July 2014

HXB15H1G800CF HXB15H1G160CF

1-Gbit Double-Date-Rate-Three SDRAM DDR3 SDRAM EU RoHS HF Compliant Products

Data Sheet

Rev. 1

Revision History: Rev. 1, 2014-07					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: <u>info@scsemicon.com</u>

1 Overview

This chapter gives an overview of the 1-Gbit Double-Data-Rate-Three SDRAM product family and describes its main characteristics.

1.1 Features

The 1-Gbit Double-Data-Rate-Three SDRAM offers the following key features:

- + 1.5 V \pm 0.075 V Power Supply
- 1.5 V \pm 0.075 V (SSTL_15) compatible I/O
- DRAM organizations with 8/16 data in/outputs
- Double Data Rate architecture:
 - two data transfers per clock cycle
 - eight internal banks for concurrent operation
- Programmable CAS Latency: 6, 7, 8, 9, 10, 11, 12, 13 and 14 supported
- Programmable Burst Length: 4/8 with both nibble sequential and interleave mode.____
- Differential clock inputs (CK and CK)
- Bi-directional, differential data strobes (DQS and DQS) are transmitted / received with data. Edge aligned with read data and center-aligned with write data.
- · DLL aligns DQ and DQS transitions with clock
- DQS can be disabled for single-ended data strobe operation
- Commands entered on each positive clock edge, data and data mask are referenced to both edges of DQS
- Data masks (DM) for write data
- Posted CAS by programmable additive latency for better command and data bus efficiency

- Off-Chip-Driver impedance adjustment (OCD) and On-Die-Termination (ODT) for better signal quality
- Auto-Precharge operation for read and write bursts
 Auto-Parcels Solf Patroph and power source Device
- Auto-Refresh, Self-Refresh and power saving Power-Down modes
- Operating temperature range 0°C to 85°C for standard use.
- Operating temperature range -40°C to 85°C for industrial use.
- Average Refresh Period 7.8 μs at a T_{CASE} lower than 85 °C, 3.9 μs between 85 °C and 95 °C
- Asynchronous RESET pin supported
- TDQS (Termination Data Strobe) supported (x8 only)
- Write Levelization supported 1KB page size for x8; 2KB page size for x16
- Packages: PG-TFBGA-78(×8); PG-TFBGA-96(×16)
- RoHS Compliant, HF Products¹⁾
- All Speed grades faster than DDR3–400 comply with DDR3–400 timing specifications when run at a clock rate of 200 MHz.

 RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. For more information please visit http://www.scsemicon.com/

							TABLE 1 Performance Table
SCS Speed Code		–13K	15H	–19F	Unit	Note	
DRAM Speed Grade		DDR3	-1600	-1333	-1066		
CAS-RCD-RP latencie	es		11-11-11	9–9–9	7–7–7	t _{CK}	
Max. Clock Frequency	CL5	f _{cк5}	667	667	667	MHz	
	CL6	f_{CK6}	800	800	800	MHz	
	CL7	f _{cк7}	1066	1066	1066	MHz	
	CL8	f _{скв}	1066	1066	1066	MHz	
	CL9	f _{ск9}	1333	1333		MHz	
	CL10	<i>f</i> ск10	1333	1333		MHz	
	CL11	<i>f</i> _{СК11}	1600			MHz	
	CL12	<i>f</i> _{СК12}				MHz	
	CL13	<i>f</i> _{СК13}				MHz	
	CL14	$f_{\rm CK14}$				MHz	
Min. RAS-CAS-Delay		t _{RCD}	13.125	12.5	15	ns	
Min. Row Precharge Time		t _{RP}	13.125	12.5	15	ns	
Min. Row Active Time		t _{RAS}	45	45	45	ns	
Min. Row Cycle Time		t _{RC}	58.125	57.5	60	ns	
Precharge-All (8 banks period		t _{PREA}	15	15	18	ns	1)2)

1) This t_{PREA} value is the minimum value at which this chip will be functional.

2) Precharge-All command for an 4 bank device will equal to $t_{RP} + 1 \times t_{CK}$ or $t_{nRP} + 1 \times nCK$, depending on the speed bin, where $t_{nRP} = RU\{t_{RP} / t_{CK(avg)}\}$ and t_{RP} is the value for a single bank precharge.

1.2 Description

The 1-Gbit DDR3 DRAM is a high-speed Double-Data-Rate-Two CMOS Synchronous DRAM device containing

1,073,741,824 bits and internally configured as an octal bank DRAM.

The 1-Gbit device is organized as

8 Mbit ×16 I/O ×8 banks or 16 Mbit ×8 I/O ×8 banks. These synchronous devices achieve high speed transfer rates starting at 400 Mb/sec/pin for general applications. See **Table 1** for performance figures.

The device is designed to comply with all DDR3 DRAM key features:

- 1. Posted CAS with additive latency.
- 2. Write latency = read latency 1.
- 3. Normal and weak strength data-output driver.
- 4. Off-Chip Driver (OCD) impedance adjustment.
- 5. On-Die Termination (ODT) function.

All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a single ended DQS or differential DQS-DQS pair in a source synchronous fashion.

A 17 bit address bus for x8 organised components and a 16 bit address bus for x16 components is used to convey row, column and bank address information in a RAS- CAS

Multiplexing style.

The DDR3 device operates with a 1.5 V \pm 0.075 V power supply. An Auto-Refresh and Self-Refresh mode is provided along with various power-saving power-down modes.

The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.

The DDR3 SDRAM is available in TFBGA package.

						TABLE
Product Type ¹⁾	Org.	Speed	CAS-RCD-RP Latencies ²⁾³⁾⁴⁾	Clock (MHz)	Package	Compliant Product Note ⁵⁾
Standard Temperature I	Range (0°C - 85°C)	1		1	I
DDR3-1600 (11-11-11)						
HXB15H1G800CF-13K	×8	DDR3-1600	11-11-11	800	PG-TFBGA-78	
HXB15H1G160CF-13K	×16	DDR3-1600	11-11-11	800	PG-TFBGA-96	
DDR3-1333 (9-9-9)						
HXB15H1G800CF-15H	×8	DDR3-1333	9-9-9	667	PG-TFBGA-78	
HXB15H1G160CF-15H	×16	DDR3-1333	9-9-9	667	PG-TFBGA-96	
DDR3-1066 (7-7-7)				•		
HXB15H1G800CF-19F	×8	DDR3-1066	5-5-5	533	PG-TFBGA-78	
HXB15H1G160CF-19F	×16	DDR3-1066	5-5-5	533	PG-TFBGA-96	
Industrial Temperature I	Range (-40°C - 85°C)				
DDR3-1600 (11-11-11)						
HXB15H1G800CF-13K	×8	DDR3-1600	11-11-11	800	PG-TFBGA-78	
HXB15H1G160CF-13K	×16	DDR3-1600	11-11-11	800	PG-TFBGA-96	
DDR3-1333 (9-9-9)						
HXB15H1G800CF-15H	×8	DDR3-1333	9-9-9	667	PG-TFBGA-78	
HXB15H1G160CF-15H	×16	DDR3-1333	9-9-9	667	PG-TFBGA-96	
DDR3-1066 (7-7-7)						
HXB15H1G800CF-19F	×8	DDR3-1066	5-5-5	533	PG-TFBGA-78	
HXB15H1G160CF-19F	×16	DDR3-1066	5-5-5	533	PG-TFBGA-96	

1) For detailed information regarding product type of SCSemicon please see chapter "Product Nomenclature" of this data sheet.

2) CAS: Column Address Strobe

3) RCD: Row Column Delay

4) RP: Row Precharge

5) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.

Data Sheet

HXB15H1G(80/16)0CF 1-Gbit Double-Data-Rate-Three SDRAM

2 Configuration

This chapter contains the chip configuration.

2.1 Configuration for PG-FBGA-78

The chip configuration of a DDR3 SDRAM is listed by function in **Table 3**. The abbreviations used in the Ball#/Buffer Type columns are explained in **Table 4** and **Table 5** respectively.

				TABLE 3 Configuration
Ball#	Name	Ball Type	Buffer Type	Function
Clock Sign	als ×8 Organi	zation	•	·
F7	СК	I	SSTL	Clock Signal CK, CK
G7	CK	I	SSTL	
G9	CKE	I	SSTL	Clock Enable
Control Sig	nals ×8 Orga	nization		
F3	RAS	I	SSTL	Row Address Strobe (RAS), Column Address Strobe (CAS),
G3	CAS	I	SSTL	Write Enable (WE)
H3	WE	I	SSTL	
H2	CS	I	SSTL	Chip Select
Address Si	gnals ×8 Org	anization	•	·
J2	BA0	I	SSTL	Bank Address Bus 2:0
K8	BA1	I	SSTL	
J3	BA2	I	SSTL	
K3	A0	I	SSTL	Address Signal 13:0, Address Signal 10/Autoprecharge
L7	A1	I	SSTL	
L3	A2	I	SSTL	
K2	A3	I	SSTL	
L8	A4	I	SSTL	
L2	A5	I	SSTL	
M8	A6	I	SSTL	
M2	A7	I	SSTL	
N8	A8	I	SSTL	
M3	A9	I	SSTL	
H7	A10	I	SSTL	
	AP	I	SSTL	
M7	A11	I	SSTL	
K7	A12	I	SSTL	
N3	A13	I	SSTL	

Ball#	Name	Ball Type	Buffer Type	Function
Data Signals ×8	Organizati	on	•	
B3	DQ0	I/O	SSTL	Data Signal Lower Byte 7:0
C7	DQ1	I/O	SSTL	
C2	DQ2	I/O	SSTL	
C8	DQ3	I/O	SSTL	
E3	DQ4	I/O	SSTL	
E8	DQ5	I/O	SSTL	
D2	DQ6	I/O	SSTL	
E7	DQ7	I/O	SSTL	
Data Strobe ×8	Organizatio	on	·	
C3	DQS	I/O	SSTL	Data Strobe Byte
D3	DQS	I/O	SSTL	
B7	DM/TDQS	I/O	SSTL	
A7	NU/TDQS	I/O	SSTL	
Reset ×8 Organ	ization			
N2	RESET	I	SSTL	Active Low Asynchronous Reset
Power Supplies	s ×8 Organiz	zation		
E1	V_{REFDQ}	AI	-	Reference voltage for DQ
J8	V_{REFCA}	AI	SSTL	Reference voltage for CA
B9, C1, E2, E9,	V_{DDQ}	PWR	-	I/O Driver Power Supply
A2, A9, D7, G2, G8, K1, K9, M1, M9	V _{DD}	PWR	-	Power Supply
B2, B8, C9, D1,D9	V _{SSQ}	PWR	-	Power Supply
A1, A8, B1, D8, F2, F8, J1, J9, L1, L9, N1, N9	V _{SS}	PWR	-	Power Supply
H8	ZQ	PWR	-	Reference Pin for ZQ calibration
Not Connected	×8 Organiz	ation	1	1
A3, F1, F9, H1, H9, J7, N7	NC	NC	-	Not Connected
Other Balls ×8 0	Organizatio	n		·
G1	ODT	I	SSTL	On-Die Termination Control

		TABLE 4
		Abbreviations for Ball Type
Abbreviation	Description	
I	Standard input-only ball. Digital levels.	
0	Output. Digital levels.	
I/O	I/O is a bidirectional input/output signal.	
AI	Input. Analog levels.	
PWR	Power	
GND	Ground	
NC	Not Connected	

	TABLE 5 Abbreviations for Buffer Type
Abbreviation	Description
SSTL	Serial Stub Terminated Logic (SSTL_15)
LV-CMOS	Low Voltage CMOS
CMOS	CMOS Levels
OD	Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.

		Cnip	Conn	igurati		or x8 Compo	nents in Tr	-BGA-70(
1	2	3	4	5	6	7	8	9
Vss	V _{DD}	NC		А		NU/TDQS	V _{SS}	V _{DD}
Vss	V _{SSQ}	DQ0		В		DM/TDQS	V _{SSQ}	V _{DDQ}
V_{DDQ}	DQ2	DQS		С		DQ1	DQ3	V _{SSQ}
V _{SSQ}	DQ6	DQS		D		V _{DD}	V _{SS}	V _{SSQ}
V _{REFDQ}	V _{DDQ}	DQ4		Е		DQ7	DQ5	V _{DDQ}
NC	V _{SS}	RAS		F		СК	V _{SS}	NC
ODT	V _{DD}	CAS		G		CK	V_{DD}	СКЕ
NC	CS	WE		Н		A10/AP	ZQ	NC
Vss	BA0	BA2		J		NC	V _{REFCA}	V _{SS}
V_{DD}	A3	A0		K		A12/BC	BA1	V _{DD}
Vss	A5	A2		L		A1	A4	V _{SS}
V_{DD}	A7	A9		М		A11	A6	V _{DD}
V _{SS}	RESET	A13]	Ν		NC	A8	V _{SS}

2.2 Configuration for PG-FBGA-96

The chip configuration of a DDR3 SDRAM is listed by function in **Table 6**. The abbreviations used in the Ball#/Buffer Type columns are explained in **Table 7** and **Table 8** respectively.

				TABLE 6
				Configuration
Ball#	Name	Ball Type	Buffer Type	Function
Clock Sig	nals ×16 Orgar	nization	I	
J7	СК	I	SSTL	Clock Signal CK, CK
K7	CK	I	SSTL	
K9	CKE	I	SSTL	Clock Enable
Control Si	gnals ×16 Org	anization		•
J3	RAS	I	SSTL	Row Address Strobe (RAS), Column Address Strobe (CAS),
K3	CAS	I	SSTL	Write Enable (WE)
L3	WE	I	SSTL	
L2	CS	I	SSTL	Chip Select
Address S	ignals ×16 Org	ganization		•
M2	BA0	I	SSTL	Bank Address Bus 2:0
N8	BA1	I	SSTL	
M3	BA2	I	SSTL	
N3	A0	I	SSTL	Address Signal 12:0, Address Signal 10/Autoprecharge
P7	A1	I	SSTL	
P3	A2	1	SSTL	
N2	A3	I	SSTL	
P8	A4	I	SSTL	
P2	A5	1	SSTL	
R8	A6	1	SSTL	
R2	A7	I	SSTL	
Т8	A8	I	SSTL	
R3	A9	I	SSTL	
L7	A10	I	SSTL	
	AP	I	SSTL	
R7	A11	I	SSTL	
N7	A12/BC	I	SSTL	

D.11/		D	D. #	
Ball#	Name	Ball Type	Buffer Type	Function
Data Signals ×1	6 Organiza	ation		
D7	DQU0	I/O	SSTL	Data Signal Lower Byte 7:0
C3	DQU1	I/O	SSTL	
C8	DQU2	I/O	SSTL	
C2	DQU3	I/O	SSTL	
A7	DQU4	I/O	SSTL	
A2	DQU5	I/O	SSTL	
B8	DQU6	I/O	SSTL	
A3	DQU7	I/O	SSTL	
E3	DQL0	I/O	SSTL	Data Signal Upper Byte 15:8
F7	DQL1	I/O	SSTL	
F2	DQL2	I/O	SSTL	
F8	DQL3	I/O	SSTL	
Н3	DQL4	I/O	SSTL	
H8	DQL5	I/O	SSTL	
G2	DQL6	I/O	SSTL	
H7	DQL7	I/O	SSTL	
Data Strobe ×1	6 Organiza	tion	-1	
F3	DQSL	I/O	SSTL	Data Strobe Upper Byte
G3	DQSL	I/O	SSTL	
C7	DQSU	I/O	SSTL	Data Strobe Lower Byte
B7	DQSU	I/O	SSTL	
Reset ×16 Orga	nization		-1	
T2	RESET	I	SSTL	Active Low Asynchronous Reset
Data Mask ×16	Organizati	on		
D3	DMU	I	SSTL	Data Mask Upper Byte
E7	DML	1	SSTL	Data Mask Lower Byte
Power Supplies	s ×16 Orga	nization		
	V _{REFDQ}		-	Reference voltage for DQ
M8	V _{REFCA}	AI	-	Reference voltage for CA
A1, A8, C1, C9, D2, E9, F1, H2, H9	V_{DDQ}	PWR	-	I/O Driver Power Supply
пэ B2, D9, G7, K2,	V	PWR	_	Power Supply
K8, N1, N9, R1, R9	$V_{\rm DD}$		_	rower Suppry
B1, B9, D1, D8, E2, E8, F9, G1, G9	V _{SSQ}	PWR	-	Power Supply
A9, B3, E1, J2, J8, M1, M9, P1, P9, T1, T9	V _{SS}	PWR	-	Power Supply
L8	ZQ	PWR	-	Reference Pin for ZQ calibration
		1	1	

Not Connected ×16 Organization							
Ball#	Name	Ball Type	Buffer Type	Function			
J1, J9, L1, L9, M7, T3, T7	NC	NC	-	Not Connected			
Other Balls ×16 Organization							
K1	ODT	I	SSTL	On-Die Termination Control			

TABLE 7Abbreviations for Ball Type

Abbreviation	Description
1	Standard input-only ball. Digital levels.
0	Output. Digital levels.
I/O	I/O is a bidirectional input/output signal.
AI	Input. Analog levels.
PWR	Power
GND	Ground
NC	Not Connected

	TABLE 8
	Abbreviations for Buffer Type
Abbreviation	Description
SSTL	Serial Stub Terminated Logic (SSTL_15)
LV-CMOS	Low Voltage CMOS
CMOS	CMOS Levels
OD	Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.

FIGURE 2

Chip Configuration for x16 Components in TFBGA–96 (Top view)

1	2	3	4	5	6	7	8	9
V_{DDQ}	DQU5	DQU7		А		DQU4	V_{DDQ}	V _{SS}
V _{SSQ}	V _{DD}	V _{SS}		В		DQSU	DQU6	V _{SSQ}
V_{DDQ}	DQU3	DQU1		С		DQSU	DQU2	V_{DDQ}
V _{SSQ}	V _{DDQ}	DMU		D		DQU0	V _{SSQ}	V _{DD}
V _{SS}	V _{SSQ}	DQL0		Е		DML	V _{SSQ}	V _{DDQ}
V_{DDQ}	DQL2	DQSL		F		DQL1	DQL3	V _{SSQ}
V _{SSQ}	DQL6	DQSL		G		V _{DD}	V _{SS}	V _{SSQ}
V _{REFDQ}	V _{DDQ}	DQL4		Н		DQL7	DQL5	V _{DDQ}
NC	V _{SS}	RAS		J		СК	V _{SS}	NC
ODT	V _{DD}	CAS		K		CK	V _{DD}	CKE
NC	CS	WE		L		A10/AP	ZQ	NC
V _{SS}	BA0	BA2		М		NC	V _{REFCA}	V _{SS}
V_{DD}	A3	A0		N		A12/BC	BA1	V_{DD}
V _{SS}	A5	A2		Р		A1	A4	V _{SS}
V _{DD}	A7	A9		R		A11	A6	V_{DD}
V _{SS}	RESET	NC		Т		NC	A8	V _{SS}

2.3 Addressing

This chapter describes the DDR3 addressing.

		TABLE 9 Addressing
128 Mb x 8 ¹⁾	64 Mb x 16 ¹⁾	Note
BA[2;0]	BA[2;0]	
8	8	
A10	A10	
A[13:0]	A[12:0]	
A[9:0]	A[9:0]	
10	10	3)
8	16	
1024 (1 K)	2048 (2 K)	4)
	BA[2;0] 8 A10 A[13:0] A[9:0] 10 8	BA[2;0] BA[2;0] BA[2;0] BA[2;0] 8 8 A10 A10 A[13:0] A[12:0] A[9:0] A[9:0] 10 10 8 16

1) Referred to as 'org'

2) Referred to as 'org'

3) Referred to as 'colbits'

4) PageSize = $2^{\text{colbits}} \times \text{org/8}$ [Bytes]

3 Electrical Characteristics

This chapter describes the Electrical Characteristics.

3.1 Absolute Maximum Ratings

Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 18 at any time.

Symbol	Parameter	Absolu	te Maxii Unit	num Rating Note			
		Min.	Max.				
V _{DD}	Voltage on V_{DD} pin relative to V_{SS}	-0.4	+1.975	V	1) 3)		
V_{DDQ}	Voltage on V_{DDQ} pin relative to V_{SS}	-0.4	+1.975	V	1) 3)		
V _{IN} , V _{OUT}	Voltage on any pin relative to $V_{\rm SS}$	-0.4	+1.975	V	1)		
T _{STG}	Storage Temperature	-55	+100	°C	1)2)		

 Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

 Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.

3). VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.

Attention: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

		DRAN	l Compone	nt Opera	TABLE 11 ating Temperature Range
Symbol Parameter			Rating		Note
		Min.	Max.		
T _{OPER}	Normal Operating Temperature Range	0	+85	°C	1)2)
	Extended Temperature Range (Optional)	-40	+85	°C	1) 3)

 Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.

 The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85_oC under all operating conditions.

3). Some applications require operation of the DRAM in the Extended Temperature Range between 85_oC and 95oc case temperature. Full specifications are supported in this range, but the following additional conditions apply:

a, Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability

b, If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).

Rev. 1, 2014-07

DC Characteristics 3.2

TABLE 12 Recommended DC Operating Conditions (SSTL_15)							
Symbol	Parameter	Rating	Rating			Note	
		Min.	Тур.	Max.			
$V_{\rm DD}$	Supply Voltage	1.425	1.500	1.575	V	1) 2)	
V_{DDQ}	Supply Voltage for Output	1.425	1.500	1.575	V	1) 2)	

Under all conditions, VDDQ must be less than or equal to VDD.
 VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.

3.3 Input / Output Capacitance

This chapter contains the Input / Output Capacitance.

				ı.	nout /_C		ABLI Capaci	
Symbol	Parameter	DDR3-	-1600		-1333	1	-1066	Unit
		Min	Max	Min.	Max.	Min.	Max.	1
ССК	Input capacitance, CK and CK	0.8	1.4	0.8	1.4	0.8	1.6	pF
CDCK	Input capacitance delta, CK and CK	0	0.15	0	0.15	0	0.15	pF
CDDQS	Input capacitance delta, DQS and DQS	0	0.15	0	0.15	0	0.20	pF
CI	Input capacitance, all other input-only pins	0.75	1.3	0.75	1.3	0.75	1.35	pF
CDI_CTRL	Input capacitance delta, All CTRL input-only pins	-0.4	0.2	-0.4	0.2	-0.5	0.3	pF
CDI_ADD_CN	DInput capacitance delta, All ADD/CMD input-only pins	-0.4	0.4	-0.4	0.4	-0.5	0.5	pF
CIO	Input/output capacitance, DQ, DM, DQS, DQS	1.5	2.3	1.5	2.5	1.5	2.7	pF
CDIO	Input/output capacitance delta, DQ, DM, DQS, DQS	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF
CZQ	Input/output capacitance of ZQ pin		3		3		3	pF

4

HXB15H1G(80/16)0CF 1-Gbit Double-Data-Rate-Three SDRAM

Currents Measurement Conditions

This chapter describes the Current Measurement, Specifications and Conditions.

I _{DD} Measu		BLE 1
Parameter	Symbol	Note
Operating One Bank Active-Precharge Current CKE: High; External clock: On; BL: 8a); AL: 0; /CS: High between ACT and PRE; Command, Address, Bank Address Inputs: Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;	I _{DD0}	
Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; BL: 8a); AL: 0; /CS: High between ACT, RD and PRE; Command, Address; Bank Address Inputs, Data IO: DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;	I _{DD1}	
Precharge Standby Current CKE: High; External clock: On; BL: 8a); AL: 0; /CS: stable at 1; Command, Address, Bank Address Inputs: Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;	I _{DD2N}	
Precharge Standby ODT Current CKE: High; External clock: On; BL: 8a); AL: 0; /CS: stable at 1; Command, Address, Bank Address Inputs: Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb);	I _{dd2nt}	
Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; BL: 8a); AL: 0; /CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power DownMode: Slow Exitc)	I _{DD2P0}	
Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; BL: 8a); AL: 0; /CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc)	I _{DD2P1}	
Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0	I _{DD2Q}	
Active Standby Current CKE: High; External clock: On; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;	I _{DD3N}	
Active Power-Down Current CKE: Low; External clock: On; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0	I _{DD3P}	

Parameter	Symbol	Note
Operating Burst Read Current CKE: High; External clock: On; BL: 8 _a); AL: 0; /CS: High between RD; Command, Address, Bank Address Inputs; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;	I _{DD4R}	
Operating Burst Write Current CKE: High; External clock: On; BL: 8a); AL: 0; /CS: High between WR; Command, Address, Bank Address Inputs: Data IO: seamless read data burst with different data between one burst and the next one; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: D,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH;	I _{DD4W}	
Burst Refresh Current CKE: High; External clock: On; BL: 8a); AL: 0; /CS: High between REF; Command, Address, Bank Address Inputs; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: REF command every nREC ; Dutput Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;	$I_{\rm DD5B}$	
Self-Refresh Current: Normal Temperature Range Tcase: 0 - 85 _o C; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and /CK: LOW; CL:; BL: 8a); AL: 0; /CS, Command, Address, Bank Address Inputs, Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID-LEVEL	I _{DD6}	
Self-Refresh Current: Extended Temperature Range Tcase: 0 - 95 _o C; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede); CKE: Low; External clock: Off; CK and /CK: LOW; CL; BL: 8a); AL: 0; /CS, Command, Address, Bank Address Inputs, Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MIDLEVEL	I _{DD6ET}	
Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL; BL: 8a)f); AL: CL-1; /CS: High between ACT and RDA; Command, Address, Bank Address Inputs: Data IO: read data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: two times nterleaved cycling through banks (0, 1,7) with different addressing, Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;	I _{DD7}	

- a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
- b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
- c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit
- d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
- e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range
- f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B

	TABLE 15 Definition for Inc.
Parameter	Description
LOW	Defined as $V_{\text{IN}} \leq V_{\text{IL.AC.MAX}}$
HIGH	Defined as $V_{\text{IN}} \ge V_{\text{IH.AC.MIN}}$
STABLE	Defined as inputs are stable at a HIGH or LOW level
FLOATING	Defined as inputs are $V_{\text{REF}} = V_{\text{DDQ}} / 2$
SWITCHING	Defined as: Inputs are changing between high and low every other clock (once per two clocks) for address and control signals, and inputs changing between high and low every other clock (once per clock) for DQ signals not including mask or strobes

					TABLE 16IDD Specification
Symbol	-13K	-15H	-19F	Unit	Note
	DDR3 - 1600	DDR3 - 1333	DDR3 - 1066	_	
	Max.	Max.	Max.	—	
I _{DD0}	52	50	48	mA	
I _{DD1}	68	65	62	mA	
I _{DD2N}	26	25	22	mA	
I _{DD2NT}	32	30	26	mA	
I _{DD2P0}	12	12	12	mA	
I _{DD2P1}	15	15	15	mA	
I _{DD2Q}	26	25	22	mA	
I _{DD3N}	40	38	35	mA	
I _{DD3P}	26	25	22	mA	
I _{DD4R}	165	145	120	mA	
I _{DD4W}	145	125	110	mA	
I _{DD5B}	110	105	100	mA	
I _{DD6}	12	12	12	mA	
I _{DD6ET}	15	15	15	mA	
I _{DD6 low power}	TBD	TBD	TBD	mA	
I _{DD7}	225	215	210	mA	

1) $0 \leq T_{CASE} \leq 85$ °C.

5 Speed Grade Definitions

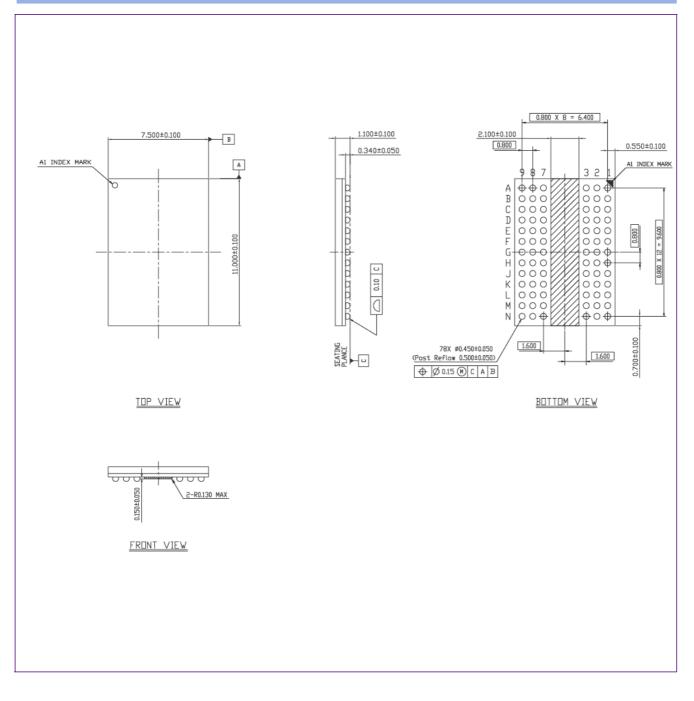
				Speed G	rade Defin	TABLE 17 ition - DDR3–160
Speed Grade			DDR3-16	00	Unit	Note
SCS Sort Name			-13k			
CAS-RCD-RP late	CAS-RCD-RP latencies				t _{CK}	
Parameter		Symbol	Min.	Max.	_	
Clock Period	@ CL = 5	t _{CK}	3.0	3.3	ns	1)2)3)4)8)9)
	@ CL = 6	t _{CK}	2.5	3.3	ns	1)2)3)8)
	@ CL = 7	t _{CK}	1.875	<2.5	ns	1)2)3)4)8)
	@ CL = 8	t _{CK}	1.875	<2.5	ns	1)2)3)8)
	@ CL = 9	t _{CK}	1.5	<1.875	ns	1)2)3)4)8)
	@ CL = 10	t _{CK}	1.5	<1.875	ns	1)2)3)8)
	@ CL = 11	t _{CK}	1.25	<1.5	ns	1)2)3)
Row Active Time		t _{RAS}	35	9*tREFI	ns	
Row Cycle Time		t _{RC}	48.75	—	ns	
RAS-CAS-Delay		t _{RCD}	13.75	—	ns	
Row Precharge Tin	ne	t _{RP}	13.75	—	ns	

					Speed G	rade Defini		TABLE 18 R3–1333/1066
Speed Grade			DDR3-1333		DDR3-1066		Unit	Note
SCS Sort Name			–15H		–19F			
CAS-RCD-RP la	atencies		9–9–9		7–7–7		t _{CK}	
Parameter		Symbol	Min.	Max.	Min.	Max.	_	
Clock Period	@ CL = 5	t _{CK}	3.0	3.3	3.0	3.3	ns	1)2)3)4)6)7)9)
	@ CL = 6	t _{CK}	2.5	3.3	2.5	3.3	ns	1)2)3)6)7)
	@ CL = 7	t _{CK}	1.875	<2.5	1.875	<2.5	ns	1)2)3)4)7)
	@ CL = 8	t _{CK}	1.875	<2.5	1.875	<2.5	ns	1)2)3)7)
	@ CL = 9	t _{CK}	1.5	<1.875	—	—	ns	1)2)3)4)
	@ CL = 10	t _{CK}	1.5	<1.875	—	—	ns	1)2)3)
Row Active Time		t _{RAS}	36	9*tREFI	37.5	9*tREFI	ns	
Row Cycle Time t _R		t _{RC}	49.5	—	50.625	—	ns	
RAS-CAS-Delay t _{RCD}		t _{RCD}	13.5	—	13.125	—	ns	
Row Precharge Time t _{RP}		t _{RP}	13.5	—	13.125	—	ns	

Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);

- 1) The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
- tCK(AVG).MIN limits: Since CAS Latency is not purely analog data and strobe output are synchronized by the DLL all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next 'Supported CL', where tCK(AVG) = 3.0 ns should only be used for CL = 5 calculation.
- tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
- 4) 'Reserved' settings are not allowed. User must program a different value.
- 5) 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature.
- 6) Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the
- table which are not subject to Production Tests but verified by Design/Characterization.
- Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- 9) DDR3 SDRAM devices supporting optional down binning to CL=7, 9 and CL=11, and tAA/ tRCD/tRP must be 13.125 ns. SPD settings must be programmed to match. For example, DDR3-1866 RD devices supporting down binning to DDR3-1600K or DDR3-1333 H9 or 1066 G7 should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333 H9 and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600 PB.
- 10) For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.

6 Package Outline


This chapter contains the package dimension figures.

Notes

- 1. Drawing according to ISO 8015
- 2. Dimensions in mm
- 3. General tolerances +/- 0.15

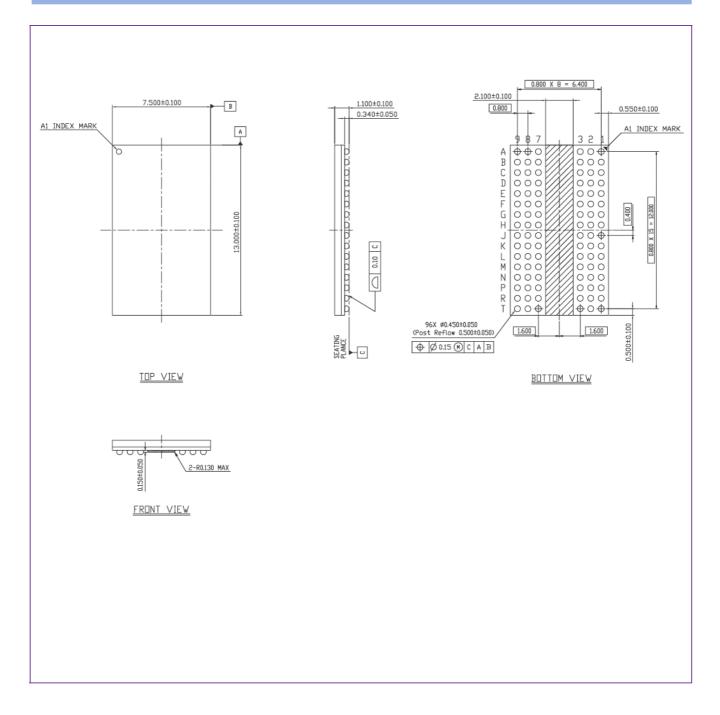


FIGURE 3 Package Outline PG-FBGA-78

FIGURE 11 Package Outline PG-FBGA-96

7

HXB15H1G(80/16)0CF 1-Gbit Double-Data-Rate-Three SDRAM

Product Nomenclature

For reference the SCSemicon SDRAM component nomenclature is enclosed in this chapter.

							Examp	les for N		ABLE 19 Iture Fields
Example for Field Number										
	1	2	3	4	5	6	7	8	9	10
DDR3 DRAM	HXB	15	Н	1G	16	0	A	F	-	25D

TABLE 20

DDR3 Memory Components

Field	Description	Values	Coding
1	SCSemicon Component Prefix	HXB	Memory components, standard temperature range (0°C – +85 °C)
		HXI	Memory components, industrial temperature range (-40°C - +95 °C)
2	Interface Voltage [V]	18	SSTL_18, + 1.8 V (± 0.1 V)
		15	SSTL_15, + 1.5 V (± 0.075 V)
3	DRAM Technology	Т	DDR3
		Н	DDR3
4	Component Density [Mbit]	32	32 Mbit
		64	64 Mbit
		128	128 Mbit
		256	256 Mbit
		512	512 Mbit
		1G	1 Gbit
		2G	2 Gbit
		4G	4 Gbit
5	Number of I/Os	40	× 4
		80	× 8
		16	× 16
6	Product Variant	09	-
7	Die Revision	A	First
		В	Second
		С	Third
8	Package,	С	FBGA, lead-containing
	Lead-Free Status	F	FBGA, lead-free
9	Power	-	Standard power product
		L	Low power product

Field	Description	Values	Coding
10	Speed Grade	–13K	DDR3-1600 11-11-11
		–13J	DDR3-1600 10-10-10
		–15H	DDR3-1333 9-9-9
		–15G	DDR3-1300 8-8-8
		–19F	DDR3-1066 7-7-7
		–19E	DDR3-1066 6-6-6
		–25D	DDR3-800 5-5-5
		–25E	DDR3-800 6-6-6
		-3C	DDR3-667 4-4-4
		–3D	DDR3-667 5-5-5

List of Illustrations

Figure 1	Chip Configuration for x8 Components in FBGA–78 (Top view) ·····
Figure 2	Chip Configuration for x16 Components in FBGA–96 (Top view) ······ 14
Figure 3	Package Outline PG-FBGA-7827
Figure 4	Package Outline PG-FBGA-96 28

List of Tables

Table 1	Performance Table 4
Table 2	Ordering Information for RoHS Compliant Products5
Table 3	Configuration ······ 6
Table 4	Abbreviations for Ball Type
Table 5	Abbreviations for Buffer Type8
Table 6	Configuration ······ 10
Table 7	Abbreviations for Ball Type
Table 8	Abbreviations for Buffer Type 13
Table 9	Addressing ······ 15
Table 10	Absolute Maximum Ratings
Table 11	DRAM Component Operating Temperature Range
Table 12	Recommended DC Operating Conditions (SSTL_15) 17
Table 13	Input / Output Capacitance
Table 14	I _{DD} Measurement Conditions
Table 15	Definition for I _{DD}
Table 16	I _{DD} Specification
Table 17	Speed Grade Definition- DDR3–1600
Table 18	Speed Grade Definition- DDR3–1333/1066 ······ 24
Table 19	Examples for Nomenclature Fields
Table 20	DDR3 Memory Components

Contents

1	Overview ······3
1.1	Features
1.2	Description 4
2	Configuration
2.1	Configuration for FBGA-60 ······6
2.2	Configuration for FBGA-84 ······10
2.3	Addressing
3	Electrical Characteristics
3.1	Absolute Maximum Ratings16
3.2	DC Characteristics
3.4	Input / Output Capacitance
4	Currents Measurement Conditions 19
5	Speed Grade Definitions23
6	Package Outline26
7	Product Nomenclature 29

Edition 2014-7 Published by SinoChip Semiconductors Ltd.

Jinan: B-2, Qilu Software Plaza, 1768 Xinluo Street, New High Tech District Jinan, Shandong 250101, P. R. China Tel: + 86-531-86133329 FAX: + 86-531-86133300

Xi'an: 4th Floor, Building A, No. 38 Gaoxin 6th Road, Xian High-tech Industries Development Zone Xi'an, Shaanxi 710075, P. R. China Tel: +86-29-88318000 Fax: +86-29-88453299

info@scsemicon.com

© SCSemicon 2012. All Rights Reserved.

Legal Disclaimer

THE INFORMATION GIVEN IN THIS INTERNET DATA SHEET SHALL IN NO EVENT BE REGARDED AS A GUARANTEE OF CONDITIONS OR CHARACTERISTICS. WITH RESPECT TO ANY EXAMPLES OR HINTS GIVEN HEREIN, ANY TYPICAL VALUES STATED HEREIN AND/OR ANY INFORMATION REGARDING THE APPLICATION OF THE DEVICE, SCSEMICON HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND, INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest SCSemicon Office.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest SCSemicon Office.

SCSemicon Components may only be used in life-support devices or systems with the express written approval of SCSemicon, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.