

USB Type-C and PD Source Controller

Hynetek Semiconductor Co., Ltd.

HUSB338C

FEATURES

- USB Type-C 2.0 and USB PD3.0 Compliance Certified, TID: 1000189, XID: 0005399
 - Support 5V, 9V and 12V FPDOs
 - Support 5V Prog and 9V Prog APDOs
- Support BC1.2 DCP and HVDCP Protocols
 - BC1.2 DCP Mode
 - Apple Divider 3 Mode
 - QC2.0/3.0 Class A
 - AFC
 - FCP and SCP
- External N-MOSFET Supported
- Support Constant Voltage Loop (CV) and Constant Current Loop (CC) Operation
- Additional 7 Power Levels Configured by PS0, PS1 Pins
- Integrated OVP, UVP, UVLO, OCP, FOCP and TSD Protections
- 16-Lead Plastic QFN (3mm × 3mm) Package
- ±4kV HBM ESD Rating for USB IO Pins

VBUS ۲ (1kΩ SR0603 5mΩ SR1206 1uF IND 510Ω SR0603 100nF/16V SC0603 1uF/6.3V JSB Type-C Receptacle 1kΩ 10nF/16V SC0603 SC0603 1uF/16V SR0603 SC0603 <u>ممم</u> NC SR0603 PIN. OPTO VBUS • GND VIN PS1 GATE HUSB338C 1uF/6.3V SC0603 **QFN-16** VFE 201 C.S CC1 CC2 DM CS+ DP

TYPICAL APPLICATION CIRCUIT

Figure 1. Typical Application Circuit

APPLICATIONS

AC-DC Power Adaptor Car Charger

GENERAL DESCRIPTION

The HUSB338C is a high performance, high integration USB Type-C Power Delivery source controller. The HUSB338C supports PD2.0, PD3.0, PPS, QC2.0/3.0, BC1.2 DCP, AFC, FCP and SCP protocols. It supports 5V, 9V and 12V three FPDOs and 5V Prog, 9V Prog two APDOs which are fully compliant with USB Power Delivery Specification Revision 3.0, version 2.0.

The HUSB338C integrates all required protections such as Over Voltage Protection (OVP), Under Voltage Protection (UVP), Under Voltage Lock Out (UVLO), Over Current Protection (OCP), Fast Over Current Protection (FOCP) and Thermal Shut Down (TSD).

It is available in QFN-16L, 3mm x 3mm package.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Typical Application Circuit	1
Table of Contents	2
Revision History	2
Pin Configuration and Function Descriptions	
Specifications	4
Recommended Operating Conditions	6
Absolute Maximum Ratings	7
Thermal Resistance	7
ESD Caution	7
Theory of Operation	
VIN Pin	8
VDD Pin	8
Control Loop Compensation Circuit (VFB, CS+, CS-, IFB, OPTO Pins)	8
CC1 and CC2 Pins	8
VBUS Pin	9
GATE Pin	9
Power Selection	9
Over Voltage Protection	9
Under Voltage Protection	10
Over Current Protection	10
Fast Over Current Protection	
Thermal Shut Down	10
Charging Protocols Auto Selection (DP and DM Pin)	10
Typical Application Circuits	11
Package Outline Dimensions	12
Ordering Guide	13
Important Notice	15

REVISION HISTORY

Version	Date	Owner	Descriptions
Rev. 0.0	10/2021	Yingyang Ou	Initial version

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

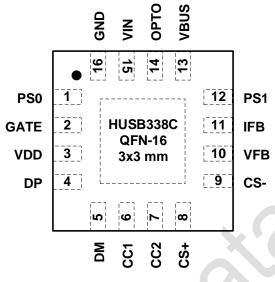


Figure 2. Pin Configuration (Top View)

Table 1. Pin Function Descriptions

Pin No.	Pin Name	Type ¹	Description			
1	PS0	AI	Power selection input 0. Connect to ground or VDD, or keep floating can			
			determine the output power level, combined with PS1 pin.			
2	GATE	AO	N-MOSFET Gate driver output for VBUS load switch.			
3	VDD	Р	Internal 3.3V regulator output for system power.			
4	DP	DIO	USB D+ line.			
5	DM	DIO	USB D- line.			
6	CC1	AIO	USB Type-C CC1 line.			
7	CC2	AIO	USB Type-C CC2 line.			
8	CS+	AI	Positive input of the current sense amplifier.			
9	CS-	AI	Negative input of the current sense amplifier.			
10	VFB	AI	Feedback point of Constant Voltage (CV) loop, connect CV compensation network			
			to this pin.			
11	IFB	AI	Feedback point of Constant Current (CC) loop, connect CC compensation network to this pin.			
12	PS1	AI	Power selection input 1. Connect to ground or VDD, or keep floating can determine the output power level, combined with PS0 pin.			
13	VBUS	AI	VBUS sense and discharge pin.			
14	OPTO	AI	OPTO driver.			
15	VIN	Р	Supply voltage input. Connect this pin to GND via a recommended 1µF ceramic			
			capacitor.			
16	GND	Р	Power ground.			

1 Legend:

A = Analog Pin

P = Power Pin

D = Digital Pin

I = Input Pin O = Output Pin

SPECIFICATIONS

 V_{IN} = 5V, T_A = 25°C, unless otherwise noted.

Table 2.

		1			
VIN		3.3		12	V
VIN_UVLO	Rising edge		3.0		V
VIN_UVLO_HYS			250		mV
lcc	CC is attached, normal operation		2.6		mA
la	CC1 and CC2 pins are floating		550		μA
V _{DD}			3.3		V
ICC_1P5		166	180	194	μA
ICC_3P0		304	330	356	μA
VTH_1A5		1.51	1.6	1.64	V
V _{TH_3A0}		2.46	2.6	2.74	V
f _{BitRate}		270	300	330	Kbps
t _{Fall}	10% and 90% amplitude points, unloaded condition	300			ns
t _{Rise}	10% and 90% amplitude points,	300			ns
Vswing		1.05	1.125	1.2	V
					mV
Z _{Driver}	Source output impedance at 750kHz	35	55	75	Ω
t RXFilter	Time constant of a single pole filter	100			ns
	5 1		160		mV
ZBMC BX		1			MΩ
RDPM SHORT	$V_{DP} = 0.6V$		20	40	Ω
_					kΩ
—					kΩ
	$V_{\rm IN} = 5V$		27		v
					v
					kΩ
—	•				kΩ
		<u> </u>	50		1/22
Veri per			20		v
—					V
_		1		1 F	
				1.5	S
				<u> </u>	ms
		20		60	ms
KDM_DWM			15		kΩ
	VIN_UVLO_HYS ICC IQ VDD ICC_1P5 ICC_3P0 VTH_1A5 VTH_3A0 fBitRate tFall tRise VSwing VLow	VIN_UVL0_HYS CC is attached, normal operation Ioc CC is attached, normal operation CC is attached, normal operation CC is attached, normal operation CC_1P5 CC_3P0 VTH_1A5 V VTH_3A0 Intervention fBitRate 10% and 90% amplitude points, unloaded condition trail 10% and 90% amplitude points, unloaded condition Vswing CC pull down resistor > 800Ω VLow CC pull down resistor > 800Ω ZDriver Source output impedance at 750kHz with CC attached texFilter Time constant of a single pole filter ZBMC_RX VDP = 0.6V RDPM_SHORT VDP = 0.6V RDP_LKG VDP = 0.6V VDP_APP VIN = 5V VDM_APP VIN = 5V VDM_APP VIN = 5V VDM_APP IDP = -5µA RDM_PAD IDP = -5µA VSEL_REF IDM = -5µA VSEL_REF TGLITCH_UCHANGE	VIN_UVLO_HVS Icc CC is attached, normal operation CC1 and CC2 pins are floating VDD Icc_1P5 Icc_spo 304 VTH_1AS 1.51 VTH_3A0 2.46 fBitRate 270 tFall 10% and 90% amplitude points, unloaded condition 300 VSwing CC pull down resistor > 800Ω 1.05 VLow CC pull down resistor > 800Ω 1.05 ZDnver Source output impedance at 750kHz 35 texFilter Time constant of a single pole filter 100 ZBMC_RX 1 100 100 VDP = 0.6V VDP = 0.6V 100 ZBMC_RX 1 100 100 VDP = 0.6V VDP = 0.6V 100 100 ZBMC_RX 1 100 100 100 VDP_APP VIN = 5V VDM = 0.6V 100 100 VSEL_REF VDM = 0.5µA 10M = -5µA 10M = -5µA 10M = -5µA VSEL_REF VDAT_REF 10M = -5µA 10M = -5µA 10 1	Vn_UVLO_HYS 250 250 Icc CC is attached, normal operation CC1 and CC2 pins are floating 2.6 VDD 3.3 550 VDD 3.3 66 180 Icc_1P5 166 180 304 330 VTH_1A5 1.51 1.6 1.51 1.6 VTH_3A0 2.46 2.6 2.6 fBilRate 270 300 300 tFail 10% and 90% amplitude points, unloaded condition 300 300 VLow CC pull down resistor > 800Ω 1.05 1.125 VLow CC pull down resistor > 800Ω -75 35 55 VLow CC pull down resistor > 800Ω 1.05 1.125 -75 ZOriver Time constant of a single pole filter 100 160 160 ZBMC_RX Time constant of a single pole filter 100 20 800 VDP_APP VIN = 5V 2.7 7 30 VDP_APP VIN = 5V 2.7 30 30 <td>Vn_LUVLO_HYS 250 250 loc CC is attached, normal operation CC1 and CC2 pins are floating 2.6 Vob 3.3 loc_1P5 166 180 194 loc_spo 3.0 304 330 356 VTH_1A5 2.46 2.6 2.74 fbitRate 2.70 300 330 trait 10% and 90% amplitude points, unloaded condition 300 300 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 ZDriver With CC attached 100 160 1 Rop_LKG VDP = 0.6V 20 40 800 Rop_LKG VDP = 0.6V 20 40</td>	Vn_LUVLO_HYS 250 250 loc CC is attached, normal operation CC1 and CC2 pins are floating 2.6 Vob 3.3 loc_1P5 166 180 194 loc_spo 3.0 304 330 356 VTH_1A5 2.46 2.6 2.74 fbitRate 2.70 300 330 trait 10% and 90% amplitude points, unloaded condition 300 300 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 VLow CC pull down resistor > 800Ω 1.05 1.125 1.2 ZDriver With CC attached 100 160 1 Rop_LKG VDP = 0.6V 20 40 800 Rop_LKG VDP = 0.6V 20 40

©2021 Hynetek Semiconductor Co., Ltd All rights reserved.

HUSB338C

	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
Pulse Glitch Filter Time	TGLITCH_CONT_CHANGE	For QC3.0 in continues mode	100	150	200	μs
FCP MODE						
DM FCP TX Valid Output High	Vтх_vон		2.55		3.6	V
DM FCP TX Valid Output Low	VTX_VOL				0.3	V
DM FCP RX Valid Input High	Vrx_vih		1.4		3.6	V
DM FCP RX Valid Input Low	Vrx_vil				1	V
DM Output Pull-Low Resistance	R _{DMPL}			500		Ω
Unit Interval for FCP	UI			160		μs
VOLTAGE CONTROL (VFB PIN)						
Voltage Sense Scaling Factor				10		
VIN Step LSB				20		mV
Default Voltage	VIN_DEF	CC is unattached		5.1		V
VIN Regulation Accuracy		VIN=3.3-12V	-5		5	%
CURRENT CONTROL (CS+, CS-,						
IFB PINs)						
Current Sense Resistor				5		mΩ
GATE PIN						
Driver Voltage		Refer to VIN		5		V
Sourcing Current		EN_GATE = 1		20		μA
Pull Down Resistance		EN_GATE transition from 1 to 0		200		Ω
OPTO PIN						
Minimum OPTO Current				30		μA
Maximum Pull Down Current				3		mA
OVER VOLTAGE PROTECTION						
OVP Protection Threshold	VIN_OV	Reference to internal VIN reference	115	120	125	%
OVP De-bounce Time	tov_deb			10		μs
UNDER VOLTAGE PROTECTION						
UVP Protection Threshold	VIN_UV	Reference to internal VIN reference	75	80	85	%
UVP De-bounce Time	tuv_deb			1		ms
OVER CURRENT PROTECTION						
OCP Protection Threshold	lin_oc	Reference to internal I _{IN} reference	115	120	125	%
OCP De-bounce Time	toc_deb			2.5		ms
FOCP Protection Threshold	IIN_SCP			6		А
THERMAL SHUT DOWN						
Thermal Shut Down Threshold	TTSD			150		°C
	TTSD_HYS			20		°C

RECOMMENDED OPERATING CONDITIONS

Table 3.	
Parameter	Rating
VIN Input Voltage	3.15V to 12.6V
Operating Junction Temperature Range (T _J)	−40°C to 125°C
Ambient Temperature Range (T _A)	-40°C to 85°C

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
VIN, VBUS, OPTO	-0.3V to 16V
GATE	-0.3V to 24V
CC1, CC2	-0.3V to 16V
VDD, DP, DM, CS+, CS-, VFB, IFB	-0.3V to 7V
Junction Temperature Range	-40°C to +150°C
Soldering Conditions	JEDEC J-STD-020
Electrostatic Discharge (ESD)	
Human Body Mode (CC1, CC2, DP, DM and VBUS pins)	4000V
Human Body Mode (Other pins)	2000V
Machine Mode	500V

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

 θ_{JC} is the junction to case thermal resistance.

Table 5. Thermal Resistance

Package Type	θ _{JA}	θ」	Unit
QFN-16L, 3mm x 3mm	TBD	TBD	°C/W

ESD CAUTION

Electrostatic Discharge Sensitive Device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

THEORY OF OPERATION

VIN PIN

VIN pin is the power supply input, which is derived from the output of the AC-DC or DC-DC converter. Connect a 1µF decoupling MLCC between VIN pin and GND pin.

The VIN pin is also connected to an internal MOSFET and discharge resistor, which is used as a bleeder to help discharge the energy stored in the output capacitor. With this bleeder, VIN can be regulated to vSafe5V upon the detachment of a connected device, or to a lower desired output voltage level upon a request command received from the Sink, such as from 12V to 5V.

VDD PIN

An internal liner regulator is used to provide 3.3V for internal circuits. Connect a 1µF MLCC to VDD pin for decoupling.

CONTROL LOOP COMPENSATION CIRCUIT (VFB, CS+, CS-, IFB, OPTO PINS)

In the HUSB338C, the constant voltage loop (CV loop) compensation and constant current loop (CC loop) compensation are implemented. VIN voltage is scaled by a resistor divider to be as the feedback voltage. It is compared with the internal voltage reference to generate an error signal. The CV loop can compensate this error signal. And then the compensated signal is employed to drive the primary side of the opto-coupler and control the AC-DC power loop.

SLEW RATE CONTROL

The HUSB338C implements a fixed voltage slew rate, which is 83mV/ms.

IR COMPENSATION

IR compensation is only available when VIN is set to 5V. If PPS function is enabled, IR compensation will be disabled even if 5V APDO is selected.

Four options of IR compensation are available: 0mV/A, 50mV/A, 100mV/A and 150mV/A. IR compensation can be customized by Hynetek. The default IR compensation is 100mV/A.

For example, if 100mV/A IR compensation is selected, then for the 5V/3A condition (except 5V APDO), the actual VIN voltage is:

CURRENT SENSE RESISTOR

The recommended current sense resistor is $5m\Omega$. The sensed current information is employed to perform OCP, FOCP and Constant Current Control.

CC1 AND CC2 PINS

CC1 and CC2 pins are used to detect Type-C connection, BMC communication.

TYPE-C CC FUNCTION

CC1 and CC2 are the Configuration Channel pins used for connection and attachment detection, plug orientation determination and system configuration management across USB Type-C cable.

The HUSB338C monitors the status of CC1 and CC2 pins and decide which state the HUSB338C should enter.

CC1 and CC2 are configured as Source only mode with 1.5A and 3A current advertising. The default R_p current on CC1 and CC2 is I_{CC_3P0} , which means 3A current advertising.

The CC1 and CC2 can tolerance a voltage up to 16V. This is helpful for the HUSB338C to survive in the failure when the CC1 or CC2 is shorted to the VBUS pin.

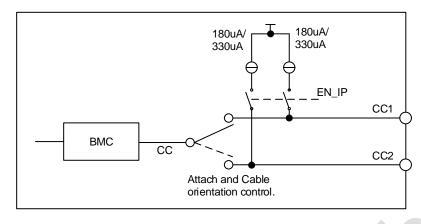


Figure 3. CCx Hardware Diagram

BMC DRIVER

Through the Type-C detection, one of the CC pins will be connected to the internal BMC block to achieve PD communication.

VBUS PIN

This pin is used to sense VBUS presence and discharge VBUS voltage on USB Type-C receptacle side.

VSAFE0V DETECTION

When the HUSB338C is attached with a Sink, it detects whether the VBUS voltage is within vSafe0V. If yes, the HUSB338C enters Attached.SRC state. If no, it will stay at AttachWait.SRC state.

VBUS DISCHARGE

The VBUS pin is also connected to an internal MOSFET and discharging circuitry, which is used as a bleeder to help dissipate the energy stored in the VBUS capacitor. With this bleeder, VBUS is discharged to vSafe0V upon the detachment of a connected device, or to a lower desired output voltage level upon a request command received from the Sink, such as from 12V to 5V.

GATE PIN

The GATE pin of the HUSB338C is designed to drive an external N-MOSFET. When the HUSB338C is attached and is ready to enable VBUS. The GATE pin outputs a voltage to turn on the external N-MOSFET. The turn on time of the external N-MOSFET may impacted by the external N-MOSFET's characteristics.

POWER SELECTION

The source output power can be set into different power levels and different PDP options through different combination of the configurations of the PS0 and PS1 pins, as shown in Table 6.

PS0	PS1	Source Power Level
Floating	Floating	30W (5V/3A, 9V/3A, 12V/2.5A)
Floating	GND	18W (5V/3A, 9V/2A, 12V/1.5A)
Floating	VDD	18W (5V/3A, 9V/2A, 12V/1.5A, 3.3V~5.9V/3A, 3.3V~11V/2A)
GND	Floating	20W (5V/3A, 9V/2.22A)
GND	GND	20W (5V/3A, 9V/2.22A, 12V/1.66A)
GND	VDD	20W (5V/3A, 9V/2.22A, 12V/1.66A, 3.3V~5.9V/3A, 3.3V~11V/2.2A)
VDD	Floating	25W (5V/3A, 9V/2.77A, 3.3V~5.9V/3A, 3.3V~11V/2.75A)
VDD	GND	27W (5V/3A, 9V/3A, 12V/2.25A)
VDD	VDD	27W (5V/3A, 9V/3A, 12V/2.25A, 3.3V~11V/3A)

Table 6. Source Power Selection

OVER VOLTAGE PROTECTION

The HUSB338C detects the VIN pin voltage to achieve over-voltage protection function. The threshold to trigger over-voltage protection is 120% of the VIN_REF. When the over-voltage condition occurs, the HUSB338C disables the

©2021 Hynetek Semiconductor Co., Ltd All rights reserved.

GATE pin. When the over-voltage condition is removed, the HUSB338C is reset to default mode and will automatic recover again.

UNDER VOLTAGE PROTECTION

The HUSB338C detects the VIN pin voltage to achieve under-voltage protection function. The threshold to trigger under-voltage protection is 80% of the VIN_REF. When the under-voltage condition occurs, the HUSB338C disables the GATE pin. When the over-voltage condition is removed, the HUSB338C is reset to default mode and will automatic recover again.

OVER CURRENT PROTECTION

When the current sensed by the sense resistor exceeds the 120% of IIN_REF, the over-current protection takes action and the GATE is also disabled. When the over-current condition is removed, the HUSB338C is reset to default mode and will automatic recover again.

FAST OVER CURRENT PROTECTION

The HUSB338C integrates FOCP protection function. When the VBUS is hard shorted to GND by fault, the output current increases sharply. When the output current reaches the FOCP threshold, the protections circuit takes action and turns off the external load switch. When the short condition is removed, the HUSB338C is reset to default mode and will automatic recover again.

THERMAL SHUT DOWN

When the junction temperature rises across T_{TSD} , thermal shut down takes action and the GATE is disabled. When the junction temperature falls across T_{TSD} - T_{TSD} - H_{YS} , the HUSB338C is reset to default mode and will automatic recover again.

CHARGING PROTOCOLS AUTO SELECTION (DP AND DM PIN)

The HUSB338C supports various fast charging protocols including BC1.2 DCP, Apple Divider 3, QC 2.0/3.0 Class A, AFC, FCP and SCP. According to the different status of DP and DM pins, the HUSB338C recognizes the attached Sinks and apply the fast charging protocol automatically.

DPDM_APP MODE

The DPDM_APP mode is the mode that the HUSB338C supports the Apple Divider 3 charging protocol. In the DPDM_APP mode, the HUSB338C outputs 2.7 V DC voltage on both DP and DM pins. The 2.7 V can be pulled down by the attached Sink. If DP or DM pin is pulled down below V_{SEL_REF} , the HUSB338C exits the DPDM_APP mode and enters into DPDM_DCP mode.

DPDM_DCP MODE

The DPDM_DCP mode is the mode that the HUSB338C supports BC1.2 DCP protocol. The 2.7 V DC sources are removed and the DP and DM pins are shorted through R_{DPM_SHORT} resistor. It is possible for the attached Sink to start primary, secondary and HVDCP detection processes when the HUSB338C is in DPDM_DCP mode.

DPDM_HVDCP MODE

After successful detection of the DCP, the HUSB338C notify the Sink that the HUSB338C enters into HVDCP mode.

In the HVDCP mode, the HUSB338C monitors the DP/DM status and enters into different modes depending on the status of DP/DM pins.

TYPICAL APPLICATION CIRCUITS

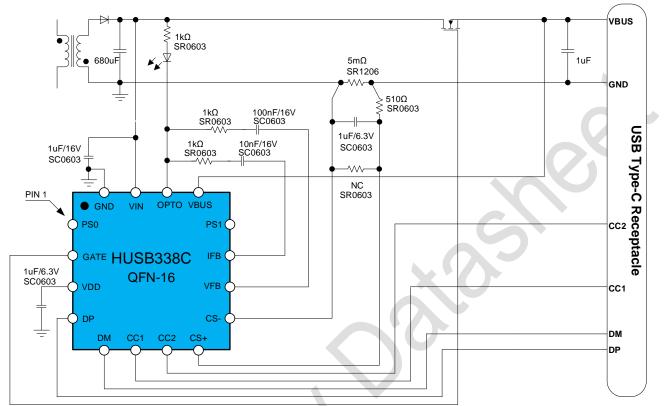


Figure 4. HUSB338C Typical Application Diagram

PACKAGE OUTLINE DIMENSIONS

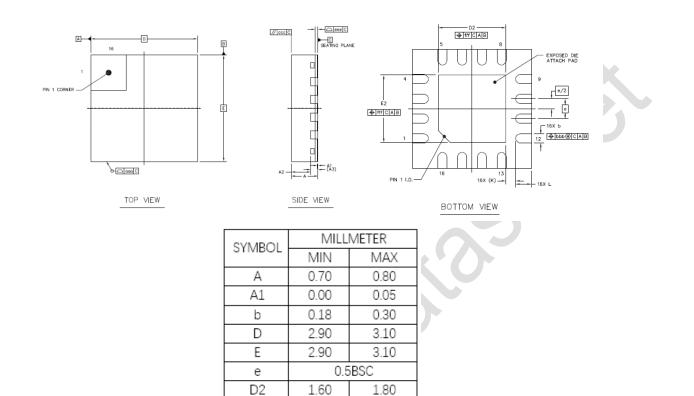


Figure 5. QFN-16L Package, 3mm x 3mm

1.60

0.25

1.80

0.50

E2

L

PACKAGE TOP MARKING

Figure 6. HUSB338C Package Top Marking

ORDERING GUIDE

Model	Package	5 V ¹	9V	12V	3.3-5.9V	3.3-11V	Package Option
HUSB338C_001UA	QFN-16L, 3mm x 3mm	3A	3A	2.5A	-	-	Tape & Reel, 5k

¹ For more configuration info, please contact Hynetek.

IMPORTANT NOTICE

Hynetek Semiconductor Co., Ltd. and its subsidiaries (Hynetek) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Hynetek's terms and conditions of sale supplied at the time of order acknowledgment.

Hynetek warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Hynetek's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Hynetek deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

Hynetek assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using Hynetek components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Hynetek does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Hynetek components or services are used. Information published by Hynetek regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Hynetek under the patents or other intellectual property of the third party, or a license from Hynetek under the patents or other intellectual property of Hynetek.

Reproduction of significant portions of Hynetek information in Hynetek data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Hynetek is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of Hynetek components or services with statements different from or beyond the parameters stated by Hynetek for that component or service voids all express and any implied warranties for the associated Hynetek component or service and is an unfair and deceptive business practice.

Hynetek is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Hynetek components in its applications, notwithstanding any applications-related information or support that may be provided by Hynetek. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify Hynetek and its representatives against any damages arising out of the use of any Hynetek components in safety-critical applications.

In some cases, Hynetek components may be promoted specifically to facilitate safety-related applications. With such components, Hynetek's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No Hynetek components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those Hynetek components which Hynetek has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of Hynetek components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Hynetek has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, Hynetek will not be responsible for any failure to meet ISO/TS16949.

Please refer to below URL for other products and solutions of Hynetek Semiconductor Co., Ltd.

©2021 Hynetek Semiconductor Co., Ltd. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. www.hynetek.com

