

Table Conventions

x: Bits immediate data m: Data Memory address

A: Accumulator i: 0~7 number of bits

addr: Program memory address

Mnemonic	Description	Cycles	Flag Affected
Arithmetic	•		-
ADD A,[m]	Add Data Memory to ACC	1	Z, C, AC, OV
ADDM A,[m]	Add ACC to Data Memory	1 ^{Note}	Z, C, AC, OV
ADD A,x	Add immediate data to ACC	1	Z, C, AC, OV
ADC A,[m]	Add Data Memory to ACC with Carry	1	Z, C, AC, OV
ADCM A,[m]	Add ACC to Data memory with Carry	1 ^{Note}	Z, C, AC, OV
SUB A,x	Subtract immediate data from the ACC	1	Z, C, AC, OV
SUB A,[m]	Subtract Data Memory from ACC	1	Z, C, AC, OV
SUBM A,[m]	Subtract Data Memory from ACC with result in Data Memory	1 ^{Note}	Z, C, AC, OV
SBC A,[m]	Subtract Data Memory from ACC with Carry	1	Z, C, AC, OV
SBCM A,[m]	Subtract Data Memory from ACC with Carry, result in Data Memory	1 ^{Note}	Z, C, AC, OV
DAA [m]	Decimal adjust ACC for Addition with result in Data Memory	1 ^{Note}	С
Logic Operation			
AND A,[m]	Logical AND Data Memory to ACC	1	Z
OR A,[m]	Logical OR Data Memory to ACC	1	Z
XOR A,[m]	Logical XOR Data Memory to ACC	1	Z
ANDM A,[m]	Logical AND ACC to Data Memory	1 ^{Note}	Z
ORM A,[m]	Logical OR ACC to Data Memory	1 ^{Note}	Z
XORM A,[m]	Logical XOR ACC to Data Memory	1 ^{Note}	Z
AND A,x	Logical AND immediate Data to ACC	1	Z
OR A,x	Logical OR immediate Data to ACC	1	Z
XOR A,x	Logical XOR immediate Data to ACC	1	Z
CPL [m]	Complement Data Memory	1 ^{Note}	Z
CPLA [m]	Complement Data Memory with result in ACC	1	Z
Increment & Deci	rement		
INCA [m]	Increment Data Memory with result in ACC	1	Z
INC [m]	Increment Data Memory	1 ^{Note}	Z
DECA [m]	Decrement Data Memory with result in ACC	1	Z
DEC [m]	Decrement Data Memory	1 ^{Note}	Z
Rotate			
RRA [m]	Rotate Data Memory right with result in ACC	1	None
RR [m]	Rotate Data Memory right	1 ^{Note}	None
RRCA [m]	Rotate Data Memory right through Carry with result in ACC	1	С
RRC [m]	Rotate Data Memory right through Carry	1 ^{Note}	С
RLA [m]	Rotate Data Memory left with result in ACC	1	None
RL [m]	Rotate Data Memory left	1 ^{Note}	None
RLCA [m]	Rotate Data Memory left through Carry with result in ACC	1	С
RLC [m]	Rotate Data Memory left through Carry	1 ^{Note}	С

Rev. 1.20 122 November 26, 2019

Mnemonic	Description	Cycles	Flag Affected
Data Move			
MOV A,[m]	Move Data Memory to ACC	1	None
MOV [m],A	Move ACC to Data Memory	1 ^{Note}	None
MOV A,x	Move immediate data to ACC	1	None
Bit Operation			
CLR [m].i	Clear bit of Data Memory	1 ^{Note}	None
SET [m].i	Set bit of Data Memory	1 ^{Note}	None
Branch Operation	on		
JMP addr	Jump unconditionally	2	None
SZ [m]	Skip if Data Memory is zero	1 ^{Note}	None
SZA [m]	Skip if Data Memory is zero with data movement to ACC	1 Note	None
SZ [m].i	Skip if bit i of Data Memory is zero	1 ^{Note}	None
SNZ [m].i	Skip if bit i of Data Memory is not zero	1 ^{Note}	None
SIZ [m]	Skip if increment Data Memory is zero	1 ^{Note}	None
SDZ [m]	Skip if decrement Data Memory is zero	1 ^{Note}	None
SIZA [m]	Skip if increment Data Memory is zero with result in ACC	1 ^{Note}	None
SDZA [m]	Skip if decrement Data Memory is zero with result in ACC	1 ^{Note}	None
CALL addr	Subroutine call	2	None
RET	Return from subroutine	2	None
RET A,x	Return from subroutine and load immediate data to ACC	2	None
RETI	Return from interrupt	2	None
Table Read Ope	ration		
TABRD [m]	Read table (specific page) to TBLH and Data Memory	2 ^{Note}	None
TABRDC [m]	Read table (current page) to TBLH and Data Memory	2 ^{Note}	None
TABRDL [m]	Read table (last page) to TBLH and Data Memory	2 ^{Note}	None
Miscellaneous			
NOP	No operation	1	None
CLR [m]	Clear Data Memory	1 ^{Note}	None
SET [m]	Set Data Memory	1 ^{Note}	None
CLR WDT	Clear Watchdog Timer	1	TO, PDF
CLR WDT1	Pre-clear Watchdog Timer	1	TO, PDF
CLR WDT2	Pre-clear Watchdog Timer	1	TO, PDF
SWAP [m]	Swap nibbles of Data Memory	1 ^{Note}	None
SWAPA [m]	Swap nibbles of Data Memory with result in ACC	1	None
HALT	Enter power down mode	1	TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required, if no skip takes place only one cycle is required.

- 2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
- 3. For the "CLR WDT1" and "CLR WDT2" instructions the TO and PDF flags may be affected by the execution status. The TO and PDF flags are cleared after both "CLR WDT1" and "CLR WDT2" instructions are consecutively executed. Otherwise the TO and PDF flags remain unchanged.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the specified Data Memory.

Operation $[m] \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + x$ Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the specified Data Memory.

 $\label{eq:continuous} \begin{array}{ll} \text{Operation} & & [m] \leftarrow ACC + [m] \\ \text{Affected flag(s)} & & \text{OV, Z, AC, C} \end{array}$

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "AND" [m]$

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bit wise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC$ "AND" x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "AND" [m]$

Affected flag(s) Z

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then

increments by 1 to obtain the address of the next instruction which is then pushed onto the stack. The specified address is then loaded and the program continues execution from this new address. As this instruction requires an additional operation, it is a two cycle instruction.

 $Operation \hspace{1cm} Stack \leftarrow Program \ Counter + 1$

Program Counter ← addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation $[m] \leftarrow 00H$ Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i \leftarrow 0 Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

 $\begin{array}{l} \text{TO} \leftarrow 0 \\ \text{PDF} \leftarrow 0 \end{array}$

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in

conjunction with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Repetitively executing this instruction without alternately executing CLR WDT2 will

have no effect.

Operation WDT cleared

 $\begin{aligned} & TO \leftarrow 0 \\ & PDF \leftarrow 0 \end{aligned}$

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction

with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect.

Repetitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

 $TO \leftarrow 0$ $PDF \leftarrow 0$

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa.

Operation $[m] \leftarrow \overline{[m]}$

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m]$

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value

resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag may be affected by this instruction which indicates that if the original BCD sum is greater than

100, it allows multiple precision decimal addition.

Operation $[m] \leftarrow ACC + 00H$ or

 $[m] \leftarrow ACC + 06H \text{ or}$ $[m] \leftarrow ACC + 60H \text{ or}$ $[m] \leftarrow ACC + 66H$

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation $[m] \leftarrow [m] - 1$

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the

Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] - 1$

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents of

the Data Memory and registers are retained. The WDT and prescaler are cleared. The power

down flag PDF is set and the WDT time-out flag TO is cleared.

Operation $TO \leftarrow 0$

 $PDF \leftarrow 1$

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation $[m] \leftarrow [m] + 1$

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator.

The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] + 1$

Affected flag(s) Z

Rev. 1.20 126 November 26, 2019

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter ← addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

 $\begin{array}{ll} \text{Operation} & \quad & \text{ACC} \leftarrow [m] \\ \text{Affected flag(s)} & \quad & \text{None} \\ \end{array}$

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation $ACC \leftarrow x$ Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation $[m] \leftarrow ACC$ Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation
Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise

logical OR operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" [m]$

Affected flag(s) Z

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" x$

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "OR" [m]$

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the restored

address.

Operation Program Counter ← Stack

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the specified

immediate data. Program execution continues at the restored address.

Operation Program Counter ← Stack

 $ACC \leftarrow x$

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by setting the

EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the RETI instruction is executed, the pending Interrupt routine will be processed before returning

to the main program.

Operation Program Counter ← Stack

 $EMI \leftarrow 1$

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow [m].7$

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow [m].7$

Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $[m].0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the

Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation $ACC.(i+1) \leftarrow [m].i; (i=0\sim6)$

 $ACC.0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.

Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$

 $[m].7 \leftarrow [m].0$

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory is rotated right by 1 bit with bit 0 rotated into bit 7.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow [m].0$

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation $[m].i \leftarrow [m].(i+1); (i=0\sim6)$

 $[m].7 \leftarrow C$

 $C \leftarrow [m].0$

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces

the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow C$

 $C \leftarrow [m].0$

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m] - C$

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m] - C$

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] - 1$

Skip if [m]=0

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0,

the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] - 1$

Skip if ACC=0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation $[m] \leftarrow FFH$ Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

 $\begin{array}{ll} \text{Operation} & \quad [m].i \leftarrow 1 \\ \text{Affected flag(s)} & \quad \text{None} \end{array}$

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] + 1$

Skip if [m]=0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] + 1$

Skip if ACC=0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m]. $i \neq 0$

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m]$

Affected flag(s) OV, Z, AC, C

Rev. 1.20 130 November 26, 2019

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m]$ Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumulator.

The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - x$ Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3 \sim [m].0 \leftrightarrow [m].7 \sim [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC.3 \sim ACC.0 \leftarrow [m].7 \sim [m].4$

 $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction.

Operation Skip if [m]=0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero,

the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation $ACC \leftarrow [m]$

Skip if [m]=0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires

the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle

instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i=0

TABRD [m] Read table (specific page) to TBLH and Data Memory

Description The low byte of the program code (specific page) addressed by the table pointer pair

(TBHP and TBLP) is moved to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow program code (low byte)$

TBLH ← program code (high byte)

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow \text{program code (low byte)}$

TBLH ← program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved

to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow \text{program code (low byte)}$

TBLH ← program code (high byte)

Affected flag(s) None

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

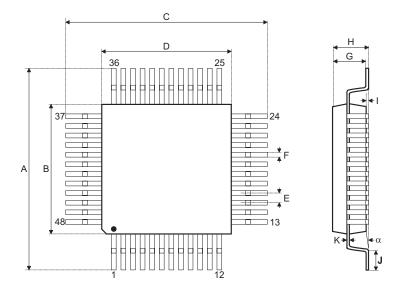
operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "XOR" x$

Affected flag(s) Z

Rev. 1.20 132 November 26, 2019

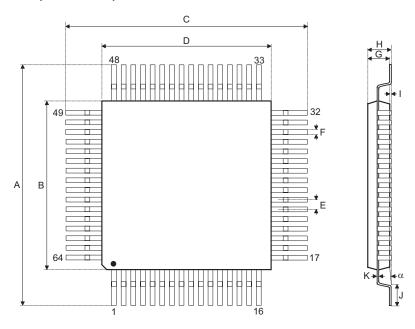
Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- · Carton information

48-pin LQFP (7mm×7mm) Outline Dimensions


Symbol		Dimensions in inch	
Symbol	Min.	Nom.	Max.
А	_	0.354 BSC	_
В	_	0.276 BSC	_
С	_	0.354 BSC	_
D	_	0.276 BSC	_
E	_	0.020 BSC	_
F	0.007	0.009	0.011
G	0.053	0.055	0.057
Н	_	_	0.063
I	0.002	_	0.006
J	0.018	0.024	0.030
K	0.004	_	0.008
α	0°	_	7°

Symbol		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	_	9.00 BSC	_
В	_	7.00 BSC	_
С	_	9.00 BSC	_
D	_	7.00 BSC	_
E	_	0.50 BSC	_
F	0.17	0.22	0.27
G	1.35	1.40	1.45
Н	_	_	1.60
I	0.05	_	0.15
J	0.45	0.60	0.75
K	0.09	_	0.20
α	0°	_	7°

Rev. 1.20 134 November 26, 2019

64-pin LQFP (7mm×7mm) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
А	_	0.354 BSC	_
В	_	0.276 BSC	_
С	_	0.354 BSC	_
D	_	0.276 BSC	_
E	_	0.016 BSC	_
F	0.005	0.007	0.009
G	0.053	0.055	0.057
Н	_	_	0.063
I	0.002	_	0.006
J	0.018	0.024	0.030
К	0.004	_	0.008
α	0°	_	7°

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	_	9.00 BSC	_
В	_	7.00 BSC	_
С	_	9.00 BSC	_
D	_	7.00 BSC	_
E	_	0.40 BSC	_
F	0.13	0.18	0.23
G	1.35	1.40	1.45
Н	_	_	1.60
I	0.05	_	0.15
J	0.45	0.60	0.75
K	0.09	_	0.20
α	0°	_	7°

Rev. 1.20 135 November 26, 2019

Copyright[©] 2019 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.

Rev. 1.20 136 November 26, 2019