

## Hynetek Semiconductor Co., Ltd.

# USB Type-C and PD Source Controller HUSB339

## FEATURES

- USB PD3.0 certified, TID 62
- USB Type-C 1.2 and USB PD3.0 compliant
- Support up to five FPDOs
  - $^{\circ}_{\circ}$  Typical 5V, 9V, 12V, 15V and 20V PDOs
  - Support 5V~23.5V user-defined FPDOs, 5A maximum current and 115W maximum output power
- Support two APDOs
  - Support 5V Prog, 9V Prog, 15V Prog and 20V Prog
  - Constant power control
- Support QC2.0/QC3.0, BC1.2 DCP protocols
  - Apple 5V, 2.4A mode
  - BC1.2 DCP mode
  - QC2.0 5V, 9V and 12V discrete mode voltage adjustment
  - QC3.0 3.6V ~ 12V continuous mode voltage adjustment at 200mV step
- Integrate constant voltage (CV) loop compensation and constant current (CC) loop compensation network
  - Integrate secondary side compensation circuit, such as TL431
  - VBUS and VIN pins fast discharge
- Voltage operating range: 3.3V to 25V
- Support cable voltage drop compensation 0, 50m $\Omega$ , 100m $\Omega$  or 150m $\Omega$

- Support Smart Power Derating function
- Integrated VCONN power and eMarker detection for USB-C + USB-A dual-port charger or two USB-C ports charger
- OTP, VIN OVP, VIN UVP, VIN UVLO and OCP protections
- CC pin support 28V high voltage to protect the CC pin and VBUSs pin short risk
- SOP-14L and QFN-16L packages
- ±5kV ESD HBM

## APPLICATIONS

- AC-DC power adapter
- Car charger
- USB-PD converter

### **GENERAL DESCRIPTION**

The HUSB339 is a high performance, high-integrated USB Type-C Power Delivery source controller. The HUSB339 supports PD3.0, PD2.0, PPS, QC2.0/QC3.0, BC1.2 DCP etc. The HUSB339 incorporates all required protections, like Over-temperature Protection (OTP), Over-voltage Protection (OVP), Under-voltage Protection (UVP), and Under-voltage Lock-Out (UVLO). The HUSB339 supports smart power derating function for dual-port charger applications. It is available in SOP-14L and QFN-16L package options.

### TYPICAL APPLICATION CIRCUIT

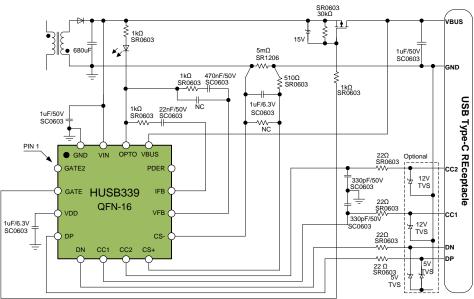



Figure 1. HUSB339 Typical Application Circuit

1

# **REVISION HISTORY**

| Version | Date          | Descriptions                                                                                                                   |  |  |
|---------|---------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| V1.0    | Jan 21, 2019  | Initial version                                                                                                                |  |  |
| V1.1    | May 28, 2019  | Update Fig. 1 and add Fig. 6.<br>Update descriptions of pins high voltage rating.<br>Update descriptions of PDER pin function. |  |  |
| V1.2    | Aug 19, 2019  | Update package top marking                                                                                                     |  |  |
| V1.3    | June 20, 2020 | Update Fig. 16                                                                                                                 |  |  |

# **DATA SHEET**

# Contents

| Features                                                          | 1  |
|-------------------------------------------------------------------|----|
| Applications                                                      | 1  |
| General Description                                               | 1  |
| Typical Application Circuit                                       | 1  |
| Revision History                                                  | 2  |
| Specifications                                                    | 5  |
| Absolute Maximum Rating                                           | 7  |
| Thermal Resistance                                                | 7  |
| ESD Caution                                                       | 7  |
| Pin Configuration and Function Description                        | 8  |
| Theory of Operation                                               | 9  |
| VIN and VDD Pins                                                  | 9  |
| VIN Power System                                                  | g  |
| VIN Discharge                                                     | 9  |
| VIN Voltage Sense                                                 | g  |
| VDD System Supply                                                 | 9  |
| Control Loop Compensation Circuit (VFB, CS+, CS-, IFB, OPTO Pins) | g  |
| Constant Voltage Loop Compensation Circuit (CV Loop)              | g  |
| Constant Current Loop Compensation Circuit (CC Loop)              | 9  |
| Cable Voltage Drop Compensation (IR Compensation)                 | 9  |
| CC1 and CC2 Pins                                                  | 9  |
| Type-C CC Function                                                | 9  |
| BCM Driver                                                        | 9  |
| VCONN Power and eMarker Detection                                 | 10 |
| D+ and D- Pins                                                    | 10 |
| Mode1: 5V/2.4A charge mode                                        | 10 |
| Mode2: USB BC1.2 DCP charge mode                                  | 10 |
| Mode3: QC2.0/QC3.0 quick charge mode                              | 10 |
| VBUS Pin                                                          | 10 |
| vSafe0V Detection                                                 | 10 |
| VBUS Discharge                                                    | 11 |
| Gate Pin                                                          | 11 |
| GATE2 PIN                                                         | 11 |
| PDER PIN                                                          | 11 |
| Over-voltage Protection (VIN_OV)                                  | 11 |
| Under-voltage Protection (VIN_UV)                                 | 11 |
| Over-temperature Protection (OT)                                  | 11 |
| Over-current Protection (IIN_OC)                                  | 12 |
| Typical Applications Circuits                                     | 13 |
| Circuit Design of SYSTEM and APPLICATION                          | 14 |
| Constant voltage loop compensation design                         | 14 |
| yright© 2019, Hynetek Semiconductor Co., Ltd. www.hynetek.com     | 3  |

## HUSB339

# DATA SHEET

| Constant current loop compensation design | 14 |
|-------------------------------------------|----|
| CC1 and CC2 design                        | 14 |
| D+/D- design                              |    |
| PMOS gate driver design                   | 15 |
| Current sense design                      | 15 |
| PCB Layout Guide                          | 16 |
| CC1 and CC2 Pins ESD protetcion           |    |
| D+ and D- Pins ESD protetcion             | 16 |
| Current sense circuit PCB routing         |    |
| Decoupling capacitor placement            | 17 |
| Package Outline Demensions                | 18 |
| SOP-14L Package                           | 18 |
| QFN-16L Package                           | 19 |
| Packge Top Marking                        | 19 |
| Ordering Guide                            | 19 |

## **SPECIFICATIONS**

 $V_{IN}$  = 5V,  $T_A$  = 25°C, unless otherwise noted.

#### Table 1.

| Parameter                                                                                                                      | Symbol                                              | Test Conditions         | Min   | Тур         | Max         | Unit       |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|-------|-------------|-------------|------------|
| GENERAL PARAMETERS                                                                                                             |                                                     |                         |       |             |             |            |
| Supply Voltage                                                                                                                 | V <sub>IN</sub>                                     |                         | 3.3   |             | 25          | V          |
| Supply Voltage UVLO Threshold                                                                                                  | V <sub>IN_UVLO</sub>                                | Rising                  |       | 2.85        |             | V          |
|                                                                                                                                |                                                     | Falling                 |       | 2.75        |             | V          |
| Supply Current at Normal Operating                                                                                             | I <sub>CC_OPR</sub>                                 |                         |       | 1           |             | mA         |
| Supply Current at Sleep Mode                                                                                                   | I <sub>CC_SLEEP</sub>                               | CC1 and CC2<br>floating |       | 250         |             | μA         |
|                                                                                                                                | ICC_SLEEP                                           | CC1 and CC2<br>Clamped  |       | 0.9         |             | mA         |
| Regulator Voltage                                                                                                              | V <sub>DD</sub>                                     | •·····•                 |       | 1.8         |             | V          |
| Operating Junction Temperature                                                                                                 | TJ                                                  |                         | -40   |             | 125         | °C         |
| Operating Ambient Temperature                                                                                                  | T <sub>A</sub>                                      |                         | -40   |             | 105         | °C         |
| Type-C                                                                                                                         |                                                     |                         | _     |             |             | -          |
| Default Mode Pullup Current Source                                                                                             |                                                     |                         | 64    | 80          | 96          | μA         |
| 1.5A Mode Pullup Current Source                                                                                                | I <sub>CC_1P5</sub>                                 |                         | 166   | 180         | 194         | μA         |
| 3.0A Mode Pullup Current Source                                                                                                | I <sub>CC_3P0</sub>                                 |                         | 304   | 330         | 356         | μΑ         |
| UFP Detecting threshold at Default Current                                                                                     | VTH_DEF                                             |                         | 1.51  | 1.6         | 1.64        | V          |
| UFP Detecting threshold at 1.5A current                                                                                        | VTH_DEF<br>VTH_1A5                                  |                         | 1.51  | 1.6         | 1.64        | V          |
|                                                                                                                                | ∨тн_1а5<br>Vтн_за0                                  |                         | 2.46  | 2.6         | 2.74        | V          |
| UFP Detecting threshold at 3.0A current<br>BMC COMMON PARAMETERS                                                               | V TH_3A0                                            |                         | 2.40  | 2.0         | 2.14        | v          |
|                                                                                                                                | 4                                                   |                         | 270   | 200         | 220         | Khar       |
| Bit Rate                                                                                                                       | f <sub>BitRate</sub>                                |                         | 270   | 300         | 330         | Kbps       |
| BMC TX PARAMETERS                                                                                                              |                                                     |                         |       |             | 0.05        | <b>C</b> ( |
| Maximum Difference between the Bit-rate<br>during the Part of the Packet Following the<br>Preamble and the Reference Bit-rate. | PBitRate                                            |                         |       |             | 0.25        | %          |
| Time to Cease Driving the Line after the End<br>of the Last bit of the Frame.                                                  | t <sub>EndDriveBMC</sub>                            |                         |       |             | 23          | μs         |
| Fall Time                                                                                                                      | t <sub>Fall</sub>                                   |                         | 300   |             |             | ns         |
| Time to cease driving the line after the final<br>high-to-low transition.                                                      | t <sub>HoldLowBMC</sub>                             |                         | 1     |             |             | μs         |
| Time from the End of Last Bit of a Frame until<br>the Start of the First bit of the Next<br>Preamble.                          | t <sub>InterFrameGap</sub>                          |                         | 25    |             |             | μs         |
| Rise Time                                                                                                                      | t <sub>Rise</sub>                                   |                         | 300   |             |             | ns         |
| Time Before the Start of the First Bit of the<br>Preamble when the Transmitter shall Start<br>Driving the Line.                | tStartDrive                                         |                         | -1    |             | 1           | μs         |
| Voltage Swing                                                                                                                  | VSwing                                              |                         | 1.05  | 1.125       | 1.2         | V          |
| Transmit Low Voltage                                                                                                           | onnig                                               |                         | -75   | -           | 75          | mV         |
| Transmitter Output Impedance                                                                                                   | Z <sub>Driver</sub>                                 |                         | 33    | 54          | 75          | Ω          |
| BMC RX PARAMETERS                                                                                                              | -Dilver                                             |                         |       | •           |             |            |
| Hysteresis                                                                                                                     |                                                     |                         |       | 160         |             | mV         |
| Time Window for Detecting Bus Non-idle                                                                                         | t                                                   |                         | 12    | 100         | 20          | μs         |
| Number to Count to Detect Bus Non-idle                                                                                         | t <sub>TransitionWindow</sub>                       |                         | 3     |             | 20          | μο         |
| Time Constant of a Single Pole Filter to Limit                                                                                 | N <sub>Count</sub><br>t <sub>RxFilter</sub>         |                         | 100   |             |             | ns         |
| Broad-band Noise Ingression1                                                                                                   |                                                     |                         |       |             |             |            |
| Receiver Input Impedance                                                                                                       | Z <sub>BmcRx</sub>                                  |                         | 1     |             |             | MΩ         |
| D+ AND D- PINS                                                                                                                 |                                                     |                         |       |             |             |            |
| D+ and D- Floating Voltage                                                                                                     |                                                     | Mode 1                  |       | 2.7         |             | V          |
| D- and D-                                                                                                                      |                                                     | Mode 1                  |       | 2.7         |             | V          |
| Output Voltage Selection Reference                                                                                             | V <sub>SEL_REF</sub>                                |                         | 1.8   | 2.0         | 2.2         | V          |
| Data Detect Voltage Reference                                                                                                  | V <sub>DAT_REF</sub>                                |                         | 0.25  | 0.325       | 0.4         | V          |
| DatLine Leakage Resistance                                                                                                     | R <sub>DAT_LKG</sub>                                |                         | 300   | -           | 1500        | kΩ         |
| D- Pulldown Resistance during HVDCP<br>Mode                                                                                    | R <sub>DM_DWM</sub>                                 | Mode 3                  | 14.25 | 19          | 24.5        | kΩ         |
|                                                                                                                                |                                                     |                         | 1     |             |             |            |
| D+ to D- Resistence During DCP mode                                                                                            | R <sub>DCP_DAT</sub>                                | Mode 2                  |       | 100         | 200         | Ω          |
|                                                                                                                                | R <sub>DCP_DAT</sub><br>T <sub>GLITCH_BC_DONE</sub> | Mode 2                  | 1000  | 100<br>1250 | 200<br>1500 | Ω<br>ms    |

Copyright© 2019, Hynetek Semiconductor Co., Ltd.

# HUSB339

# DATA SHEET

| Output Voltage Glitch Filter Time        | T <sub>GLITCH_V_CHANGE</sub>    |                                | 20  | 40  | 60  | ms |
|------------------------------------------|---------------------------------|--------------------------------|-----|-----|-----|----|
| Glitch Filter for D+/- Continuous Change | T <sub>GLITCH_CONT_CHANGE</sub> | Mode 3,                        | 100 | 150 | 200 | us |
|                                          |                                 | Continuous Mode                |     |     |     |    |
| VOLTAGE CONTROL(VFB PIN)                 |                                 |                                |     |     |     |    |
| Voltage Sense Scaling Factor             |                                 |                                |     | 10  |     |    |
| Time from Source issue GoodCRC to Start  | t <sub>SrcTransition</sub>      |                                |     | 30  |     | ms |
| Voltage Transition                       |                                 |                                |     |     |     |    |
| CURRENT CONTROL (CS+, CS-, IFB PINS)     |                                 |                                |     |     |     |    |
| Current Sense Resistor                   |                                 |                                |     | 5   |     | mΩ |
| GATE PIN                                 |                                 |                                |     |     |     |    |
| Maximum Sinking Current                  |                                 |                                | 2   |     | 20  | mA |
| Pull Low Impedance                       |                                 |                                |     | 50  | 150 | Ω  |
| GATE2 PIN                                |                                 |                                |     |     |     |    |
| Maximum Sinking Current                  |                                 |                                | 2   |     | 20  | mA |
| Pull Low Impedance                       |                                 |                                |     | 50  | 150 | Ω  |
| PDER PIN                                 |                                 |                                |     |     |     |    |
| Low Level Input Voltage                  | VIL                             |                                |     |     | 0.8 | V  |
| High Level Input Voltage                 | VIH                             | To trigger power               | 1.4 |     |     | V  |
|                                          |                                 | derating                       |     |     |     |    |
| OPTO PIN                                 |                                 |                                |     |     |     |    |
| Min OPTO Current                         |                                 |                                |     | 30  |     | μA |
| Max Pull Down Current                    |                                 |                                |     | 3   |     | mA |
| OV AND OC PROTECTIONS                    |                                 |                                |     |     |     |    |
| Over-voltage Protection Threshold        | V <sub>IN_OV</sub>              | With respect to                | 115 | 120 | 125 | %  |
|                                          |                                 | V <sub>IN_REF</sub>            |     |     |     |    |
| Under-voltage Protection Threshold       | V <sub>IN_UV</sub>              | With respect to                | 75  | 80  | 85  | %  |
| -                                        |                                 | V <sub>IN_REF</sub>            |     |     |     |    |
| Over-current Protection Threshold        | I <sub>IN_OC</sub>              | Default, With                  |     | 115 |     | %  |
|                                          |                                 | respect to I <sub>IN_REF</sub> |     |     |     |    |
| Thermal Shutdown Risng                   | t <sub>TSD_RISE</sub>           |                                |     | 130 |     | °C |
| Thermal Shutdown Falling                 | t <sub>TSD_FALL</sub>           |                                |     | 80  |     | °C |

### **ABSOLUTE MAXIMUM RATING**

#### Table 2.

| Parameter                               | Rating          |
|-----------------------------------------|-----------------|
| VIN, GATE, VBUS, OPTO                   | -0.5V to +28V   |
| CC1, CC2, PDER                          | -0.5V to +28V   |
| GATE2, D+, D-, CS+, CS-, VFB, IFB       | -0.5V to +6V    |
| VDD                                     | -0.5V to +2V    |
| Storage Temperature Range               | -65°C to +150°C |
| Operating Junction Temperature<br>Range | −40°C to +125°C |
| ESD HBM (Human Body Model)              | ±5 kV           |
| ESD MM (Machine Model)                  | 500 V           |
| Soldering Conditions                    | JEDEC J-STD-020 |

#### THERMAL RESISTANCE

 $\theta_{JA}$  is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

#### Table3. Thermal Resistance

| Package Type | θյΑ  | θις  | Unit |
|--------------|------|------|------|
| SOP-14L      | 83.5 | 37.7 | °C/W |
| QFN-16L      | 47   | 4.5  | °C/W |

### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# PIN CONFIGURATION AND FUNCTION DESCRIPTION

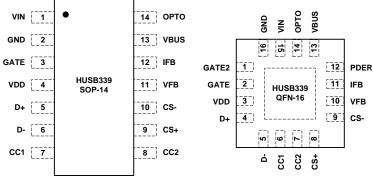



Figure 2. Pin Configuration, View from Top.

#### Table 4. HUSB339 Pin Function Description

| Table 4. H00B000 Fill Function Description |         |       |      |         |                                                              |  |  |  |
|--------------------------------------------|---------|-------|------|---------|--------------------------------------------------------------|--|--|--|
| SOP-14                                     | QFN-16  | Pin   | Pin  | Voltage | Pin Description                                              |  |  |  |
| Pin No.                                    | Pin No. | Name  | Туре | Туре    |                                                              |  |  |  |
| 1                                          | 15      | VIN   | Р    | HV      | Supply input voltage. Connect this pin to GND via the        |  |  |  |
|                                            |         |       |      |         | recommended ceramic capacitor.                               |  |  |  |
| 2                                          | 16      | GND   | Р    | -       | Power ground.                                                |  |  |  |
| -                                          | 1       | GATE2 | OD   | LV      | Second gate driver pin.                                      |  |  |  |
| 3                                          | 2       | GATE  | OD   | HV      | Open drain gate drive output.                                |  |  |  |
| 4                                          | 3       | VDD   | Р    | -       | 1.8 V regulator output for system power.                     |  |  |  |
| 5                                          | 4       | D+    | DIO  | LV      | USB D+ line.                                                 |  |  |  |
| 6                                          | 5       | D-    | DIO  | LV      | USB D- line.                                                 |  |  |  |
| 7                                          | 6       | CC1   | AIO  | HV      | Type-C CC1 line.                                             |  |  |  |
| 8                                          | 7       | CC2   | AIO  | HV      | Type-C CC2 line.                                             |  |  |  |
| 9                                          | 8       | CS+   | AI   | LV      | Positive input of the current sense amplifier.               |  |  |  |
| 10                                         | 9       | CS-   | AI   | LV      | Negative input of the current sense amplifier. Provide a low |  |  |  |
|                                            |         |       |      |         | ohmic connection to GND.                                     |  |  |  |
| 11                                         | 10      | VFB   | AI   | LV      | Voltage loop feedback.                                       |  |  |  |
| 12                                         | 11      | IFB   | AI   | LV      | Current loop feedback.                                       |  |  |  |
| -                                          | 12      | PDER  | AI   | HV      | Power derating control pin. High level to trigger power      |  |  |  |
|                                            |         |       |      |         | derating.                                                    |  |  |  |
| 13                                         | 13      | VBUS  | AI   | HV      | VBUS sense and discharge sink.                               |  |  |  |
| 14                                         | 14      | OPTO  | AI   | HV      | OPTO driver.                                                 |  |  |  |

Legend:

HV=High Voltage Pin (Max 28V)

LV=Low Voltage Pin (Max 6V)

OD=Open Drain Pin

A=Analog Pin

P= Power Pin

**D=Digital Pin** 

I=Input Pin

O=Output Pin

# THEORY OF OPERATION

### VIN AND VDD PINS

#### VIN Power System

VIN pin is the power supply input, which is derived from the output of the AC-DC or DC-DC converter. Connect a 1µF decoupling MLCC between VIN pin and GND pin, as closer so possible.

#### VIN Discharge

The VIN pin is also connected to an internal MOSFET and discharging resistor, which is used as a bleeder to help discharge the output capacitor to vSafe5V upon the detachment of a connected device, or to a lower desired output voltage level upon a UFP request, such as from 20V to 5V.

#### VIN Voltage Sense

See the Control Loop Compensation Circuit (VFB, CS+, CS-, IFB, OPTO Pins) section.

#### VDD System Supply

An internal liner regulator is used to provide 1.8V system voltage. Connect a 1µF MLCC to VDD pin for decoupling, as closer so possible.

### CONTROL LOOP COMPENSATION CIRCUIT (VFB, CS+, CS-, IFB, OPTO PINS)

In the HUSB339, the constant voltage loop compensation (CV loop) and constant current loop (CC loop) compensation are implemented. The output of the compensator is used to drive the primary side of the opto-coupler and control the AC-DC power loop.

#### Constant Voltage Loop Compensation Circuit (CV Loop)

The input of CV loop is connected to VFB pin, which is derived from the internal  $90k\Omega$  and  $10k\Omega$  voltage divider. The voltage divider sense the VIN voltage. Therefore, the VFB voltage is 10% of VIN voltage. The CV loop compensator is implemented by the resistor and capacitor network between OPTO pin and VFB pin.

#### Constant Current Loop Compensation Circuit (CC Loop)

USB PD3.0 PPS defines current limit function clearly. In the HUSB339, the CC loop input is derived from a  $5m\Omega$  current sense resistor. The current signal is filtered by an RC network and fed to the CS+ and CS- differential inputs. The CC loop compensator is implemented by the resistor and capacitor network between OPTO pin and IFB pin.

#### Voltage Shift Slew Rate

During PD voltage shift, to make sure the voltage shift smoothly and to reduce inrush during voltage shift, the HUSB339 has a fixed voltage shift slew rate setting.

#### Cable Voltage Drop Compensation (IR Compensation)

The cable voltage drop compensation is implemented in the HUSB339. Once it is enabled, the output voltage increases with 0mV/A, 50mV/A, 100mV/A or 150mV/A according to the load current. It is equivalent to adding a negative resistance to cancel or reduce the cable resistance. The negative resistance can be programmed as  $0m\Omega$ ,  $-50m\Omega$ ,  $-100m\Omega$  or  $-150m\Omega$ .

For example, for the 5V 3A condition, the actual output voltage is: 5V+3A\*100mV/A=5.3V.

#### CC1 AND CC2 PINS

#### Type-C CC Function

CC1 and CC2 are the Configuration Channel pins used for connection and attachment detection, plug orientation determination and system configuration management across USB Type-C cable. CC1 and CC2 only support DFP mode with 500mA, 1.5A and 3A current advertising. CC1 and CC2 can support 28V high voltage. This is used for protection when the CC1 or CC2 is shorted to the VBUS pin.

#### BCM Driver

Through the Type-C detection, one of CC1or CC2 pins will be connect to the internal BMC block to achieve PD communication.

#### VCONN Power and eMarker Detection

The HUSB339 supports VCONN power and USB eMarker (such as HUSB330, HUSB331 or HUSB332) detection function. The USB PD protocol defines that if an adapter is not with a captive cable, when the adapter has a PD output current more than 3A, it's PD controller must support VCONN power supply and eMarker detection function.

For example, in a 90W PD power adapter, when the HUSB339 detects the eMarker IC in the cable which indicates that the cable current rating is 5A current, the HUSB339 can broadcast a preset 20V/4.5A output capability, and then the sink device can draw 90W power. If the HUSB339 does not detect an eMarker IC or the current rating indicated by the eMarker IC is only 3A, the HUSB339 can only broadcast maximum 3A output current capability, and the sink device can only draw maximum power of 60W.

#### D+ AND D- PINS

The HUSB339 has D+ Pin and D- Pin, which can support three charge modes as below:

#### Mode1: 5V/2.4A charge mode

The HUSB339 support 5V/2.4A charge mode.

#### Mode2: USB BC1.2 DCP charge mode

The HUSB339 support USB BC1.2 DCP charge protocol.

#### Mode3: QC2.0/QC3.0 quick charge mode

The QC2.0/QC3.0 hardware diagram is shown in Figure 3. The voltage scaling truth cable is shown is Table 5.

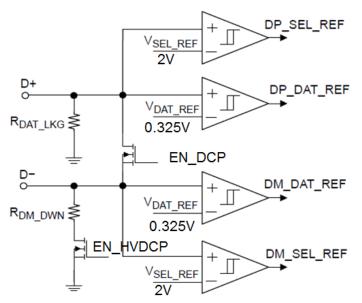



Figure 3. QC3.0 Hardware Implementation

#### Table 5. QC3.0 Voltage Scaling Truth Table

| Portat | Class A HVDCP          |                 |
|--------|------------------------|-----------------|
| D+     | Adapter Output Voltage |                 |
| 0.6V   | 0.6V                   | 12V             |
| 3.3 V  | 0.6 V                  | 9V              |
| 0.6 V  | 3.3 V                  | Continuous Mode |
| 0.6 V  | GND                    | 5V              |

#### **VBUS PIN**

This pin is used to sense VBUS presence, monitor VBUS voltage and discharge VBUS on USB Type-C receptacle side. Connect directly to VBUS at the Type-C Receptacle.

#### vSafe0V Detection

When the HUSB339 enter AttachWait.SRC for t<sub>CCDebounce</sub>, it detects whether the VBUS voltage is within vSafe0V. If yes, the HUSB339 pulls low GATE pin and enters Attached.SRC state. If no, it will stay at AttachWait.SRC state.

#### **VBUS** Discharge

The VBUS pin is also connected to an internal MOSFET and discharging resistor, which is used as a bleeder to help discharge the output capacitor to vSafe0V upon the detachment of a connected device, or to a lower desired output voltage level upon a UFP request, such as from 20V to 5V.

#### GATE PIN

The GATE pin is open–drain output allows to drive directly a PMOS load switch. When the HUSB339 enters Type-C attached state (Attached.SRC), GATE pin is pulled low. When the HUSB339 exits from Type-C attached state, the GATE pin is removed from being pulled low.

#### GATE2 PIN

The GATE2 pin is open-drain output which is used to enable a load for the power adapter under a certain condition. If this function is enabled, the GATE2 pin turns high to control an external circuit when VIN<3.6V and current sense value is below 0.5A.

The HUSB339 SOP-14L package does not support this function.

#### PDER PIN

The HUSB339 with QFN-16L package supports Smart Power Derating (SPD) function, which can optimize output power distribution when used in a USB-A + USB-C dual-port charger or USB-C +USB-C dual-port charger. When the Smart Power Derating is enabled, USB-A port plug-in and plug-out signal goes to the HUSB339 through the PDER pin. And then the HUSB339 derates or recover it's source power capability announcement and actual power output rating. The range of derating power can be preset to any value such as 10W, 12W, 15W, 18W, 20W or 30W. Below is how the HUSB339 Smart Power Derating function works:

- If the HUSB339 PDER pin is at low level before it enters to PD mode, the HUSB339 will send out source capability with preset normal PD power to enter PD mode.
- If the HUSB339 PDER pin is at high level before it enters to PD mode, the HUSB339 will send out source capability with preset normal PD power subtracted by a preset derating power value to enter PD mode. The derating power value can be set to any value.
- In PD mode, if the HUSB339 PDER pin voltage state changes from low level to high level, the HUSB339 will reenter to new PD mode source capability with preset normal PD power subtracted by a preset derating power value.
- In PD mode, if the HUSB339 PDER pin voltage state changes from high level to low level, the HUSB339 will reenter to new PD mode source capability with preset normal PD power.

The HUSB339 SOP-14L package does not support this function.

#### **PROTECTION FUNCTIONS**

### **OVER-VOLTAGE PROTECTION (VIN\_OV)**

The HUSB339 detects the VIN pin voltage to achieve over-voltage protection function. The threshold to trigger overvoltage protection is 120% of the  $V_{IN\_REF}$ . When the over-voltage condition occurs, the HUSB339 stops to pull the GATE pin low. When the over-voltage condition is removed, the HUSB339 is reset to standby mode and will automatic recover again.

#### UNDER-VOLTAGE PROTECTION (VIN\_UV)

The HUSB339 detects the VIN pin voltage to achieve under-voltage protection function. The threshold to trigger undervoltage protection is 80% of the  $V_{IN\_REF}$ . When the under-voltage condition occurs, the HUSB339 stops to pull the GATE pin low. When the over-voltage condition is removed, the HUSB339 is reset to standby mode and will automatic recover again.

According to PD protocol, under-voltage protection is turned off when it works in PPS mode.

### **OVER-TEMPERATURE PROTECTION (OT)**

When the junction temperature rises across 130°C, over-temperature protection takes action and the load switch is turned off. When the junction temperature falls across 80°C, the HUSB339 is reset to standby mode and will automatic recover again.

### **OVER-CURRENT PROTECTION (IIN\_OC)**

When the current sensed by the sense resistor exceeds protection threshold, the over-current protection takes action and the load switch is turned off. When the over-current condition is removed, the HUSB339 is reset to standby mode and will automatic recover again.

# **TYPICAL APPLICATIONS CIRCUITS**

Figure 4 to Figure 5 provide some application circuits where the HUSB339 drives an opto-coupler. Figure 6 shows the typical application of car charger.

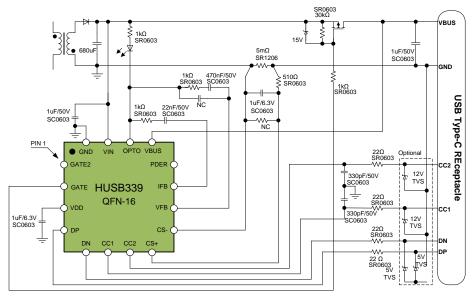



Figure 4. HUSB339 QFN-16L Package Application Circuit

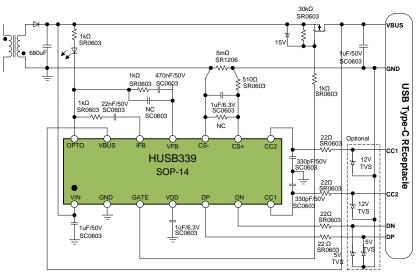



Figure 5. HUSB339 SOP-14L Package Application Circuit

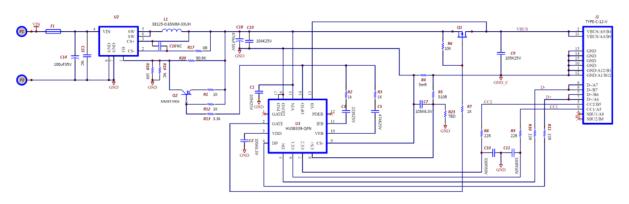



Figure 6. HUSB339 typical car charger application

# **CIRCUIT DESIGN OF SYSTEM AND APPLICATION**

#### Constant voltage loop compensation design

The CV loop compensation is the network between OPTO pin and VFB pin, as shown in Figure 7. A  $1k\Omega$  resistor and a 470nF capacitor placed in series are recommended. Increasing the capacitance value can achieve more stable loop, but the voltage transient response may be slowed down. The "NC" marked device is an optional capacitor to optimize high frequency loop characteristics. We suggest debug the HUSB339 circuit and main power supply circuit together to achieve best loop performance.

#### Constant current loop compensation design

The CC loop compensation is the network between OPTO pin and IFB pin used in constant current control mode, as show in Figure 7. A  $1k\Omega$  resistor and a 22nF capacitor in series are recommended. Change of capacitance value can get different constant current response speed. We suggest debug the HUSB339 circuit and main power supply circuit together to achieve best loop performance.

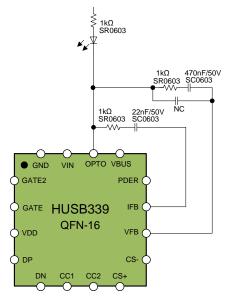



Figure 7. HUSB339 compensation loop circuit

#### CC1 and CC2 design

The CC1 and CC2 pins can sustain 28V high voltage and 5kV HBM ESD. In extremely conditions, even CC1/CC2 shorts to 25V VBUS voltage will not cause chip to be damaged. To improve high reliability, we suggest adding filter circuit and ESD protection devices shown in Figure 8. The resistor and capacitor values are recommended to be  $22\Omega$  and 330pF respectively. This circuit can meet USB PD eye diagram test requirement.

The filter capacitor should connect to the HUSB339 ground. 12V voltage rating TVS devices are recommended, and the TVS devices should be connect to Type-C connector power ground closely.

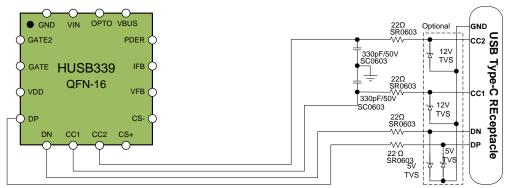



Figure 8. CC1/CC2 and D+/D- circuit

#### D+/D- design

In the HUSB339, D+/D- pins support 5kV ESD HBM. To improve high reliability, we suggest adding filter circuit and ESD protection device in Figure 8. A  $22\Omega$  resistor is recommended. In addition, 5V TVS deviced are recommended, and should be connect to Type-C connector power ground closely.

#### PMOS gate driver design

To select a suitable PMOS, we need to consider about below points:

- Select -30V rated Vds PMOS to meet more than 20V VBUS output.
- Calculate maximum current by maximum nominal current x1.3, select a proper Rdson specification, and then calculate maximum power dissipation and temperature rise.
- If PPS is needed, the lowest VBUS is 3.15V, then Vgs(th) spec should be considered to make sure the PMOS can be normally driven and output rated current when VBUS is 3.15V.

The driver divided resistor value is recommended with  $30k\Omega$  and  $1k\Omega$ , as shown in Figure 9. 15V rated TVS in Figure 9 is used when the maximum output voltage is 20V. The PMOS specification can be changed according to real application situation. For example, when the power adapter does not support 20V PDO, then the 15V TVS is not required. When the power adapter does not support PPS, the  $1k\Omega$  resistance can be changed to  $10k\Omega$ , and no TVS is required.

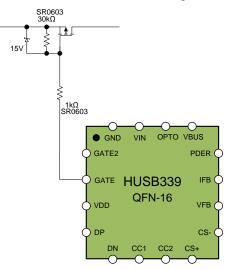



Figure 9. PMOS typical driver circuit

#### Current sense design

As shown in Figure 10, the current sense resistor is  $5m\Omega$ . 1% accuracy and 1206 package are recommended. In normal situation, 0.25W power dissipation rating is enough for this resistor. To reduce the interference of the current ripple, we recommend adding a  $510\Omega$  and 1uF RC filter network. The current sense signal should goes to CS+ pin and CS- pin with differential routing. Please refer to PCB Layout Guide section to design current sense layout on PCB. If the overcurrent protection threshold is lower than the setting value caused by poor PCB layout, the "NC" marked resistor in Figure 10 can be added to fine adjust the overcurrent protection threshold.

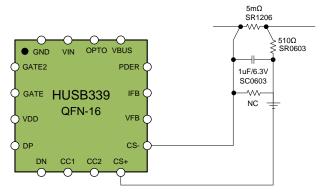



Figure 10. Current sense circuit

# PCB LAYOUT GUIDE

The PCB layout guide is described based on the reference design of HUSB339 SOP-14L package PD daughter card. When the HUSB339 is placed on AC-DC power board, the guide should also be followed.

### **CC1 AND CC2 PINS ESD PROTETCION**

As shown in Figure 11, capacitors C7 and C8, resistors R6 and R10 should be placed closely to the HUSB339. The ground connection of capacitors C7 and C8 should be close to GND pin of the HUSB339. The TVS devices D1 and D4 should be close to Type-C connector power ground.

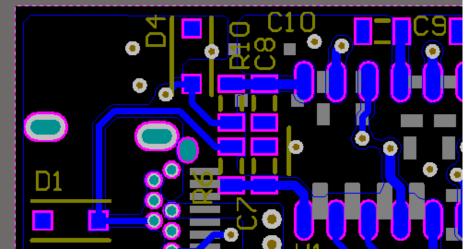



Figure 11. CC1 and CC2 routing

### **D+ AND D- PINS ESD PROTETCION**

As shown in Figure 12, D+ and D- connects to Type-C connector by resistors R12 and R11 respectively. The TVS devices D2 and D3 should be close to Type-C connector power ground.

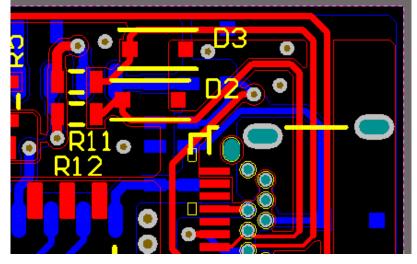



Figure 12. D+ and D- routing

### CURRENT SENSE CIRCUIT PCB ROUTING

As shown in Figure 13, the GND pin of the HUSB339 connects to the power ground with the sense resistor R3. Try to avoid the HUSB339 ground and CS- grounding connecting together. If the HUSB339 ground connects to CS- pin unavoidably, the connection between the HSB339 ground and grounding end of R3 should be short and thick as much as possible. The capacitor filter C2 should be as close to the CS+ and CS- pins of the HUSB339 as possible, we suggest using Kelvin Connect to connect current sense resistor by leading a differential pair signal from the sense resistor pads. The current sense resistor connects power ground and Type-C connector ground, the routing should be short and thick. No inductance device is allowed in this path.

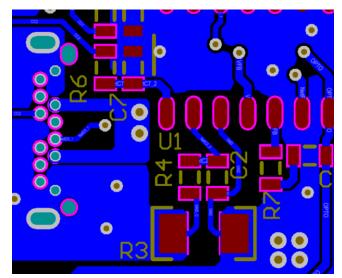
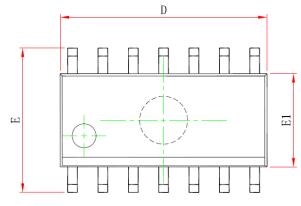
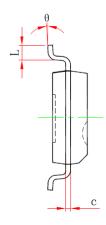
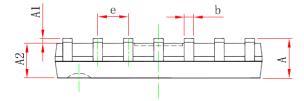



Figure 13. Current sense routing

### DECOUPLING CAPACITOR PLACEMENT


As shown in Figure 14, the decoupling capacitor C9 should be placed as closer to VIN pin of the HUSB339 as possible. The power input goes from the daughter card VIN pin and goes to the C9 first, then goes to the VIN pin of the HUSB339. The VDD decoupling capacitor should be placed as closer to the VDD pin as possible.



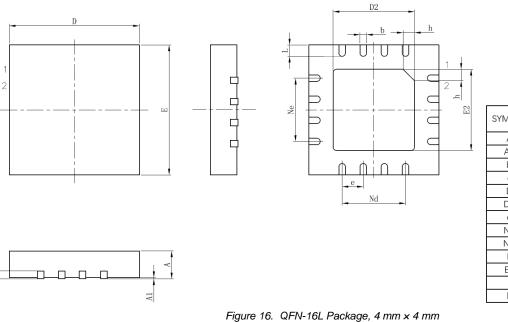


Figure 14. HUSB339 decoupling capacitor placement

# PACKAGE OUTLINE DEMENSIONS

SOP-14L PACKAGE

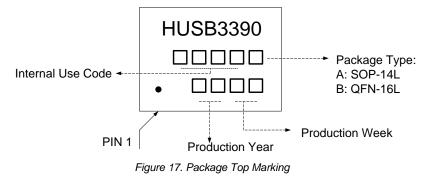







| Symbol | Dimensions In | Millimeters | Dimensions In Inches |       |  |
|--------|---------------|-------------|----------------------|-------|--|
|        | Min           | Max         | Min                  | Max   |  |
| A      |               | 1.750       |                      | 0.069 |  |
| A1     | 0.100         | 0.250       | 0.004                | 0.010 |  |
| A2     | 1.250         |             | 0.049                |       |  |
| b      | 0.310         | 0.510       | 0.012                | 0.020 |  |
| С      | 0.100         | 0.250       | 0.004                | 0.010 |  |
| D      | 8.450         | 8.850       | 0.333                | 0.348 |  |
| E      | 5.800         | 6.200       | 0.228                | 0.244 |  |
| E1     | 3.800         | 4.000       | 0.150                | 0.157 |  |
| е      | 1.270(BSC)    |             | 0.050                | (BSC) |  |
| L      | 0.400         | 1.270       | 0.016                | 0.050 |  |
| θ      | 0°            | 8°          | 0°                   | 8°    |  |

Figure 15. SOP-14L Package, 8.65 mm × 6 mm


## **HUSB339**

### **QFN-16L PACKAGE**



| SYMBOL   | MILLIMETER |          |      |  |  |  |
|----------|------------|----------|------|--|--|--|
| STIVIBUL | MIN        | NOM      | MAX  |  |  |  |
| А        | 0.70       | 0.75     | 0.80 |  |  |  |
| A1       |            | 0.02     | 0.05 |  |  |  |
| b        | 0.25       | 0.30     | 0.35 |  |  |  |
| С        | 0.18       | 0.20     | 0.25 |  |  |  |
| D        | 3.90       | 4.00     | 4.10 |  |  |  |
| D2       | 2.00       | 2.30     |      |  |  |  |
| е        |            | 0.650BSC |      |  |  |  |
| Ne       |            | 1.95BSC  |      |  |  |  |
| Nd       |            | 1.95BSC  |      |  |  |  |
| E        | 3.90       | 4.00     | 4.10 |  |  |  |
| E2       | 2.00       | 2.15     | 2.30 |  |  |  |
| L        | 0.45       | 0.55     | 0.65 |  |  |  |
| h        | 0.30       | 0.35     | 0.40 |  |  |  |

### PACKGE TOP MARKING



#### **ORDERING GUIDE**

| Package | Model        | Power        | FPDO         | APDO         | QC           | Shipping Option |
|---------|--------------|--------------|--------------|--------------|--------------|-----------------|
| SOP-14L | Configurable | Configurable | Configurable | Configurable | Configurable | Tape & Reel, 4k |
| QFN-16L | Configurable | Configurable | Configurable | Configurable | Configurable | Tape & Reel, 5k |

#### **IMPORTANT NOTICE**

Hynetek Semiconductor Co., Ltd. and its subsidiaries (Hynetek) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Hynetek's terms and conditions of sale supplied at the time of order acknowledgment.

Hynetek warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Hynetek's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Hynetek deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

Hynetek assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using Hynetek components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Hynetek does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Hynetek components or services are used. Information published by Hynetek regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Hynetek under the patents or other intellectual property of Hynetek.

Reproduction of significant portions of Hynetek information in Hynetek data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Hynetek is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of Hynetek components or services with statements different from or beyond the parameters stated by Hynetek for that component or service voids all express and any implied warranties for the associated Hynetek component or service and is an unfair and deceptive business practice.

Hynetek is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Hynetek components in its applications, notwithstanding any applications-related information or support that may be provided by Hynetek. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify Hynetek and its representatives against any damages arising out of the use of any Hynetek components in safety-critical applications.

In some cases, Hynetek components may be promoted specifically to facilitate safety-related applications. With such components, Hynetek's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No Hynetek components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those Hynetek components which Hynetek has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of Hynetek components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Hynetek has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, Hynetek will not be responsible for any failure to meet ISO/TS16949.

Please refer to below URL for other products and solutions of Hynetek Semiconductor Co., Ltd.

#### Address: Room 306, Building 4, Shenzhen Software Park, Gaoxin Mid 2nd Road, Nanshan District, Shenzhen, 518057 China.

www.hynetek.com