

Advance Information

24-Channel Matrix TFEL Panel Display Column Driver

Ordering Information

	Package Options					
Device	44-Lead Ceramic J-Bend	Die				
HV08	HV08DJ	HV08X				

Features

- □ TTL-compatible imputs
- □ Up to 70V modulation voltage
- □ Capability of 16 levels of gray shading
- □ 6MHz data shift rate
- □ 24 Outputs per device (can be cascaded)
- □ Minimum 40mA high-voltage output source/sink capability
- □ Pin-programmable shift direction
- $\hfill\square$ D/A conversion can be performed in as little as $3\mu S$
- □ Diodes in output structure allow usage in energy recovery systems (non-gray shaded)
- Integrated high-voltage CMOS technology
- □ Available in 44-lead ceramic J-bend package or in die form

General Description

The HV08 is a 24-channel column driver IC designed for general purpose electroluminescent display use. Each channel of the HV08 consists of a 4-bit wide shift register, a 4-bit counter, and a high voltage sample and hold circuit to perform a D/A conversion to one of 16 arbitrary voltage levels. The output of each channel is buffered by a source-follower structure which allows both sourcing and sinking of output current.

DIR is a shift direction select pin which has been provided to allow the user to reverse shift direction between channels and to interchange the function of the shift register data input and output pins. When the DIR input is high, data is shifted in a clockwise direction. Data is accepted at pins I/01 through I/04 and output at O/I1 through O/I4. When the DIR input is low, data is shifted in a counterclockwise direction. Data is accepted at pins O/I1 through O/I4 and output at pins I/01 through I/04.

D/A conversion is accomplished by means of a high-voltage sample and hold circuit which is controlled by a 4-bit counter. For each channel, data is serially shifted through the (4-bit wide) shift register by the rising edge of SCLK. With the MODE signal high, the data in the shift register is transferred to a polynomial counter by the rising edge of CCLK. The mode signal is then brought low and the counter is down-counted to zero; again, the rising edge of CCLK. During the period that the counter is not zero, a sample switch is held closed which allows a storage capacitor to be charged to voltage at the $V_{\rm R}$ (ramp voltage) input to the device. The high voltage output also follows $V_{\rm R}$ during this period. When the counter reaches zero, the sample switch is opened. The output then holds at the value of $V_{\rm R}$ that was present when zero count occurred. A diode provides for the discharge of the storage capacitor once $V_{\rm R}$ is less than the voltage on the capacitor.

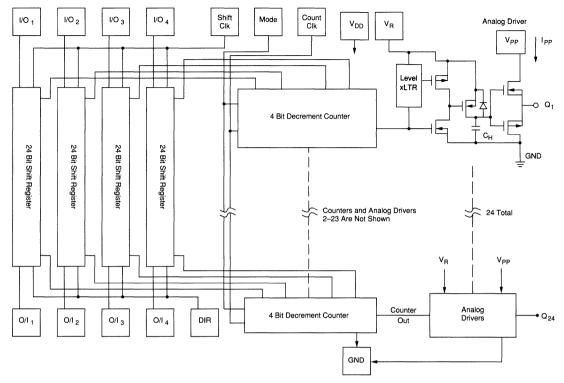
Electrical Characteristics

Low-Voltage DC Characteristics

Symbol	Parameter	Min	Typ ²	Max	Units	Conditions
V _{DD}	Low-voltage supply	4.5	5.0	5.5	V	
I _{DD}	V _{DD} supply current (active)		6.0	10.0	mA	f _{SCLK} = 6MHz ¹ f _{CCLK} = 6MHz F _{DATA} = 3MHz
I _{DDS}	V _{DD} supply current (standby)			1.0	mΑ	All V _{IN} = 0V
VIH	High-level input voltage	2.4		V _{DD}	V	
V _{IL}	Low-level input voltage	0		0.8	V	
I _{IH}	High-level input current		1.0	50	μA	$V_{IH} = V_{DD}$
I.	Low-level input current		-1.0	-50	μA	$V_{IL} = 0V$
CIN	Input capacitance (data, mode, SCLK, CCLK)			10	pF	V _{IN} = 0V, f = 1MHz
T _A	Operating free-air temperature	-55		125	С	
V _{OH}	High-level output voltage	2.8			V	$I_{OH} = -4mA, V_{DD} = min$
V _{OL}	Low-level output voltage			0.4	V	$I_{OL} = 4mA, V_{DD} = min$
I _{он}	High-level output current			-4.0	mA	
I _{OL}	Low-level output current			4.0	mA	

Notes: 1. SCLK, CCLK are continuous.

2. All typical values are at $V_{DD} = 5.0V$.


High-Voltage DC Characteristics

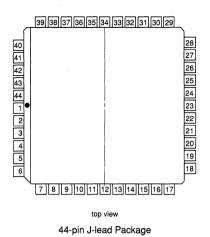
Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{PP}	High-voltage supply	-0.3		70	V	
I _{PP}	V _{PP} supply current			100	μA	V _{PP} = 70V, outputs high or low, no load
V _R	Ramp voltage	0		V _{PP}	V	
I _{AOH} max	Maximum high-voltage analog output source current ¹	-40			mA	V _{PP} = 70V
I _{AOH}	High-voltage analog output source current ¹	-10			mA	$V_{PP} = 70V$ $V_{R} = 30V$ $V_{AO} = 28V$
I _{AOL} max	Maximum high-voltage analog output sink current ²	40			mA	V _{PP} = 70V
I _{AOL}	High-voltage analog output sink current ²	10			mA	$V_{PP} = 70V$ $V_{R} = 30V$ $V_{AO} = 32V$

 Notes:
 1. Either by N-CH transistor or P-CH output diode.

 2. Either by P-CH transistor or N-CH output diode.

Functional Block Diagram

Function Table


	Control Inputs						Outputs	
Function	Shift Counter Clock Clock Mode V _R		V _R	Shift Registers	Counters	Serial	Parallel	
Load Shift Register	↑ T	x	L	х	Normal Shift Op.	x	Delayed Data-In	x
Load Counter	No ↑	Ŷ	н	x	No Change	Load Data from S/R to Counter	No Change	Low
Counting	x	Ŷ	L	Initiates Ramp	x	Translates Data to Time	х	D/A Conversion
Voltage Conversion	X	Pulsing	L	Volt Ramping Up	x	Counting	х	Follows Ramp

L = Low level, H = High level, X = Irrelevant, \uparrow = Low to Hi Transition

Pin Configuration

44-Pin J-Lead							
Pin	Function	Pin	Function				
1	GND	23	HVout 13				
2	DIR	24	HVout 12				
3	V _{DD}	25	HVout 11				
4	Mode	26	HVout 10				
5	0/I ₁	27	HVout 9				
6	O/l ₂	28	HVout 8				
7	0/1 ₃	29	HVout 7				
8	0/I_4	30	HVout 6				
9	V _R	- 31	HVout 5				
10	V _{PP}	32	HVout 4				
11	GND	33	HVout 3				
12	HVout 24	34	HVout 2				
13	HVout 23	35	HVout 1				
14	HVout 22	36	GND				
15	HVout 21	37	V _{PP}				
16	HVout 20	38	V _R				
17	HVout 19	39	I/O ₄				
18	HVout 18	40	I/O ₃				
19	HVout 17	41	1/0 ₂				
20	HVout 16	42	I/O				
21	HVout 15	43	SC				
22	HVout 14	44	CC				

Package Outline

Gray Shade Decoding Scheme

Brightest Shade No.	I/O ₁	I/O ₂	I/O ₃	I/O ₄	
16	1	0	0	1	Brightest
15	1	1	0	1	
14	1	1	1	1	
13	1	1	1	0	
12	0	1 .	1	1	
11	1	0	1	0	
10	0	1	0	1	
9	1	0	1	1	
8	1	1	0	0	
7	0	1	1	0	
6	0	0	1	1	
5	1	0	0	0	
4	0	1	0	0	
3	0	0	1	0	
2	0	0	0	1	
1	0	0	0	0	Dimmest