

USB Type-C Source Controller with Integrated Power Switch

Hynetek Semiconductor Co., Ltd.

HUSB305_A01HB, HUSB305_A01TC

FEATURES

- USB Type-C 2.0 Compliant
- Support BC1.2 DCP Protocols
 - BC1.2 DCP mode
 - Divider 3 mode
- Integrated 15mΩ N-MOSFET with Softstart
- Integrated OVP, UVP, UVLO, OCP, FOCP and TSD Protections
- 9-Lead Panel Level DFN and Flip Chip DFN (3mm × 3mm) Package Available
- ±2kV HBM ESD Rating for USB IO pins

APPLICATIONS

AC-DC power adapter Car charger

GENERAL DESCRIPTION

The HUSB305_A01XX is designed for a Type-C only product. The HUSB305_A01XX can perform as a Source only role with programmable Rp current source. Besides, the HUSB305_A01XX also supports Divider 3, BC1.2 DCP protocols.

The HUSB305_A01XX integrates the VBUS power switch and current sensing resistor to save board space and BOM cost.

The HUSB305_A01XX integrates all required protections such as Over Voltage Protection (OVP), Under Voltage Protection (UVP), Under Voltage Lock Out (UVLO), Over Current Protection (OCP), Fast Over Current Protection (FOCP) and Thermal Shut Down (TSD).

It is available in a PLDFN-9L and FCDFN-9L, 3mm x 3mm package.

TYPICAL APPLICATION CIRCUIT

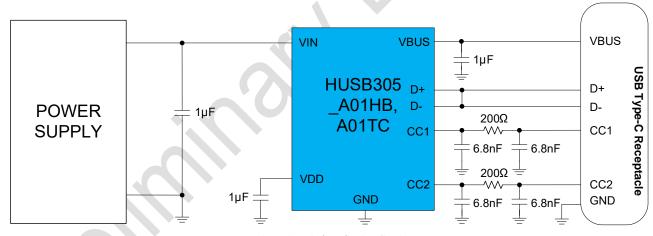


Figure 1. Typical Application Circuit

TABLE OF CONTENTS

Features	´
Applications	
General Description	
Typical Application Circuit	······································
Table of Contents	2
Revision History	
Pin Configuration and Function Descriptions	
Specifications	4
Recommended Operating Conditions	!
Absolute Maximum Ratings	
Thermal Resistance	
ESD Caution	6
Theory of Operation	
VIN and VBUS Pins	
Internal Regulator	
CC1 and CC2 Pins	
Charging Protocols Auto Selection (D+ and D- Pin)	
Over Voltage Protection	
Under Voltage Protection	
Over Current Protection and Constant Current	
Fast Over Current Protection	
Thermal Shut Down	
Typical Application Circuits	
Package Outline Dimensions	10
Package TOP Marking	
Ordering Guide	
Important Notice	14

REVISION HISTORY

Version	Date	Descriptions
Rev. 0.0	01/2022	Preliminary version
Rev. 0.1	05/2022	Revised ordering guide information
Rev. 0.2	09/2022	Revised packaging information

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

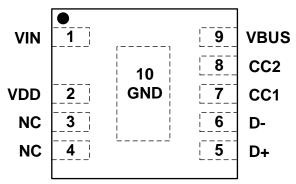


Figure 2. Pin Configuration (Top View)

Table 1. Pin Function Descriptions

Pin No.	Pin Name	Type ¹	Description
1	VIN	Р	Supply voltage input. Connect this pin to GND via a recommended 1µF ceramic capacitor.
2	VDD	AO	Internal 3.3V regulator output for system power. Connect 1µF ceramic capacitor at this pin to ground.
3,4	NC	-	No Connection. Keep this pin floating.
5	D+	DIO	USB D+ line.
6	D-	DIO	USB D- line.
7	CC1	AIO	USB Type-C CC1 line.
8	CC2	AIO	USB Type-C CC2 line.
9	VBUS	Р	Output of the integrated power switch. Connect this pin to USB Type-C connector.
10	GND	Α	Exposed pad. Connect this pad to the ground of the system board.

¹ Legend:

A = Analog Pin

P = Power Pin

D = Digital Pin

I = Input Pin
O = Output Pin

SPECIFICATIONS

 V_{IN} = 5V, T_A = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY						
Supply Voltage	V _{IN}		3.15		12.6	V
Supply Voltage UVLO Threshold	VIN_UVLO	Rising edge		3.0		V
Supply Voltage UVLO Hysteresis	VIN_UVLO_HYS			300		mV
Supply Current	Icc	CC is attached, normal		3		mA
		operation				
Quiescent Current	IQ	CC1 and CC2 pins are floating		300		μA
VDD						
Internal Regulator Output	V _{DD}			3.3		V
Type-C						
1.5A Mode Pull-Up Current	IRP_1P5		166	180	194	μΑ
Source		A. ()				_
3.0A Mode Pull-Up Current Source	IRP_3P0	X	304	330	356	μΑ
UFP Detection Threshold at 1.5A	VD			1.6		V
Current	vRd_OPEN_1.5A			1.0		V
UFP Detection Threshold at 3.0A	vRd_OPEN_3A			2.6		V
Current	VI Ku_OI EN_SA			2.0		•
BC1.2 DCP MODE						
D+ and D- Shorting Resistance	R _{DPM_SHORT}	$V_{D+} = 0.6V$		20		Ω
D+ Leakage Resistance	R _{DP_LKG}	$V_{D+} = 0.6V$		800		kΩ
D- Leakage Resistance	R _{DM_LKG}	$V_{D-} = 0.6V$		800		kΩ
DCP Mode Entry Threshold	V _{SEL_REF}		1.8	2	2.2	V
DIVIDER 3 MODE						
D+ Output Voltage	V _{DP_APP}	V _{IN} = 5V		2.7		V
D- Output Voltage	V _{DM_APP}	V _{IN} = 5V		2.7		V
D+ Output Impedance	R _{DP_PAD}	I _{DP} = −5µA		30		kΩ
D- Output Impedance	R _{DM_PAD}	$I_{DM} = -5\mu A$		30		kΩ
POWER SWITCH						
ON Resistance		VIN pin to VBUS pin		15		mΩ
OVER VOLTAGE PROTECTION						
OVP Protection Threshold	V _{IN_OV}	Reference to 5V	115	120	125	%
OVP De-bounce Time	tovp_deb			10		μs
UNDER VOLTAGE PROTECTION						
UVP Protection Threshold	V _{IN_UV}	Reference to 5V	75	80	85	%
UVP De-bounce Time	tuvp_deb			1		ms
OVER CURRENT PROTECTION						
OCP Protection Threshold	lin_oc	Reference to internal I _{IN}		125		%
		reference				
OCP De-bounce Time	toc_deb			2.5		ms
FOCP Protection Threshold	In_focp			12		Α
THERMAL SHUT DOWN						
Thermal Shut Down Threshold	T _{TSD}			150		°C
Thermal Shut Down Hysteresis	T _{TSD_HYS}			20		°C

RECOMMENDED OPERATING CONDITIONS

Table 3.

Parameter	Rating
VIN Input Voltage	4.75V to 5.5V
Operating Junction Temperature Range (T _J)	-40°C to 125°C
Ambient Temperature Range (T _A)	-40°C to 85°C

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
VIN, VBUS, OPTO	-0.3V to +16V
CC1, CC2, D+, D−	-0.3V to +16V
Operating Temperature Range (Junction)	-40°C to +150°C
Soldering Conditions	JEDEC J-STD-020
Electrostatic Discharge (ESD)	
Human Body Model	±2000V
Charged Device Model	±500V

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

Table 5. Thermal Resistance

Package Type	θ _{JA}	θ _{JC}	Unit
PLDFN3x3-9L	75	54	°C/W
DFNFC3x3-9	87	56	°C/W

ESD CAUTION

Electrostatic Discharge Sensitive Device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

THEORY OF OPERATION

The HUSB305_A01XX is designed for a Type-C power adaptor under 15W. With power switch integrated inside the chip, the HUSB305_A01XX minimizes the quantities of external components and achieves highly integrated total system solution.

VIN AND VBUS PINS

VIN PIN

VIN pin is the power supply input, which is derived from the output of the AC-DC or DC-DC converter. Connect a 1µF decoupling MLCC between VIN pin and GND pin.

The VIN pin is also connected to the drain of internal power switch.

VBUS PIN

VBUS pin is the power output pin of the HUSB305_A01XX. When Type-C connection is established, the internal power switch is turned on with a soft start time of 1ms, and the VIN voltage is passed to VBUS pin.

The VBUS pin is connected to the source of internal power switch.

DISCHARGE FUNCTION

There are discharge circuits on both VIN pin and VBUS pin to help discharge the voltage quickly when any fault or a disconnection event happens.

During discharge mode, a typical 200Ω resistor is connected between VIN or VBUS pin to GND pin. The typical discharge time out is 300ms.

INTERNAL REGULATOR

An internal liner regulator is used to provide 3.3V for internal circuits. Connect a 1µF MLCC to VDD pin for decoupling.

CC1 AND CC2 PINS

CC1 and CC2 pins are used to detect Type-C connection.

TYPE-C CC FUNCTION

CC1 and CC2 are the Configuration Channel pins used for connection and attachment detection, plug orientation determination.

The HUSB305_A01XX monitors the status of CC1 and CC2 pins and decide which state should HUSB305_A01XX enter.

CC1 and CC2 are configured as Source only mode with 1.5A and 3A current advertising. The default Rp current on CC1 and CC2 is I_{CC 3P0}, which means 3A current advertising.

The CC1 and CC2 can tolerance a voltage up to 16V. This is helpful for the HUSB305_A01XX to survive in the failure when the CC1 or CC2 is shorted to the VBUS pin.

CHARGING PROTOCOLS AUTO SELECTION (D+ AND D- PIN)

The HUSB305_A01XX supports BC1.2 DCP and Divider 3 protocols. According to the different status of D+ and D-pins, the HUSB305_A01XX recognizes the attached Sinks and apply the fast charging protocol automatically.

DPDM APP MODE

The DPDM_APP mode is the mode that the HUSB305_A01XX supports the Divider 3 charging protocol. In the DPDM_APP mode, the HUSB305_A01XX outputs 2.7 V DC voltage on both D+ and D- pins. The 2.7 V can be pulled down by the attached Sink. If D+ or D- pin is pulled down below V_{SEL_REF}, the HUSB305_A01XX exits the DPDM_APP mode and enters into DPDM_DCP mode.

DPDM_DCP MODE

The DPDM_DCP mode is the mode that the HUSB305_A01XX supports BC1.2 DCP protocol. The 2.7 V DC sources are removed and the D+ and D- pins are shorted through R_{DPM_SHORT} resistor. It is possible for the attached Sink to start primary, secondary and HVDCP detection processes when the HUSB305_A01XX is in DPDM_DCP mode.

OVER VOLTAGE PROTECTION

The HUSB305_A01XX detects the VIN pin voltage to achieve over-voltage protection function. The threshold to trigger over-voltage protection has two options that is configured by internal fuse options. The default option is 120% of 5V. When the over-voltage condition occurs, the HUSB305_A01XX turns of the internal power switch and enters into discharge mode. When the over-voltage condition is removed, the HUSB305_A01XX performs re-connection with attached device.

UNDER VOLTAGE PROTECTION

The HUSB305_A01XX detects the VIN pin voltage to achieve under-voltage protection function. The threshold to trigger under-voltage protection is 80% of 5V. When the under-voltage condition occurs and the UVP function is enabled, the HUSB305_A01XX turns of the internal power switch and enters into discharge mode. When the under-voltage condition is removed, the HUSB305_A01XX performs re-connection with attached device.

OVER CURRENT PROTECTION AND CONSTANT CURRENT

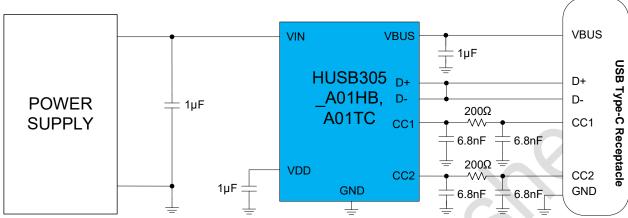
The HUSB305_A01XX senses the current flowing through the internal power switch. This current information is used to perform the Over Current Protection (OCP) when current limit event happens.

There are four options of current limit thresholds that can be set by internal fuses and the default value is 120% of the rating current.

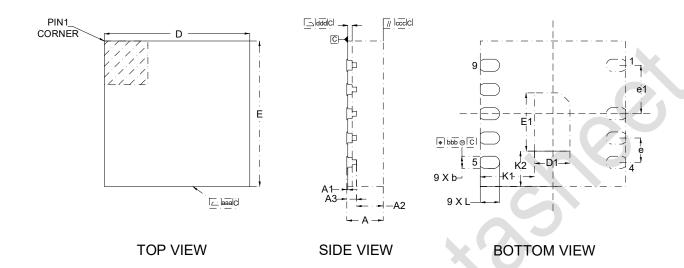
OCP

When the sensed current exceeds the internal current limit threshold, the over-current protection takes action and the HUSB305_A01XX turns off the internal power switch, resets internal status and performs re-connection with attached device.

FAST OVER CURRENT PROTECTION

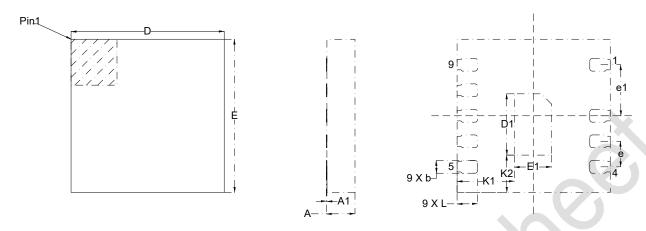

The HUSB305_A01XX integrates FOCP protection function. When the VBUS is hard shorted by fault, the output current increases sharply. When the output current reaches the FOCP threshold, the protection circuit takes action and turns off the internal power switch after the FOCP de-bounce time. When the short condition is removed, the HUSB305_A01XX is reset to standby mode and will recover again.

The typical FOCP threshold is 12A to protect the internal power switch from being damaged.


THERMAL SHUT DOWN

The HUSB305_A01XX has internal temperature sensing circuit that monitors the junction temperature. When the junction temperature rises above 150°C, over-temperature protection takes action and the internal power switch is turned off immediately. When the junction temperature falls below 130°C, the HUSB305_A01XX is reset to standby mode and will recover again.

TYPICAL APPLICATION CIRCUITS



PACKAGE OUTLINE DIMENSIONS

	DIMENSION IN MILLIMETERS			
SYMBOLS	MIN	NOM	MAX	
Α	0.700	0.750	0.800	
A1	0.000	0.020	0.050	
A2		0.550		
A3		0.203 REF		
b	0.200	0.250	0.300	
D	3.000			
E	3.000			
D1	0.630	0.730	0.830	
E1	1.100	1.200	1.300	
е	0.500			
e1	1.000			
L	0.350	0.400	0.450	
K1	1.120 REF			
K2	0.730 REF			
aaa	0.100			
bbb	0.100			
ccc	0.100			
ddd	0.050			

Figure 4. FCDFN-9L Package, 3 mm × 3 mm

TOP VIEW	SIDI	E VIEW	BOTTOM VIEW		
Г·-·-·		DIMENSION IN MILLIMETERS			
SYMBOLS	MIN	NOM	MAX		
Α	0.512	0.562	0.612		
A1	0.000	0.012	0.017		
b	0.200	0.250	0.300		
D	2.900	3.000	3.100		
E ;	2.900	3.000	3.100		
D1	0.630	0.730	0.830		
E1	1.10	1.20	1.30		
е	0.450	0.500	0.550		
e1	0.950	1.000	1.050		
L	0.350	0.400	0.45		
K1		1.12			
K2		0.73			

Figure 5. PLDFN-9L Package, 3 mm × 3 mm

PACKAGE TOP MARKING

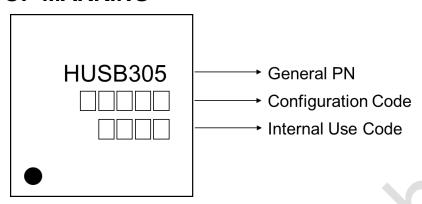


Figure 6. HUSB305_A01XX Package Top Marking

ORDERING GUIDE

Model ¹	T _J Temp (°C)	Pkg Type	Pkg Opt	Pkg Qty
HUSB305_A01HB	-40 to 125	FCDFN3x3-9L	Tape & Reel	5000
HUSB305_A01TC	-40 to 125	PLDFN3x3-9L	Tape & Reel	4000

 $^{^{\}scriptscriptstyle 1}$ Contact Hynetek for more configuration info.

IMPORTANT NOTICE

Hynetek Semiconductor Co., Ltd. and its subsidiaries (Hynetek) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Hynetek's terms and conditions of sale supplied at the time of order acknowledgment.

Hynetek warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Hynetek's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Hynetek deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

Hynetek assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using Hynetek components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Hynetek does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Hynetek components or services are used. Information published by Hynetek regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Hynetek under the patents or other intellectual property of Hynetek.

Reproduction of significant portions of Hynetek information in Hynetek data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Hynetek is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of Hynetek components or services with statements different from or beyond the parameters stated by Hynetek for that component or service voids all express and any implied warranties for the associated Hynetek component or service and is an unfair and deceptive business practice.

Hynetek is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Hynetek components in its applications, notwithstanding any applications-related information or support that may be provided by Hynetek. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify Hynetek and its representatives against any damages arising out of the use of any Hynetek components in safety-critical applications.

In some cases, Hynetek components may be promoted specifically to facilitate safety-related applications. With such components, Hynetek's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No Hynetek components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those Hynetek components which Hynetek has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of Hynetek components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Hynetek has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, Hynetek will not be responsible for any failure to meet ISO/TS16949.

Please refer to below URL for other products and solutions of Hynetek Semiconductor Co., Ltd.

©2022 Hynetek Semiconductor Co., Ltd. All rights reserved.

Trademarks and registered trademarks are the property of their respective owners.

www.hynetek.com

