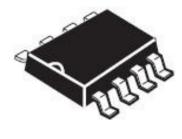
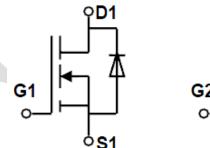
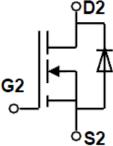
HOTEHIP®


HT9926


N-Channel Enhancement Mode Field Effect Transistor


FEATURES

- Super high dense cell design for low
 R_{DS(ON)}.
- Rugged and reliable.
- SOP-8 package.
- Pb Free.

Product Summary				
V _{DS} (V)	I _D (A)	$R_{DS(ON)}$ (m Ω) Max		
20V	6A	32 @V _{GS} = 4.0V		
		43 @V _{GS} = 2.5V		

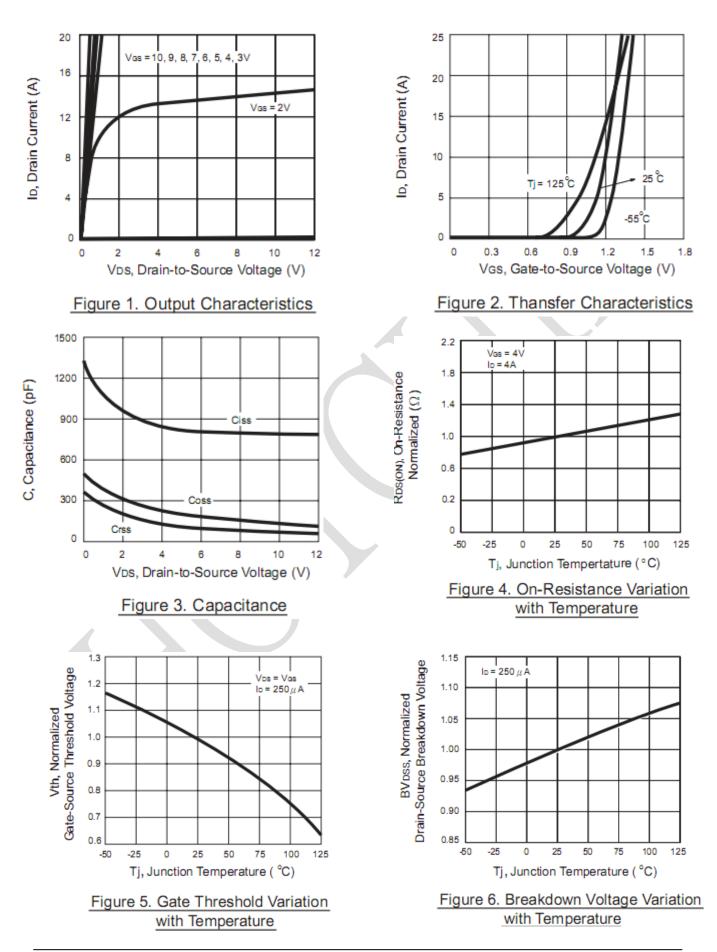
SOP-8

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	V_{GS}	±10	V	
Drain Current-Continuous @ T _C = 25 C	I _D	6	А	
-Pulse d ^b	I _{DM}	35	А	
Drain-Source Diode Forward Current ^a	I _S 1.7		А	
Maximum Power Dissipation ^a	P _D	2	W	
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to 150	°C	

THERMAL CHARACTERISTICS

Thermal Resistance, Junction-to-Ambient ^a	$R_{ extsf{ heta}JA}$	62.5	°C/W
--	-----------------------	------	------


ELECTRICAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Турс	Max	Unit	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250µA	20			V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =16V, V _{GS} =0V			1	μ Α	
Gate-Body Leakage	I _{GSS}	V _{GS} =±10V, V _{DS} =0V			±100	nA	
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =VGS, I _D =250µA	0.5	0.8	1.5	V	
Drain-Source On-State	R _{DS(ON)}	V _{GS} =4.0V, I _D =6A		25	32		
Resistance		V _{GS} =2.5V, I _D =3A		35	43	- mΩ	
On-State Drain Current	I _{D(ON)}	V _{DS} =5V, V _{GS} =4V	30			А	
Forward Transconductance	g fs	V _{DS} =5V, I _D =4A		12		S	
Input Capacitance	C _{ISS}	V _{DS} =8V		810			
Output Capacitance	C _{OSS}	V _{GS} =0V		155		₽F	
Reverse Transfer Capacitance	C _{RSS}	f=1.0MHz	-	125			
Turn-On Delay Time	t _{D(ON)}	V _{DD} =10V,		18			
Rise Time	tr	I _D =1A,		5			
Turn-Off Delay Time	t _{D(OFF)}	V _{GEN} =4.5V,		44		ns	
Fall Time	t _f	R _{GEN} =10Ω,		20			
		$R_L=10\Omega$					
Total Gate Charge	Qg	V _{DS} =10V,		11			
Gate-Source Charge	Q _{gs}	I _D =4A,		3		nC	
Gate-Drain Charge	Q_gd	V _{GS} =4.5V		2.5			
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _D =1A		0.8	1.2	V	

Notes:

- a. Surface Mounted on FR4 Board, t \leq 10 sec.
- b. Pulse Test: Pulse Width $\,\leqslant\,$ 300 $\,\,\mu$ s, Duty Cycle $\,\leqslant\,$ 2%.
- c. Guaranteed by design, not subject to production testing.

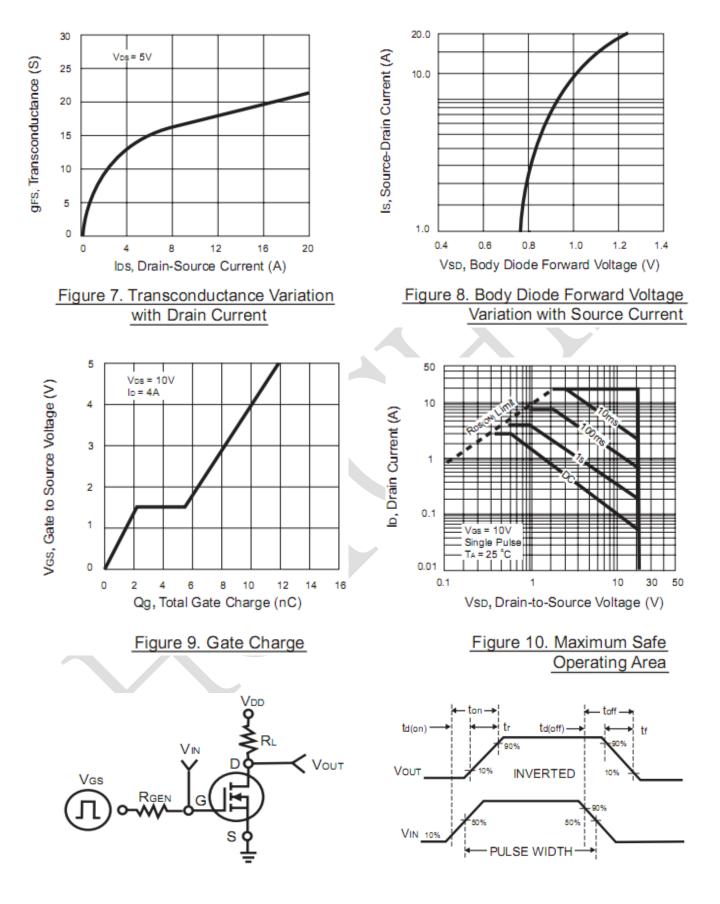
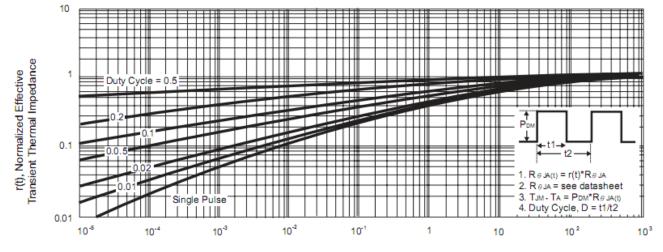



Figure 11. Switching Test Circuit

Figure 12. Switching Waveforms

HT9926

Square Wave Pulse Duration (sec)

Copyright © 2008 by HOTCHIP TECHNOLOGY CO., LTD.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, HOTCHIP assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and HOTCHIP makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. HOTCHIP's products are not authorized for use as critical components in life support devices or systems. HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.net.cn.