

16-Channel Matrix TFEL Panel Display Row Driver

Ordering Information

	Package Options									
Device	40-Pin Ceramic DIP	36-Pin Leadless Chip Carrier	36-Pin Leaded Chip Carrier Flat Leads	36-Pin Leaded Chip Carrier Std. Bent Leads	36-Pin Leaded Chip Carrier Reverse Bent Leads	Die				
HV02	HV02C	HV02LC	HV02CF	HV02CS	HV02CR	HV02X				

Features

- □ HVCMOS[®] Technology
- Up to 200V output voltage
- Can drive up to 1000 lines
- 250mA surge current sink capability
- □ TYP R_{ON} of 25 ohms
- □ High performance up to 200 KHz scan rate
- □ Integrated high voltage DMOS and CMOS technology
- □ Available in 40-pin DIP, 36 Pin Ceramic Chip Carrier and Leaded Chip Carrier packages

Absolute Maximum Ratings

Low Voltage Supply V _{DD}	-0.5V to 14V
BV _{DS} Driver output transistor voltage	-0.5V to 250V
Total Drive Current (Unison Mode) I _{OLU}	1.6 AMP
Logic Input Voltage	-0.5V to V _{DD} +0.5V
Storage Temperature	-65°C to 150°C
Power Dissipation ¹	1.6 Watt

Note 1: For operation above 25°C ambient derate linearly to 85°C at 15mW/°C.

General Description

The HV02 is a 16 Channel Row Drive IC designed for general purpose electroluminescent display use. The chip provides the scanning voltage to each row output in sequence and, in unison, generates the refresh pulse and two sinking pulses (scan and refresh sink) which are required for the operation of the TFEL panel. The intrinsic source-drain diodes on the outputs can handle surge currents up to 250mA for charging of the capacitive loads.

Serial Data is entered into a 16-bit shift register on the Hi to Low transition of the clock input. Data is outputted if enable is Hi and the "ALL ON" input is Low. If the "ALL ON" input goes Hi, all parallel outputs turn on in unison to refresh the Row lines on the panel. Expansion is possible by using the serial output (data out). This output is not controlled by the enable and "ALL ON" inputs. To make the system design versatile, the HV02 has an initialization feature which allows setting or resetting the first bit and resetting the other bits of the shift register.

Electrical Characteristics (over recommended operating conditions unless noted)

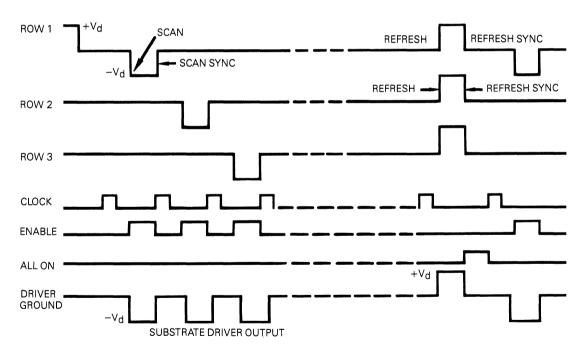
Symbol Parameter Min Тур Max Units Conditions V_{IH} Input High Voltage V_{DD} - 1 V Input Low Voltage v V 1 $V_{DD} = 13V, f_{SC} = 100KHz$ V_{DD} Supply Current 1 6.5 mA I_{DD} $V_{DD} = 10.8V$ High Voltage Output Sink Current 300 250 mΑ I_{olh} $V_0^{00} = 15V$ (Single Driver) $V_{IN} = 0V \text{ or } V_{DD}$ Input Leakage Current ±50 Т_{іс}, І_{ін} ±1 μA 25 60 Ω $V_{DD} = 10.8V$ R_{on} Output driver transistor On-resistance High Voltage Outputs Off BV_{DS} Output driver transistor Drain-Source 200 250 ۷ $I_{0} = 200 \mu A$ Breakdown voltage μĀ $V_{DD} = 10.8V$ 50 I_{OL} Shift Register Data Out Source Current $V_{OL} = 1.0V$ -50 μA V_{DD} = 10.8 I_{OH} Shift Register Data Out $V_{OH} = V_{DD} - 1.0V$ Source Current

DC Characteristics

AC Characteristics ($V_{DD} = 12V$, $T_A = 25^{\circ}C$)

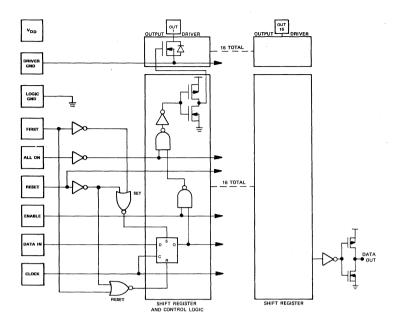
Symbol	Parameter	Min	Тур	Max	Units	Conditions
f _c	Max shift Clock Frequency	6	10		MHz	V _{DD} = 10V
S _R	Driver Ground Slew Rate			50	V/µsec	

Recommended Operating Conditions


Parameter	Value
Low Voltage Supply V _{DD}	10.8V to 13.2V
Driver ouput transistor voltage	up to 200V
Logic Input Voltage	OV to V _{DD}
Operating Temperature (T _A)	-40°C to 85°C

Operation of the Row Driver

The operation of the row driver can be understood by looking at the Logic Diagram and Output Waveform states. In normal operation, a row driver selects out a single line on the electroluminescent panel by pulling it down to a negative voltage $(-V_d)$. This selection is called scan. Since the EL panel has a large capacitance that was charged, eventually it has to be discharged. This operation is called refresh, and is performed by connecting these to a positive voltage $(+V_d)$.

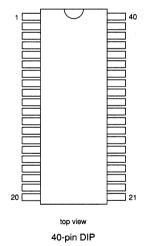

The driver ground (DR GND) is not tied to the system ground, but rather is a floating node. It is connected to the substrate driver, whose output varies as shown on the Waveform Diagram. The combination of the Row Drivers and the Substrate Drivers gives the required four functions which are called scan, scan sync, refresh and refresh sync. The first mode of the scan must be applied individually since it is by definition a single line selection. The refresh sync on the other hand, must be applied in unison. The other two modes, scan sync and refresh, can be applied either way according to the designer's discretion. Serial data is entered into the registers on the Hi to Lo transition of the clock input. Normal operation calls for a single logic "high" to be clocked through the shift register via the serial output. To create a scan function, the enable must be pulsed at each time. For the refresh sync mode, the ALL ON input must be high, since this function has to be done in unison for all row lines.

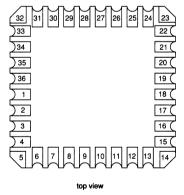
The Row Driver was designed with an added feature of a mode control input. The flip-flops of the shift registers are made with a reset control. By pulling the "RESET" input high, they will be reset to zero with the exception of the first. This stage can be high or low during the reset depending on the control input called "First." If this input is high, the "RESET" command will be interpreted as a "SET" command for the first flip-flop. This feature is important in the normal scanning function when a group of these row drivers are interconnected to form a long string of shift registers. By utilizing this function, a single "ONE" can be placed into any of the selected chips, and the row drivers in the system can be initialized in a very flexible way.

Switching Waveforms

Logic Diagram

Function Table


Function	Control Inputs					Internal Shift Registers		Outputs	
	First	Reset	Clock	Enable	All On	1	2-16	Serial Output	1-16 Parallel
First	н	н	X	X	X	Set to "1"	RESET to "0"	"0"	Determined by Enable and ALL ON
Reset	L	н	X	X	X	Reset to "0"		"0"	Determined by ALL ON
Load Data/Shift	x	L	Ļ	x	X	LOAD & SHIFT		R 16	Determined by ENABLE and ALL ON
Output Enable	x	L	X	н	L	X		R 16	Determined by R ₁ through R ₁₆
Output Disable	x	x	X	L	L	As determined above		R 16	All Parallel Outputs "OFF"
All On	x	x	X	X	н	As determined above		R 16	All Parallel Outputs are "ON"


L = Low level, H = High level, X = irrelevant, \downarrow = Hi to Low Transition, R 16 = State of register 16, R₁ = State of Register 1.

Pin Configurations

40-P	'in DIP		36-Pin LCC				
Pin	Function	Pin	Function	Pin	Function	Pin	Function
1	N/C	21	HVout 8	1	First	19	HVout 8
2	All On	22	HVout 7	2	All On	20	HVout 7
3	Enable	23	HVout 6	3	Enable	21	HVout 6
4	N/C	24	HVout 5	4	Data Out	22	HVout 5
5	Data Out	25	N/C	5	L GND	23	N/C
6	L GND	26	N/C	6 ·	DR GND	24	N/C
7	DR GND	27	N/C	7	HVout 16	25	N/C
8	HVout 16	28	HVout 4	8	HVout 15	26	N/C
9	HVout 15	29	HVout 3	9	HVout 14	27	HVout 4
10	N/C	30	N/C	10	HVout 13	28	HVout 3
11	N/C	31	N/C	11	N/C	29	HVout 2
12	HVout 14	32	HVout 2	12	N/C	30	HVout 1
13	HVout 13	33	HVout 1	13	N/C	31	DR GND
14	N/C	34	DR GND	14	N/C	32	L GND
15	N/C	35	L GND	15	HVout 12	33	Data In
16	N/C	36	Data In	16	HVout 11	34	Clock
17	HVout 12	37	Clock	17	HVout 10	35	Reset
18	HVout 11	38	Reset	18	HVout 9	36	V _{DD}
19	HVout 10	39	V _{DD}				55
20	HVout 9	40	First				

Package Outlines

36-pin LCC