

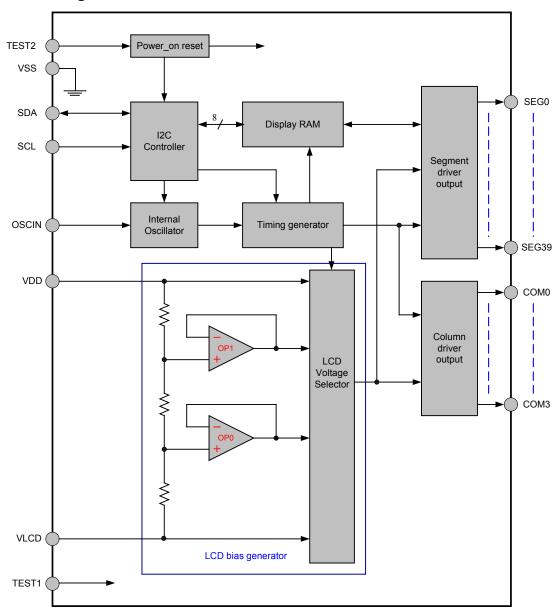
# HT9B92G RAM Mapping 40×4 LCD Driver

### **Feature**

- Logic Operating Voltage: 2.4V~5.5V
- · Integrated oscillator circuitry
- Bias: 1/2 or 1/3; Duty:1/4
- Internal LCD bias generation with voltage-follower buffers
- External VLCD pin to supply LCD operating voltage
- Support I<sup>2</sup>C-bus serial interface
- Selectable LCD Frame Frequencies
- Up to 40×4 bits RAM for display data storage
- Maximum Display patterns: 40×4 patterns 40 segments and 4 commons
- Versatile blinking modes: off, 0.5Hz, 1Hz, 2Hz
- Write address auto-increment
- Support Power Save Mode for low power consumption
- · Manufactured in silicon gate CMOS process
- · Package Type: COG and chip

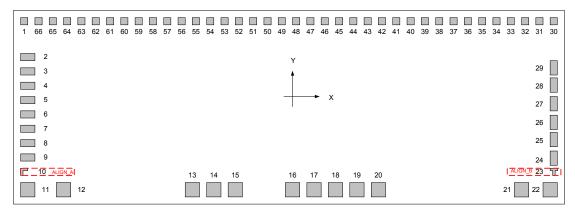
### **Applications**

- · Leisure products
- · Games
- · Telephone display.
- · Audio Combo display
- · Video Player display
- · Kitchen Appliance display
- · Measurement equipment display
- · Household appliance
- · Consumer electronics


### **General Description**

The device is a memory mapping and multi-function LCD controller driver. The maximum display segments of the device are 160 patterns (40 segments and 4commons) display. The software configuration feature of the HT9B92G device makes it suitable for multiple LCD applications including LCD modules and display subsystems. The device communicates with most microprocessors / microcontrollers via a two-wire bidirectional I<sup>2</sup>C-bus interface.

Rev. 1.10 1 November 25, 2015




## **Block Diagram**





## **Pad Assignment**



### **Pad Dimensions**

| 140.00         | Number. S   |                | Si   | ze   | I Init |
|----------------|-------------|----------------|------|------|--------|
| Item           |             |                | X    | Y    | Unit   |
| Chip size      | _           | _              | 2402 | 1100 | μm     |
| Chip thickness | _           | _              | 50   | 08   | μm     |
|                | 1~9, 3      | 30~66          | 6    | 0    | μm     |
| Pad pitch      | 24          | 24~29 80 μm    |      | μm   |        |
| 11~            |             | -22            | 85   |      | μm     |
|                | Outrast mad | 2~9            | 67   | 47   | μm     |
|                | Output pad  | 31~66          | 47   | 67   | μm     |
| Bump size      | Input pad   | 13~20          | 74   | 74   | μm     |
|                | Dummy nod   | 11, 12, 21, 22 | 74   | 74   | μm     |
|                | Dummy pad   | 1, 24~30       | 47   | 67   | μm     |
| Bump height    | All pad     |                | 18   | ±3   | μm     |

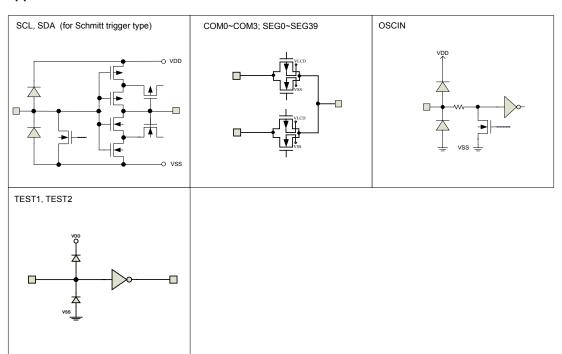
### **Alignment mark Dimensions**

| Item    | Number | Size                             | Unit |
|---------|--------|----------------------------------|------|
| ALIGN_A | 10     | 10µm<br>10µm<br>20µm<br>40µm     | μm   |
| ALIGN_B | 23     | (X, Y)  10μm 20μm 40μm 20μm 20μm | μm   |



## **Pad Coordinates**

Unit: µm


| No | Name    | Х       | Υ        | No | Name  | Х        | Υ     |
|----|---------|---------|----------|----|-------|----------|-------|
| 1  | DUMMY   | -1117   | 455.5    | 34 | SEG3  | 870.05   | 455.5 |
| 2  | SEG36   | -1106.5 | 155.66   | 35 | SEG4  | 810.05   | 455.5 |
| 3  | SEG37   | -1106.5 | 95.66    | 36 | SEG5  | 750.05   | 455.5 |
| 4  | SEG38   | -1106.5 | 35.66    | 37 | SEG6  | 690.05   | 455.5 |
| 5  | SEG39   | -1106.5 | -24.34   | 38 | SEG7  | 630.05   | 455.5 |
| 6  | COM0    | -1106.5 | -84.34   | 39 | SEG8  | 570.05   | 455.5 |
| 7  | COM1    | -1106.5 | -144.34  | 40 | SEG9  | 510.05   | 455.5 |
| 8  | COM2    | -1106.5 | -204.34  | 41 | SEG10 | 450.05   | 455.5 |
| 9  | COM3    | -1106.5 | -264.34  | 42 | SEG11 | 390.05   | 455.5 |
| 10 | ALIGN_A | -1124   | -340     | 43 | SEG12 | 330.05   | 455.5 |
| 11 | DUMMY   | -1104   | -452     | 44 | SEG13 | 270.05   | 455.5 |
| 12 | DUMMY   | -966.45 | -452     | 45 | SEG14 | 210.05   | 455.5 |
| 13 | VLCD    | -406.8  | -452     | 46 | SEG15 | 150.05   | 455.5 |
| 14 | VDD     | -319.8  | -452     | 47 | SEG16 | 90.05    | 455.5 |
| 15 | VSS     | -234.8  | -452     | 48 | SEG17 | 30.05    | 455.5 |
| 16 | TEST1   | -12.8   | -446.4   | 49 | SEG18 | -29.95   | 455.5 |
| 17 | OSCIN   | 72.2    | -446.4   | 50 | SEG19 | -89.95   | 455.5 |
| 18 | SCL     | 160.9   | -446.4   | 51 | SEG20 | -149.95  | 455.5 |
| 19 | SDA     | 245.9   | -446.4   | 52 | SEG21 | -209.95  | 455.5 |
| 20 | TEST2   | 334.6   | -446.4   | 53 | SEG22 | -269.95  | 455.5 |
| 21 | DUMMY   | 910     | -452     | 54 | SEG23 | -329.95  | 455.5 |
| 22 | DUMMY   | 1104    | -452     | 55 | SEG24 | -389.95  | 455.5 |
| 23 | ALIGN_B | 1104    | -340     | 56 | SEG25 | -449.95  | 455.5 |
| 24 | DUMMY   | 1117    | -278.292 | 57 | SEG26 | -509.95  | 455.5 |
| 25 | DUMMY   | 1117    | -198.292 | 58 | SEG27 | -569.95  | 455.5 |
| 26 | DUMMY   | 1117    | -118.292 | 59 | SEG28 | -629.95  | 455.5 |
| 27 | DUMMY   | 1117    | -38.292  | 60 | SEG29 | -689.95  | 455.5 |
| 28 | DUMMY   | 1117    | 41.708   | 61 | SEG30 | -749.95  | 455.5 |
| 29 | DUMMY   | 1117    | 121.708  | 62 | SEG31 | -809.95  | 455.5 |
| 30 | DUMMY   | 1117    | 455.5    | 63 | SEG32 | -869.95  | 455.5 |
| 31 | SEG0    | 1050.05 | 455.5    | 64 | SEG33 | -929.95  | 455.5 |
| 32 | SEG1    | 990.05  | 455.5    | 65 | SEG34 | -989.95  | 455.5 |
| 33 | SEG2    | 930.05  | 455.5    | 66 | SEG35 | -1049.95 | 455.5 |



## **Pad Description**

| Pin Name   | Туре | Description                                                                                                                                                                                                                                                                                                           |
|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDA        | I/O  | Serial Data Input/Output pin<br>Serial Data (SDA) Input/Output for 2-wire I <sup>2</sup> C interface is an NMOS open drain structure.                                                                                                                                                                                 |
| SCL        | ı    | Serial Clock Input pin Serial Data (SCL) is a clock input for 2-wire I <sup>2</sup> C interface.                                                                                                                                                                                                                      |
| OSCIN      | I    | External Clock Input pin The external and internal clock mode can be selected by the command. When the internal oscillator circuitry is used, this pin must be connected to V <sub>ss</sub> .                                                                                                                         |
| TEST1      | I    | Test mode input pin When this pin is connected to $V_{\text{DD}}$ , the device will enter the test mode.                                                                                                                                                                                                              |
| TEST2      | I    | Power on reset control pin The internal power on reset circuitry will be enabled if this pin is connected to $V_{\text{SS}}$ . If this pin is connected to $V_{\text{DD}}$ , the internal power on reset circuitry will be disabled and the reset function will be performed by executing the software reset command. |
| COM0~COM3  | 0    | LCD Common outputs.                                                                                                                                                                                                                                                                                                   |
| SEG0~SEG39 | 0    | LCD Segment outputs.                                                                                                                                                                                                                                                                                                  |
| VDD        | _    | Positive power supply.                                                                                                                                                                                                                                                                                                |
| VSS        | _    | Negative power supply, ground.                                                                                                                                                                                                                                                                                        |
| VLCD       | _    | LCD power supply pin                                                                                                                                                                                                                                                                                                  |

## **Approximate Internal Connections**





### **Absolute Maximum Ratings**

| SupplyVoltage $V_{SS}$ -0.3V to $V_{DD}$ +6.5 | 5V | Storage Temperature55°C to 1 | 50°C |
|-----------------------------------------------|----|------------------------------|------|
| Input Voltage $V_{SS}$ -0.3V to $V_{DD}$ +0.3 | V  | Operating Temperature40°C to | 85°C |

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

### **D.C. Characteristics**

 $V_{SS} = 0V$ ;  $V_{DD} = 2.4V$  to 5.5V; Ta = -40 to  $+85^{\circ}C$ 

|                   |                            |                 | Test Condition                                                                                                     | Min.               |      |                      |      |
|-------------------|----------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------|--------------------|------|----------------------|------|
| Symbol            | Parameter                  | V <sub>DD</sub> | V <sub>DD</sub> Condition                                                                                          |                    | Тур. | Max.                 | Unit |
| V <sub>DD</sub>   | Operating Voltage          | _               | _                                                                                                                  | 2.4                | _    | 5.5                  | V    |
| V <sub>LCD</sub>  | LCD Operating Voltage      | _               | _                                                                                                                  | 0                  | _    | V <sub>DD</sub> -2.4 | V    |
| V <sub>IH</sub>   | Input High Voltage         | _               | SCL, SDA, TEST1, TEST2                                                                                             | 0.7V <sub>DD</sub> | _    | V <sub>DD</sub>      | V    |
| VIL               | Input Low Voltage          | _               | SCL, SDA, TEST1, TEST2                                                                                             | 0                  | _    | 0.3V <sub>DD</sub>   | V    |
| IIL               | Input Leakage Current      | _               | V <sub>IN</sub> = V <sub>SS</sub> or V <sub>DD</sub>                                                               | -1                 | _    | 1                    | μА   |
|                   | Low Lovel Output Current   | 3.3V            | // =0.4\/ for CDA nin                                                                                              | 6                  | _    | _                    | mA   |
| loL               | Low Level Output Current   | 5.0V            | V <sub>OL</sub> =0.4V for SDA pin                                                                                  | 9                  | _    | _                    | mA   |
|                   |                            |                 | No load, 1/3bias, B type inversion, Ta=25°C, LCD display on,                                                       | _                  | 7.5  | 15                   | μА   |
| I <sub>DD</sub>   | Operating Current          | 5.0V            | $f_{\text{LCD}}$ =80Hz, $V_{\text{LCD}}$ pin is connected to $V_{\text{SS}}$ , Power save mode = Low Current2 mode | _                  | 12   | 20                   | μА   |
|                   | Chandles Course            | 3.3V            | No load, 1/3bias, B type inversion, Ta = 25°C, LCD display off,                                                    | _                  | _    | 1                    | μА   |
| I <sub>STB1</sub> | Standby Current 5.0        | 5.0V            | f <sub>LCD</sub> =80Hz, VLCD pin is connected to V <sub>ss</sub> , Power save mode = Low Current2 mode             | _                  | _    | 2                    | μА   |
| R <sub>PL</sub>   | Pull-Low Resistance        | 3.3V            | For OSCIN pin                                                                                                      | 2                  | 4    | 6.5                  | kΩ   |
| I VPL             | T dil Edw Redictarioe      | 5.0V            | TOT GOOM PIN                                                                                                       | 1.5                | 3    | 4.5                  | 132  |
|                   | 1000                       |                 | V <sub>DD</sub> -V <sub>LCD</sub> =3.30V, V <sub>OL</sub> =0.33V                                                   | 250                | 400  | _                    | μА   |
| I <sub>OL1</sub>  | LCD Common Sink Current    | _               | V <sub>DD</sub> -V <sub>LCD</sub> =5.00V, V <sub>OL</sub> =0.50V                                                   | 500                | 800  | _                    | μА   |
|                   | LCD Common Course Current  |                 | V <sub>DD</sub> -V <sub>LCD</sub> =3.30V, V <sub>OH</sub> =2.97V                                                   | -140               | -230 | _                    | μА   |
| Іон1              | LCD Common Source Current  |                 | V <sub>DD</sub> -V <sub>LCD</sub> =5.00V, V <sub>OH</sub> =4.50V                                                   | -300               | -500 | _                    | μА   |
| la. a             | LCD Segment Sink Current   |                 | V <sub>DD</sub> -V <sub>LCD</sub> =3.30V, V <sub>OL</sub> =0.33V                                                   | 250                | 400  | _                    | μА   |
| I <sub>OL2</sub>  | LCD Segment Sink Current   |                 | V <sub>DD</sub> -V <sub>LCD</sub> =5.00V, V <sub>OL</sub> =0.50V                                                   | 500                | 800  | _                    | μА   |
| Laura             | LCD Sogment Source Current |                 | V <sub>DD</sub> -V <sub>LCD</sub> =3.30V, V <sub>OH</sub> =2.97V                                                   | -140               | -230 | _                    | μА   |
| I <sub>OH2</sub>  | LCD Segment Source Current |                 | V <sub>DD</sub> -V <sub>LCD</sub> =5.00V, V <sub>OH</sub> =4.50V                                                   | -300               | -500 | _                    | μΑ   |

Rev. 1.10 6 November 25, 2015



## A.C. Characteristics

Ta=-40 to +85°C

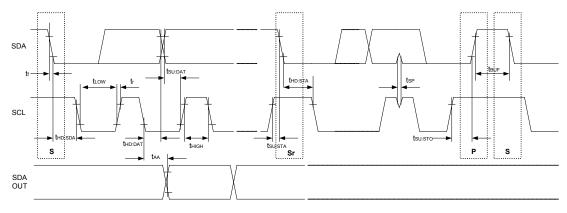
| Symbol            | Parameter                       | Parameter Test Condition                                                          |                                                                                   | Min.                                                                              | Tvn   | Max.   | Unit  |
|-------------------|---------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------|--------|-------|
| Symbol            | V <sub>DD</sub>                 |                                                                                   | V <sub>DD</sub> Condition                                                         |                                                                                   | Тур.  | IVIAX. | OIIIL |
|                   |                                 |                                                                                   | Ta=25°C, internal oscillator is used,<br>Display control command: P[4:3]="00"     | 72.0                                                                              | 80.0  | 88.0   |       |
| f <sub>LCD1</sub> | LCD Frame Fraguency             | 3.3V                                                                              | Ta=25°C, internal oscillator is used,<br>Display control command: P[4:3]="01"     | 63.9                                                                              | 71.0  | 78.1   | Hz    |
| ILCD1             | LCD Frame Frequency 3.3\        | 3.30                                                                              | Ta=25°C, internal oscillator is used,<br>Display control command: P[4:3]="10"     | 57.6                                                                              | 64.0  | 70.4   | П     |
|                   |                                 |                                                                                   | Ta=25°C, internal oscillator is used,<br>Display control command: P[4:3]="11"     | 47.7                                                                              | 53.0  | 58.3   |       |
|                   | LCD Frame Frequency 2.4V ~ 5.5V | Ta=-40 to 85°C, internal oscillator is used, Display control command: P[4:3]="00" | 56.0                                                                              | 80.0                                                                              | 104.0 |        |       |
| f <sub>LCD2</sub> |                                 | LCD Frame Frequency ~                                                             | Ta=-40 to 85°C, internal oscillator is used, Display control command: P[4:3]="01" | 49.7                                                                              | 71.0  | 92.3   | Hz    |
| ILCD2             |                                 |                                                                                   | 5.5V                                                                              | Ta=-40 to 85°C, internal oscillator is used, Display control command: P[4:3]="10" | 44.8  | 64.0   | 83.2  |
|                   |                                 |                                                                                   | Ta=-40 to 85°C, internal oscillator is used, Display control command: P[4:3]="11" | 37.1                                                                              | 53.0  | 68.9   |       |
| t <sub>SR</sub>   | VDD Slew Rate                   | _                                                                                 | _                                                                                 | 0.05                                                                              | _     | _      | V/ms  |
| t <sub>POF</sub>  | VDD OFF Times                   | _                                                                                 | VDD drop down to 0.9V                                                             | 10                                                                                | _     | _      | ms    |
| trsoff            | Wait Time for Data Transfers    |                                                                                   | 2-wire I <sup>2</sup> C-bus                                                       | 1                                                                                 | _     | _      | ms    |

Note:  $f_{LCD}=1/t_{LCD}$ 

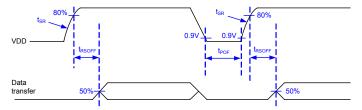
### I<sup>2</sup>C Interface Characteristics

Unless otherwise specified,  $V_{SS}$ =0V;  $V_{DD}$ =2.4V~5.5V; Ta=-40 to +85°C

| Symbol               | Parameter                                     | Condition                                                              | Min. | Max. | Unit |
|----------------------|-----------------------------------------------|------------------------------------------------------------------------|------|------|------|
| f <sub>SCL</sub>     | Clock frequency                               | _                                                                      | _    | 400  | kHz  |
| t <sub>BUF</sub>     | bus free time                                 | Time in which the bus must be free before a new transmission can start | 1.3  | _    | μS   |
| t <sub>HD: STA</sub> | Start condition hold time                     | After this period, the first clock pulse is generated                  | 0.6  | _    | μS   |
| t <sub>LOW</sub>     | SCL Low time                                  | _                                                                      | 1.3  | _    | μS   |
| t <sub>HIGH</sub>    | SCL High time                                 | _                                                                      | 0.6  | _    | μS   |
| tsu: sta             | Start condition setup time                    | Only relevant for repeated START condition                             | 0.6  | _    | μS   |
| t <sub>HD: DAT</sub> | Data hold time                                | _                                                                      | 0    | _    | ns   |
| tsu: dat             | Data setup time                               | _                                                                      | 100  | _    | ns   |
| t <sub>R</sub>       | SDA and SCL rise time                         | Note                                                                   | _    | 0.3  | μS   |
| t <sub>F</sub>       | SDA and SCL fall time                         | Note                                                                   | _    | 0.3  | μS   |
| tsu: sto             | Stop condition set-up time                    | _                                                                      | 0.6  | _    | μS   |
| t <sub>AA</sub>      | Output Valid from Clock                       | _                                                                      | _    | 0.9  | μS   |
| t <sub>SP</sub>      | Input Filter Time Constant (SDA and SCL Pins) | Noise suppression time                                                 | _    | 50   | ns   |


Note: These parameters are periodically sampled but not 100% tested.

Rev. 1.10 7 November 25, 2015




### **Timing Diagrams**

### I<sup>2</sup>C Timing



### **Power On Reset Timing**



Note: 1. If the conditions of Reset timing are not satisfied in power ON/OFF sequence, the internal Power on Reset (POR) circuit will not operate normally.

- 2. If the  $V_{DD}$  drops lower than the minimum operating voltage during operating, the conditions of Power on Reset timing must also be satisfied. That is the  $V_{DD}$  drop to 0.9V and keep at 0.9V for 10ms (min.) before rising to the normal operating voltage.
- 3. Data transfers on the  $I^2C$  serial bus should at least be delayed for 1ms after the power-on sequence to ensure that the reset operation is complete.
- 4. If it is difficult to meet the power on reset timing specifications, users can execute the software reset command after power-on.

Rev. 1.10 8 November 25, 2015



### **Functional Description**

### **Power-On Reset**

When the power is applied, the device is initialized by an internal power-on reset circuit. The status of the internal circuits after initialization is as follows:

- All common outputs are set to V<sub>SS</sub>.
- All segment outputs are set to V<sub>SS</sub>.
- LCD Driver Output Waveform: A-type inversion.
- Internal oscillator is selected.
- The 1/3 bias drive mode is selected.
- LCD bias generator is in an off state.
- · LCD Display and internal oscillator are in off states.
- · Power save mode is set to normal current.
- Frame Frequency is set to 80Hz.
- · Blinking function is switched off.

Data transfers on the I<sup>2</sup>C-bus should be avoided for 1 ms following power-on to allow completion of the reset action.

#### **System Oscillator**

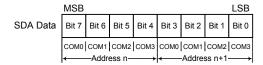
The timing for the internal logic and the LCD drive signals are generated by the internal oscillator or external clock source input. The System Clock frequency ( $f_{SYS}$ ) determines the LCD frame frequency. During initial system power on the System Oscillator will be in the stop state.

#### **Segment Driver Outputs**

The LCD drive section includes up to 40 segment outputs SEG0~SEG39 which should be connected directly to the LCD panel. The segment output signals are generated in accordance with the multiplexed common signals and with the data resident in the display latch. The unused segment outputs should be left open-circuit.

#### **Column Driver Outputs**

The LCD drive section includes 4 column outputs COM0~COM3 which should be connected directly to the LCD panel. The column output signals are generated in accordance with the selected LCD drive mode. The unused column outputs should be left open-circuit if less than 4 column outputs are required.


#### **Address Pointer**

The addressing mechanism for the display RAM is implemented using the address pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the address pointer by the Display Data Input command.

#### **Display Memory - RAM Structure**

The display RAM is static 40×4 bits RAM which stores the LCD data. Logic "1" in the RAM bit-map indicates the "on" state of the corresponding LCD segment; similarly, logic 0 indicates the "off" state.

The contents of the RAM data are directly mapped to the LCD data. The first RAM column corresponds to the segments operated with respect to COM0. In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with COM1, COM2 and COM3 respectively. The following diagram is a data transfer format for I<sup>2</sup>C interface.



LCD Display Output Data Transfer Format for I<sup>2</sup>C bus

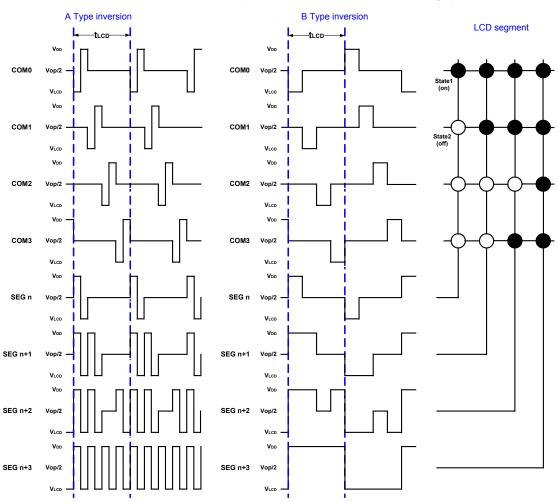
Rev. 1.10 9 November 25, 2015



| Address  | COM0  | COM1  | COM2  | СОМЗ  | Output |
|----------|-------|-------|-------|-------|--------|
| 00H      |       |       |       |       | SEG0   |
| 01H      |       |       |       |       | SEG1   |
| 02H      |       |       |       |       | SEG2   |
| 03H      |       |       |       |       | SEG3   |
| 04H      |       |       |       |       | SEG4   |
| 05H      |       |       |       |       | SEG5   |
| 06H      |       |       |       |       | SEG6   |
| 07H      |       |       |       |       | SEG7   |
| 08H      |       |       |       |       | SEG8   |
| 09H      |       |       |       |       | SEG9   |
| 0AH      |       |       |       |       | SEG10  |
| 0BH      |       |       |       |       | SEG11  |
| 0CH      |       |       |       |       | SEG12  |
| 0DH      |       |       |       |       | SEG13  |
| 0EH      |       |       |       |       | SEG14  |
| 0FH      |       |       |       |       | SEG15  |
| 10H      |       |       |       |       | SEG16  |
| 11H      |       |       |       |       | SEG17  |
| 12H      |       |       |       |       | SEG18  |
| 13H      |       |       |       |       | SEG19  |
| 14H      |       |       |       |       | SEG20  |
| 15H      |       |       |       |       | SEG21  |
| 16H      |       |       |       |       | SEG22  |
| 17H      |       |       |       |       | SEG23  |
| 18H      |       |       |       |       | SEG24  |
| 19H      |       |       |       |       | SEG25  |
| 1AH      |       |       |       |       | SEG26  |
| 1BH      |       |       |       |       | SEG27  |
| 1CH      |       |       |       |       | SEG28  |
| 1DH      |       |       |       |       | SEG29  |
| 1EH      |       |       |       |       | SEG30  |
| 1FH      |       |       |       |       | SEG31  |
| 20H      |       |       |       |       | SEG32  |
| 21H      |       |       |       |       | SEG33  |
| 22H      |       |       |       |       | SEG34  |
| 23H      |       |       |       |       | SEG35  |
| 24H      |       |       |       |       | SEG36  |
| 25H      |       |       |       |       | SEG37  |
| 26H      |       |       |       |       | SEG38  |
| 27H      |       |       |       |       | SEG39  |
| RAM Data | Bit 3 | Bit 2 | Bit 1 | Bit 0 |        |

Note: 1. The LCD display RAM address is specified by the Address Set command and the address will be automatically incremented by one after a 4-bit data is shifted in.

2. The address of the display RAM data is from 00H to 27H.



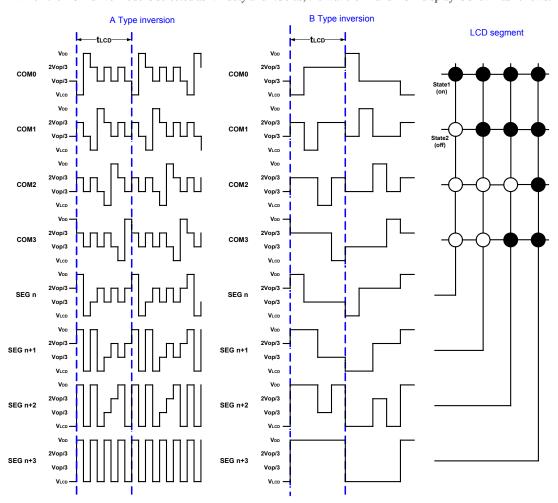

#### **LCD Bias Generator**

Fractional LCD biasing voltages, known as 1/2 or 1/3 bias voltage, are obtained from an internal voltage divider of three series resistors connected between  $V_{\text{LCD}}$  and  $V_{\text{DD}}$ . The centre resistor can be switched out of circuits to provide a 1/2 bias voltage level configuration.

#### **LCD Drive Mode Waveforms**

• When the LCD drive mode is selected as 1/4 duty and 1/2 bias, the waveform and LCD display is shown as follows:




Waveforms for 1/4 duty drive mode with 1/2 bias ( $V_{\text{OP}} = V_{\text{DD}} - V_{\text{LCD}}$ )

Note:  $t_{LCD}=1/f_{LCD}$ 

Rev. 1.10 November 25, 2015



• When the LCD drive mode is selected as 1/4 duty and 1/3bias, the waveform and LCD display is shown as follows:



Waveforms for 1/4 duty drive mode with 1/2 bias ( $V_{\text{OP}}$ = $V_{\text{DD}}$ - $V_{\text{LCD}}$ )

Note:  $t_{LCD}=1/f_{LCD}$ 



### **Blinking Function**

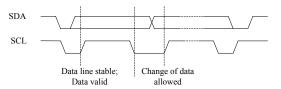
The device contains versatile blinking capabilities. The whole display can be blinked at frequencies selected by the Blinking Frequency command. The blinking frequency is a subdivided ratio of the system frequency. The ratio between the system oscillator and blinking frequencies depends on the blinking mode in which the device is operating, as shown in the following table:

| Blinking Mode | Blinking frequency (Hz) |
|---------------|-------------------------|
| 0             | Blink off               |
| 1             | 0.5                     |
| 2             | 1                       |
| 3             | 2                       |

#### **Frame Frequency**

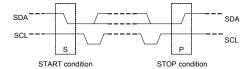
The device provides four frame frequencies selected with the Frame Frequency command known as 80Hz, 71Hz, 64Hz and 53Hz respectively.

| Mode | Frame frequency (Hz) @ VDD=3.3V |
|------|---------------------------------|
| 0    | 80                              |
| 1    | 71                              |
| 2    | 64                              |
| 3    | 53                              |


### I<sup>2</sup>C Serial Interface

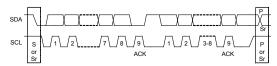
### I<sup>2</sup>C Operation

The device supports I<sup>2</sup>C serial interface. The I<sup>2</sup>C bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line, SDA, and a serial clock line, SCL. Both lines are connected to the positive supply via pull-up resistors. When the bus is free, both lines are high. Devices connected to the bus must have open-drain or open-collector outputs to implement a wired-or function. Data transfer is initiated only when the bus is not busy.


#### **Data Validity**

The data on the SDA line must be stable during the high period of the serial clock. The high or low state of the data line can only change when the clock signal on the SCL line is Low as shown in the diagram.



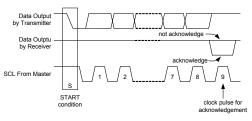

#### **START and STOP Conditions**

- A high to low transition on the SDA line while SCL is high defines a START condition.
- A low to high transition on the SDA line while SCL is high defines a STOP condition.
- START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition.
- The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In some respects, the START(S) and repeated START (Sr) conditions are functionally identical.



#### **Byte Format**

Every byte put on the SDA line must be 8-bit long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit, MSB, first.




Rev. 1.10 13 November 25, 2015



#### Acknowledge

- Each bytes of eight bits is followed by one acknowledge bit. This Acknowledge bit is a low level placed on the bus by the receiver. The master generates an extra acknowledge related clock pulse.
- A slave receiver which is addressed must generate an Acknowledge, ACK, after the reception of each byte.
- The device that acknowledges must pull down the SDA line during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse.
- A master receiver must signal an end of data to the slave by generating a not-acknowledge, NACK, bit on the last byte that has been clocked out of the slave. In this case, the master receiver must leave the data line high during the 9<sup>th</sup> pulse to not acknowledge. The master will generate a STOP or repeated START condition.



#### Slave Addressing

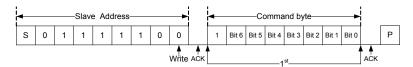
- The slave address byte is the first byte received following the START condition form the master device. The first seven bits of the first byte make up the slave address. This device only supports the write operation and therefore, the eighth data bit, R/W, which is used to define a read or write operation will be fixed at a "0" state. If the R/W bit is set to 1 to execute a read operation, it will result in no operation.
- The device address bits are "0111110". When an address byte is sent, the device compares the first seven bits after the START condition. If they match, the device outputs an Acknowledge on the SDA line.



### I<sup>2</sup>C Interface Write Operation

#### **Byte Write Operation**

- Single Command Type
   A Single Command write operation requires a
   START condition, a slave address with a write
   control bit, a command byte and a STOP condition
   for a single command write operation.
- Compound Command Type
   A Compound Command write operation requires
   a START condition, a slave address with a write
   control bit, a command byte, up to two command
   setting bytes and a STOP condition for a compound
   command write operation.
- Display RAM Single Data Byte
   A display RAM data byte write operation requires
   a START condition, a slave address with a write
   control bit, a valid Register Address byte, a Data
   byte and a STOP condition.


The start address can only be set from 00H to 1FH. The start address which is greater than 1FH will be regarded as a command. Therefore, it is recommended that the start address should be set from 00H to 1FH.

#### **Display RAM Page Write Operation**

After a START condition the slave address with a write control bit is placed on the bus followed with the specified display RAM Register Address of which the contents are written into the internal address pointer. The data to be written into the memory will be transmitted next. The internal address pointer will be incremented by 1 after a 4-bit data is shifted in. Then the acknowledge clock pulse will be received after an 8-bit data is shifted. After the internal address point reaches the maximum memory address, 27H, the address pointer will be reset to 00H. It is strongly recommended to write the display RAM data from address 00H to 27H using the Display RAM Page Write Operation.

Rev. 1.10 14 November 25, 2015

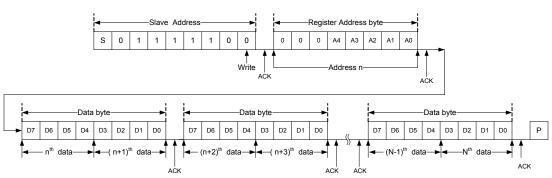




#### I<sup>2</sup>C Single Command Type Write Operation



I<sup>2</sup>C Compound Command Type Write Operation




I<sup>2</sup>C Display RAM Single Data Byte Write Operation

### **Command Summary**

The bit 7 denoted as "C" here is the control bit which is used to determine that the next byte is the display RAM data or command byte.

| C bit | Remark                         |
|-------|--------------------------------|
| 0     | Next byte is Display RAM data. |
| 1     | Next byte is command.          |



I<sup>2</sup>C Interface N Bytes Display RAM Data Write Operation

### **Display RAM Address Setting Command**

This command is used to define the start address of the display RAM.

| Function        | (MSB) Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB) Bit0 | Note                             |
|-----------------|------------|------|------|------|------|------|------|------------|----------------------------------|
| Address Pointer | С          | 0    | 0    | A4   | А3   | A2   | A1   | A0         | Display RAM memory start address |

Note: 1. The address ranges from 00H to 1FH.

- 2. It is strongly recommended to write the display RAM data from address 00H to 27H at one time.
- 3. Power on status: the address will be set to 00H.
- 4. If the programmed command is not defined, the function will not be affected.

Rev. 1.10 15 November 25, 2015



### **Drive Mode Setting Command**

This command is used to control the LCD bias and display on/off.

| Function                        | (MSB) Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB) Bit0 | Note |
|---------------------------------|------------|------|------|------|------|------|------|------------|------|
| Bias and Display on/off setting | С          | 1    | 0    | Х    | P3   | P2   | Х    | X          | _    |

#### Note:

| P2 | Bias               |
|----|--------------------|
| 0  | 1/3 bias (default) |
| 1  | 1/2 bias           |

| P3 | LCD Display On/Off |  |  |  |  |  |
|----|--------------------|--|--|--|--|--|
| 0  | Off (default)      |  |  |  |  |  |
| 1  | On                 |  |  |  |  |  |

- Power on status: The 1/3 bias drive mode is selected and the LCD display is switched off.
- If the programmed command is not defined, the function will not be affected.

### **Display Control Command**

This command is used to select the Current mode according to the characteristics of the LCD panel for achieving high display quality and LCD driver output waveform set and frame frequency select.

| Function                | (MSB) Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB) Bit0 | Note |
|-------------------------|------------|------|------|------|------|------|------|------------|------|
| Display Control Setting | С          | 0    | 1    | P4   | P3   | P2   | P1   | P0         | _    |

#### Note:

| P [1:0] | Power Save Mode     | <b>Current Consumption</b> | Remark                                                                                           |
|---------|---------------------|----------------------------|--------------------------------------------------------------------------------------------------|
| 00      | Low Current2 Mode   | x 0.5                      | The data listed here is for reference only. The                                                  |
| 01      | Low Current1 Mode   | x 0.67                     | actual data depends upon the panel load.                                                         |
| 10      | Normal Current Mode | x 1 (default)              | Please meet the condition: V <sub>DD</sub> -V <sub>LCD</sub> ≥3V when used in High current mode. |
| 11      | High Current Mode   | x 1.8                      |                                                                                                  |

| P2 | LCD Driver Output Waveform | Remark |
|----|----------------------------|--------|
| 0  | A Type inversion (default) |        |
| 1  | B Type inversion           |        |

| P [4:3] | Frame Frequency @V <sub>DD</sub> =3.3V (Hz) | Remark                                                                                                               |
|---------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 00      | 80 (default)                                | The data listed here is for reference only. The actual data                                                          |
| 01      | 71                                          | depends upon the panel load.                                                                                         |
| 10      | 64                                          | <ul> <li>Please meet the condition: V<sub>DD</sub>-V<sub>LCD</sub>≥3V when used in<br/>High current mode.</li> </ul> |
| 11      | 53                                          | Thigh carron mode.                                                                                                   |

• The setting of the frame frequency, LCD output waveform and current mode will influence the display image qualities. Please select a proper display setting suitable for the current consumption and display image quality with LCD panel.

| Mode                       | Flicker | Image Quality/Contrast |
|----------------------------|---------|------------------------|
| Frame Frequency            | 0       |                        |
| LCD Driver Output Waveform | 0       | 0                      |
| Power Save Mode            |         | 0                      |

• If the programmed command is not defined, the function will not be affected.

Rev. 1.10 16 November 25, 2015



### **Software Reset and Oscillator Mode Setting Command**

This command is used to select the system oscillator source and to initiate a software reset.

| Function                                     | (MSB) Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB) Bit0 | Note |
|----------------------------------------------|------------|------|------|------|------|------|------|------------|------|
| System Oscillator Setting and Software Reset | С          | 1    | 1    | 0    | 1    | Χ    | P1   | P0         |      |

| P1 | Software Reset         | Remark                                                                                                                        |  |  |  |  |
|----|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0  | No Operation (default) | When a "Software Reset" is executed, the device will be reset to an initial condition. Other settings can be configured after |  |  |  |  |
| 1  |                        | Software reset is completed.                                                                                                  |  |  |  |  |

| P0 | Oscillator Mode               | Remark                                                                                     |
|----|-------------------------------|--------------------------------------------------------------------------------------------|
| 0  | Internal Oscillator (default) | connected to V <sub>SS</sub> or open-circuit.                                              |
| 1  | External Clock Input Mode     | When the external clock mode is selected, the external clock is supplied on the OSCIN pin. |

When the software reset is executed, the device is initialized by an internal power-on reset circuit. The status of the internal circuits after initialization is as follows:

- All common outputs are set to V<sub>SS</sub>.
- All segment outputs are set to Vss.
- LCD Driver Output Waveform: A-type inversion.
- Internal oscillator source is selected.
- 1/3 bias is selected.
- LCD bias generator is off state.
- LCD Display and system oscillation are off state.
- Power save mode is set to normal current.
- Frame Frequency is set to 80Hz.
- Blinking function is switched off.

Note that if the programmed command is not defined, the function will not be affected.

### **Blinking Frequency Setting Command**

This command defines the blinking frequency of the display modes.

| Function                   | (MSB) Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | (LSB) Bit0 | Note |
|----------------------------|------------|------|------|------|------|------|------|------------|------|
| Blinking Frequency setting | С          | 1    | 1    | 1    | 0    | Х    | P1   | P0         | _    |
| Note:                      |            |      |      |      |      |      |      |            |      |

| P [1:0] | Blinking Frequency     | Remark |
|---------|------------------------|--------|
| 00      | Blinking off (default) |        |
| 01      | 0.5 Hz                 |        |
| 10      | 1 Hz                   | _      |
| 11      | 2 Hz                   |        |

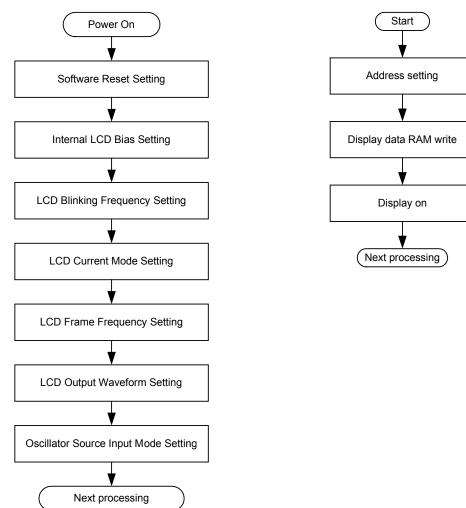
- Power on status: Blinking function is switched off.
- If the programmed command is not defined, the function will not be affected.

Rev. 1.10 17 November 25, 2015



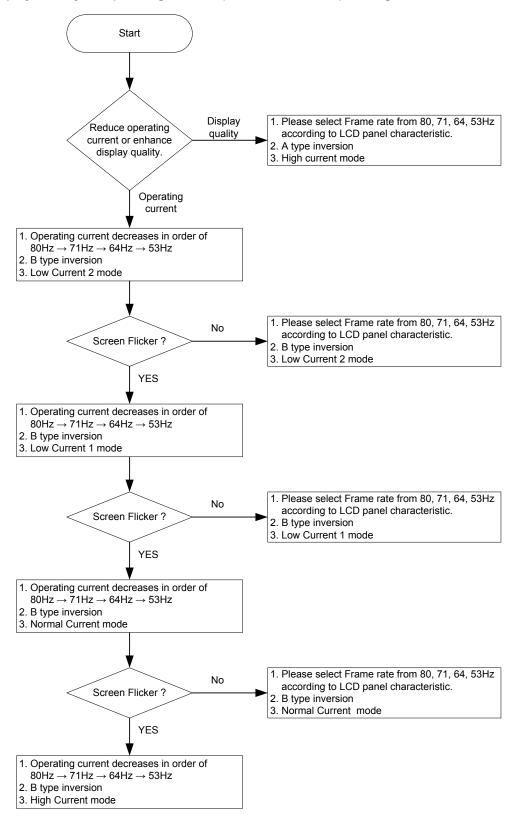
### All Pixels On/Off Setting Command

This command controls that all pixels are switched on or off when the LCD normally displays.


|                                                                                                                                         | Function (                  |            | (MSB) Bit7                                                                  | Bit6   | Bit5                                                                                          | Bit4 | Bit3 | Bit2 | Bit1 | (LSB) Bit0 | Note             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|-----------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------|------|------|------|------|------------|------------------|--|
| All F                                                                                                                                   | All Pixels On/Off setting C |            | 1                                                                           | 1      | 1                                                                                             | 1    | 1    | P1   | P0   | _          |                  |  |
| Note:                                                                                                                                   |                             |            |                                                                             |        |                                                                                               |      |      |      |      |            |                  |  |
|                                                                                                                                         | P [1:0]                     | Blinki     | у                                                                           | Remark |                                                                                               |      |      |      |      |            |                  |  |
|                                                                                                                                         | 00                          | Normal I   | Display (default) • This command is only available when the LCD is normally |        |                                                                                               |      |      |      |      | , ,        |                  |  |
|                                                                                                                                         | 01                          | All Pixels | s Off                                                                       |        | displayed. The display RAM contents will not be changed                                       |      |      |      |      |            |                  |  |
|                                                                                                                                         | 10                          | All Pixels | s On                                                                        |        | when this command is executed.  • All pixels are switched on or off regardless of the display |      |      |      |      |            | s of the display |  |
|                                                                                                                                         | 11                          | All Pixels | s Off                                                                       |        | RAM data when the relevant setting is selected.                                               |      |      |      |      |            |                  |  |
| <ul><li>Power on status: Normal display.</li><li>If the programmed command is not defined, the function will not be affected.</li></ul> |                             |            |                                                                             |        |                                                                                               |      |      |      |      |            |                  |  |

### **Operation Flow Chart**

Access procedures are illustrated below using flowcharts.


### Initialization

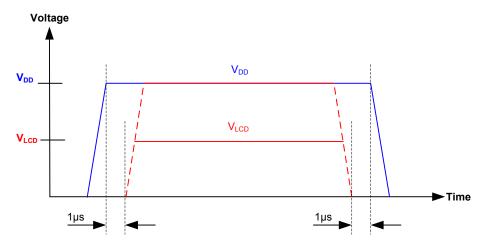
## zation Display Data Write (Address Setting)





### Display Quality or Operating Current (Power Save Mode) Setting



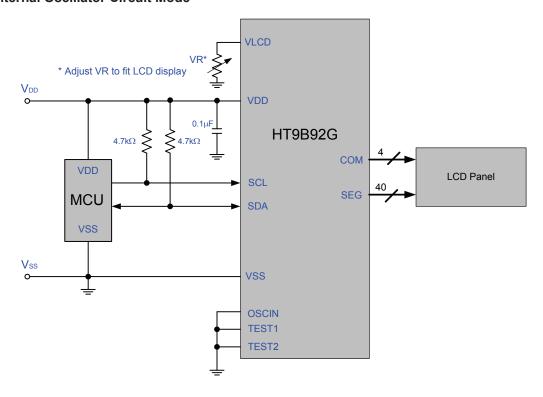



### **Power Supply Sequence**

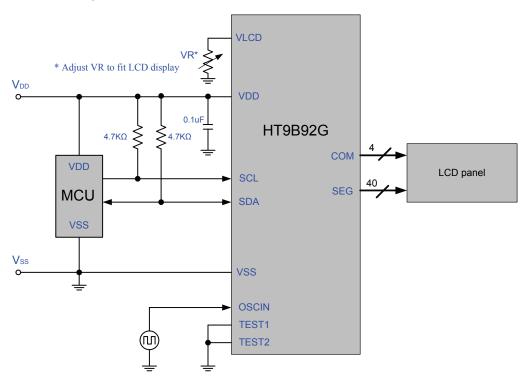
- If the power is individually supplied on the LCD and VDD pins, it is strongly recommended to follow the Holtek power supply sequence requirement.
- If the power supply sequence requirement is not followed, it may result in malfunction.

### Holtek Power Supply Sequence Requirement:

- 1. Power-on sequence:  $Turn \ on \ the \ logic \ power \ supply \ V_{DD} \ first \ and \ then \ turn \ on \ the \ LCD \ driver \ power \ supply \ V_{LCD}.$
- 2. Power-off sequence: Turn off the LCD driver power supply  $V_{\text{LCD}}$ . First and then turn off the logic power supply  $V_{\text{DD}}$ .
- 3. The Holtek Power Supply Sequence Requirement must be followed no matter whether the  $V_{\text{LCD}}$  voltage is higher than the  $V_{\text{DD}}$  voltage.
- When the  $V_{\text{LCD}}$  voltage is smaller than or is equal to  $V_{\text{DD}}$  voltage application




Rev. 1.10 20 November 25, 2015




## **Application Circuit**

### **Internal Oscillator Circuit Mode**



## **External Clock Input Mode**





### Copyright® 2015 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.

Rev. 1.10 22 November 25, 2015