## 深圳市秋田视佳有限公司

ShenZhen AV DISPLYA Co., Ltd.

地址:深圳市华侨城东部工业区文昌街东北 C-7 栋

086-755-6605863,6913655 Fax:086-755-6911092 Tel:

ADD: North-East C-7 Building, Wen Chang Street Eastern District, Hua Qiao

Cheng, Shen Zhen, P.R.C

E-mail: yusungsz@public,szptt.net.cn Http: //www.yusung.globalsources.com

CUSTOMED

## LCD MODULE SPECIFICATION FOR CUSTOMER'S APPROVAL

| CUSTOMER    | : <u>Standard</u>       |       |
|-------------|-------------------------|-------|
| MODULE TYPE | E: <u>HY-16032A-201</u> |       |
| APPROVED BY | : (FOR CUSTOMER USE C   | ONLY) |
|             |                         |       |
|             |                         |       |
|             |                         |       |
|             |                         |       |
|             |                         |       |

| <b>Approved By</b> | <b>Checked By</b> | <b>Prepared By</b> | MT File No | <b>Date Issued</b> |
|--------------------|-------------------|--------------------|------------|--------------------|
|                    |                   |                    |            |                    |
|                    |                   |                    |            |                    |
|                    |                   |                    |            |                    |
|                    |                   |                    |            |                    |

## **CONTENTS**

| ITEM                                    | PAGE        |
|-----------------------------------------|-------------|
| Surface                                 | 1           |
| Content                                 | 2           |
| Specification Of LCM                    | 3           |
| Lcd Module Drawing                      | 4           |
| General Specification                   | 5           |
| Absolute Maximum Rating                 | 5           |
| Electrical Characteristics              | 6           |
| Optical Characteristics                 | 6           |
| Mechanical Specification                | 7           |
| Interface Pin Assignment                | 8,9,10      |
| Block Diagram                           | 11          |
| Timing Characteristics                  | 12,13       |
| Display Dada Ram Addressing             | 14          |
| Display Commands                        | 15          |
| Command Description                     | 16,17,18,19 |
| Initialization Procedure                | 20          |
| Reliability Test                        | 21          |
| Appearance Check                        | 21          |
| Handling Precautions                    | 22          |
| Lcd Product Quality Standard            | 23          |
| Interface circuit and driving programme | 24-28       |
| Revision History                        | 29          |

## **Specification For**

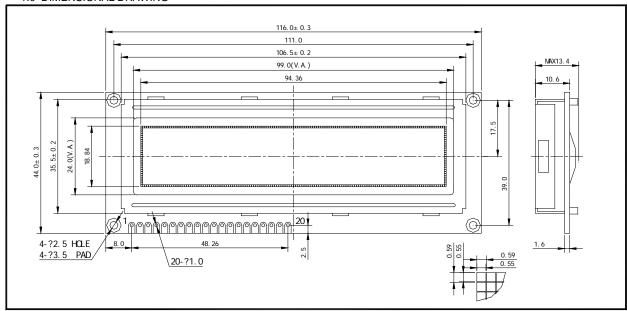
## **Liquid Crystal Display Module**

**MODEL NO. : HY-16032A-201** 

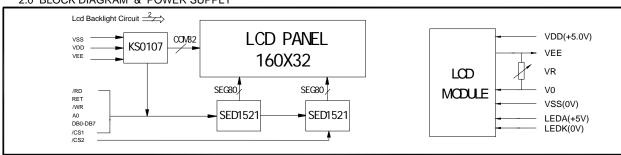
| View Direction       | ☑ 6 O'clock            |           |           |                |                     | □12 (         | □12 O'clock         |        |             |     |          |
|----------------------|------------------------|-----------|-----------|----------------|---------------------|---------------|---------------------|--------|-------------|-----|----------|
| LCDT                 | □ FSTN                 | Po        | sitive    |                |                     |               | ☐ FSTN Negative     |        |             |     |          |
| LCD Type             | ☑ STN C                | bra;      | у         |                | STN                 | l Yel         | low Gre             | een    |             | STN | Blue     |
| Rear Polarizer       | □Reflective <b>☑</b> T |           |           | Transflective  |                     |               | □Transmissive       |        |             |     |          |
| Backlight Type       | ☑ LED                  | ☐ Interna |           | rnal           | Po                  | wer           | □ EL                |        | ☑ 5V input  |     | V input  |
| Backlight Type       |                        |           | □ Externa |                | nal Power           |               |                     | FL     | □ 24V input |     | IV input |
| Backlight Color      | ☐ White                |           | □ A:      | mher           |                     | Blue<br>Green | <b> </b>   <b>√</b> |        | Yellow      |     |          |
| Temperature<br>Range | ☑Normal                | [         |           |                | □ Wide □ Super Wide |               |                     | r Wide |             |     |          |
| EL Driver IC         | □ Build-in             |           |           | ☑ Not Build-in |                     |               |                     |        |             |     |          |
| DC-to-DC             | ☑ With                 |           |           |                | □ Without           |               |                     |        |             |     |          |

## To Be Very Careful!

The LCD driver ICs are made by CMOS process, which are very easy to be damaged by static charge, make sure the user is grounded when handling the LCM.


## **LCM Module Drawing**

QiuTian ShiJia


HY-16032A-201

160X32 GRAPHIC 1/32DUTY, 1/5BIAS

1.0 DIMENSIONAL DRAWING



### 2.0 BLOCK DIAGRAM & POWER SUPPLY



## 3.0 MECHANICAL SPECIFICATIONS & FEATURE

| Item                | Nominal Dimensions(mm) | FEATURE .             |                               |  |  |
|---------------------|------------------------|-----------------------|-------------------------------|--|--|
| itan                | Norma Bina sa s(iiii)  | LCD Type              | STN                           |  |  |
| Module Size (W*H*T) | 116.0x44.0x13.4        | LCD Colour            | Gray                          |  |  |
| View Area (W*H)     | 99.0x24.0              | View Angle            | 6 Odlock                      |  |  |
| Character Font      | 160x32                 | Display Type          | Positive Type                 |  |  |
| Dot Pitch (W*H)     | 0.59x0.59              | Rear polarizer        | Transflective                 |  |  |
| Dot Size (W*H)      | 0.55x0.55              | Operating Temperature | 0 <b>▲</b> C~ 50 <b>▲</b> C   |  |  |
|                     |                        | Storage Temperature   | -20 <b>▲</b> C~ 70 <b>▲</b> C |  |  |
|                     |                        | Blacklight            | LED(Yellow)                   |  |  |

### 4.0 ELECTRICAL CHARACTERISTICS

| ltem                          | Symbol | Test Condition              | Min. | Тур. | Max. | Unit |
|-------------------------------|--------|-----------------------------|------|------|------|------|
| Operating Voltage             | Vdd    | Tæ= 25. <b>▲</b> C          |      | 5.0  |      | V    |
| Operating Voltage for LCD     | Mcd    | Tæ= 25. <b>▲</b> C          |      | 6.5  |      | V    |
| Supply Current                | ldd    | Ta= 25. <b>∆</b> C, Vdd= 5V |      | 4.0  |      | mA   |
| Supply Current for Blacklight | lf     | Ta= 25 <b>≜</b> C, Vf= 4.2V |      | 160  | 200  | mA   |

### 5.0 INTERFACE PIN CONNECTIONS

| Pin No | Symbol   | Level    | Description                                                         |
|--------|----------|----------|---------------------------------------------------------------------|
| 1      | A0       | H/L      | Register selection (H.Data registor, L.Instruction registor)        |
| 2      | CS2      | L        | Chip select signal for Half-right screen                            |
| 3      | CS1      | L        | Chip select signal for Half-left screen                             |
| 4      | /RD(E)   | L(H/H→L) | /RD for 80 serial, Efor 68 serial                                   |
| 5      | /WR(R/W) | L(H/L)   | /WR for 80 serial,R/W for 68 serial                                 |
| 6      | VDD      | I        | Logic supply voltage (+ 5V)                                         |
| 7      | VSS      | I        | GND                                                                 |
| 8-15   | DB0-DB7  | H/L      | 3-state I/OData Bus                                                 |
| 16     | RET      | I        | Reset signal The rise of the signal is for active and keep RET= 'h' |
| 17     | V0       | I        | Power supply for LOD                                                |
| 18     | VEE      | 0        | Nogtave voltage output                                              |
| 19     | LEDA     | ĺ        | Power supply for LED backlight(+ 5v)                                |
| 20     | LEDK     | I        | Power supply for LED backlight(Ov)                                  |

## **General Specification**

| Item                    | Content                                                   |
|-------------------------|-----------------------------------------------------------|
| Display Resolution      | 160(W)×32(H)                                              |
| Dimensional Outline(mm) | 116.0(W)×44.0(H)×13.4max(D)                               |
| Display mode            | Transfltive Type/Positive                                 |
| Circuit                 | Common-Driver IC, Segment-driver IC with build-in SRAM    |
| Interface               | A0,CS2,CS1,E,R/W,VDD,VSS,DB0-DB7,RET,V0,<br>VEE,LEDA,LEDK |

## **Absolute Maximum Rating**

(1) Electrical Absolute Ratings

| Item                                | Symbol                          | Min. | Max.              | Unit | Note   |
|-------------------------------------|---------------------------------|------|-------------------|------|--------|
| Power Supply for Logic              | $V_{DD}$ - $V_{SS}$             | 0    | 5.5               | Volt |        |
| Power Supply for LCD                | V <sub>DD</sub> -V <sub>O</sub> | 0    | 5.0               | Volt |        |
| Input Voltage                       | $V_{\rm I}$                     | 0    | $V_{\mathrm{DD}}$ | Volt |        |
| Static Electricity                  | -                               | 0    | 5.5               | Volt | Note 1 |
| Supply Current for LED<br>Backlight | $I_{LED}$                       | -    | -                 | -    |        |

Note 1 : Operator should be grounded during handling LCM.

(2) Environmental Absolute Maximum Ratings

| (2) Environmental Hosoide Huximum Ratings |               |           |           |          |                  |          |         |          |  |
|-------------------------------------------|---------------|-----------|-----------|----------|------------------|----------|---------|----------|--|
|                                           | 1             | Normal Te | emperatur | e        | Wide Temperature |          |         |          |  |
| Item                                      | Operating     |           | Storage   |          | Operating        |          | Storage |          |  |
|                                           | Min,          | . Max,    | Min,      | . Max,   | Min,             | . Max,   | Min,    | . Max,   |  |
| Ambient Temperature                       | $0^{\circ}$ C | +50°C     | -20°C     | +70°C    | -20°C            | +70°C    | -30°C   | +80°C    |  |
| Humidity(without condensation)            | Note          | Note 2,4  |           | Note 3,5 |                  | Note 4,5 |         | Note 4,6 |  |

Note 2  $Ta \le 50^{\circ}C: 80\%$  RH max

Ta>50°C: Absolute humidity must be lower than the humidity of 85%RH at 50°C

- Note 3 Ta at  $-20^{\circ}$ C will be <48hrs at  $70^{\circ}$ C will be <120hrs when humidity is higher than  $70^{\circ}$ M.
- Note 4 Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

Note 5 Ta  $\leq 70^{\circ}$ C: 75RH max

Ta>70°C: absolute humidity must be lower than the humidity of 75%RH at 70°C

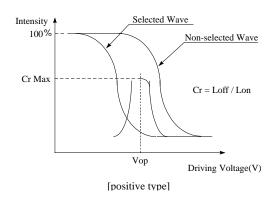
Note 6 Ta at  $-30^{\circ}$ C will be <48hrs, at 80  $^{\circ}$ C will be <120hrs when humidity is higher than 70%.

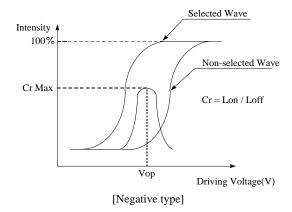
## **Electrical Characteristics**

| Item                               | Symbol                                   | Condition                                               | Min.                                 | Тур                                  | Max.             | Unit             | note             |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
|------------------------------------|------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------------|------------------|---------|-----|-----|-----|--|--|
| Power Supply for Logic             | $V_{DD}$ - $V_{SS}$                      | -                                                       | 4.7                                  | 5.0                                  | 5.5              | Volt             |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| Innut Valtage                      | V <sub>IL</sub>                          | L level                                                 | V <sub>SS</sub>                      | $0.2~\mathrm{V_{DD}}$                | -                | Volt             |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| Input Voltage                      | $V_{IH}$                                 | H level                                                 | $0.8~\mathrm{V_{DD}}$                | $V_{DD}$                             | -                | Volt             |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| LCM                                |                                          | Ta=-20°C                                                | -                                    | 7.1                                  | -                |                  |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| Recommend LCD Module               | Vlcd=<br>V <sub>DD</sub> –V <sub>O</sub> | Ta=0°C                                                  | -                                    | 6.8                                  | -                | Volt             |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| Driving                            |                                          | $V_{\rm DD}$ $-V_{\rm O}$                               | $V_{\mathrm{DD}}$ – $V_{\mathrm{O}}$ | $V_{\mathrm{DD}}$ – $V_{\mathrm{O}}$ | $V_{DD} - V_{O}$ | $V_{\rm DD}$ $-V_{\rm O}$ | $V_{DD} - V_{O}$ | Ta=25°C | 6.2 | 6.5 | 6.8 |  |  |
| Voltage                            |                                          | Ta=50°C                                                 | -                                    | 6.2                                  | -                |                  |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| Power Supply for LED B/L           | LEDA-LE<br>DK                            | -                                                       | -                                    | 5.0                                  | -                | Volt             |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| Down Cupply                        | I <sub>DD</sub> (EL B/L<br>OFF)          | $V_{\rm DD} = 5.0 V$                                    | -                                    | 2.0                                  | 3.0              |                  |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |
| Power Supply<br>Current for<br>LCM | I <sub>LED</sub> (EL<br>B/L ON)          | $V_{DD}$ - $V_{O}$ =5.0V<br>FLM=64Hz<br>$V_{LED}$ =5.0V | -                                    | 200                                  | 250              | mA               |                  |                  |                  |                  |                  |                           |                  |         |     |     |     |  |  |

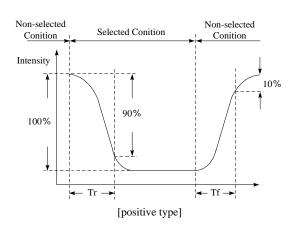
## **Optical Characteristics**

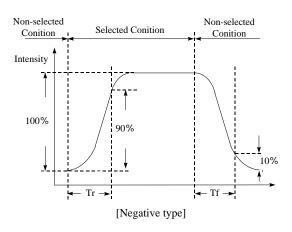
| Item                | Symbol         | Condition          | Min. | Тур | Max. | Unit   | note |
|---------------------|----------------|--------------------|------|-----|------|--------|------|
| Viewing angle range | Φf(12 o'clock) |                    | -    | 20  | -    |        |      |
|                     | Φb(6 o'clock)  | WI C /0            | -    | 40  | -    | Degree | 9,10 |
|                     | Φl(9 o'clock)  | When Cr,⟨2         | -    | 30  | -    |        |      |
|                     | Φr(3 o'clock)  |                    | -    | 30  | -    |        |      |
| Rise Time           | Tr             |                    |      | 150 |      | C      |      |
| Fall Time           | Tf             | $V_{DD}$ - $V_{O}$ |      | 200 |      | mS     |      |
| Frame frequency     | Frm            | =5.0V<br>Ta=25°C   | -    | 64  | -    | Hz     | 8,10 |
| Contrast            | Cr             |                    | -    | 4.0 | -    |        | 7    |


## **Mechanical Specification**


| Product No.       |                 | HY-16032A-201                                                                                 |  |  |  |  |  |
|-------------------|-----------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Module Size       |                 | 116.0(W)×44.0(H)×13.4max(D)                                                                   |  |  |  |  |  |
| Dot Size          |                 | 0.55(W)mmx0.55(H)mm                                                                           |  |  |  |  |  |
| Dot Pitch         |                 | 0.59(W)mmx0.59(H)mm                                                                           |  |  |  |  |  |
| Resolution        |                 | 160(W)x32(H) Dots Matrix                                                                      |  |  |  |  |  |
| Duty Ratio        |                 | 1/32 Duty                                                                                     |  |  |  |  |  |
|                   | STN             | ☑Gray Mode □Yellow Mode □Blue Mode                                                            |  |  |  |  |  |
| LCD Display Mode  | FSTN            | ☐ Black & White(Normally White/Positive Image) ☐ Black & White(Normally White/Negative Image) |  |  |  |  |  |
|                   | Rear Polarizer: | □ Reflective ☑ Transflective □ Transmissive □ Transflective(High Transmissive)                |  |  |  |  |  |
| Viewing Direction |                 | ☑6 O'clock □12 O'clock □3 O'clock □9 O'clock                                                  |  |  |  |  |  |
| Backlight         |                 | □W/O □CCFL □EL ☑LED                                                                           |  |  |  |  |  |
| Controller        |                 | Epson SED1521 or compatible                                                                   |  |  |  |  |  |
| DC/DC Converter   |                 | Build in                                                                                      |  |  |  |  |  |
| EL Driver         |                 | Without                                                                                       |  |  |  |  |  |

**Interface Pin Assignment** 


| Pin No. | Pin Out  | Description                                                                             |
|---------|----------|-----------------------------------------------------------------------------------------|
| 1       | A0       | Register selection: A0='H' select Data register and A0='L' select Instruction register. |
| 2       | CS2      | Chip select signal for Half-right screen                                                |
| 3       | CS1      | Chip select signal for Half=left screen                                                 |
| 4       | /RD(E)   | /RD for 80 serial,E for 68 serial                                                       |
| 5       | /WR(R/W) | /WR for 80 serial,R/W for 68 serial                                                     |
| 6       | VDD      | Logic Supply Voltage (5V)                                                               |
| 7       | VSS      | GND                                                                                     |
| 8       | DB0      |                                                                                         |
| 9       | DB1      |                                                                                         |
| 10      | DB2      |                                                                                         |
| 11      | DB3      | 3-State I/O Data Bus.                                                                   |
| 12      | DB4      | 3-State I/O Data Bus.                                                                   |
| 13      | DB5      |                                                                                         |
| 14      | DB6      |                                                                                         |
| 15      | DB7      |                                                                                         |
| 16      | RET      | Reset signal The rise of the signal is for active and keep RET='H'                      |
| 17      | V0       | LCD Driver Supply Voltage                                                               |
| 18      | VEE      | Nogtave voltage output                                                                  |
| 19      | LEDA     | Backlight driver supply voltage(+5V)                                                    |
| 20      | LEDK     | Backlight driver supply voltage(0V)                                                     |

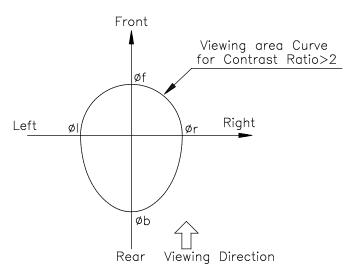

## [Note 7] Definition of Operation Voltage (Vop)



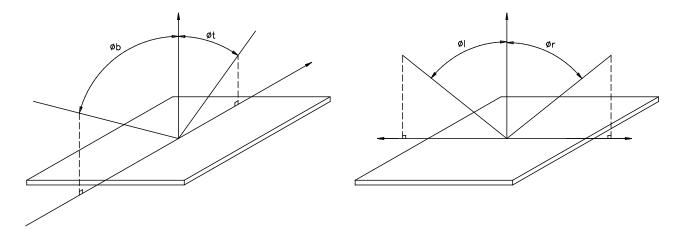


## [Note 8] Definition of Response Time (Tr, Tf)

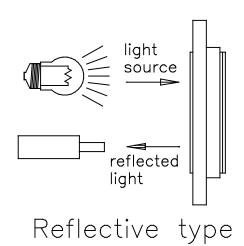


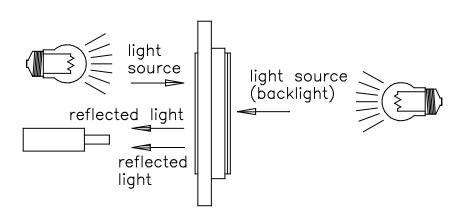



### **Conditions:**


Operating Voltage: Vop Frame Frequency: 64Hz

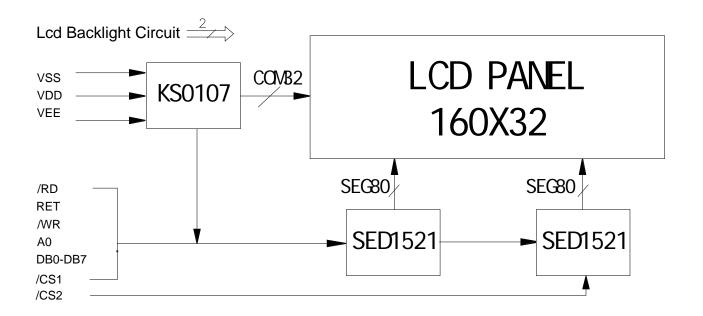
Viewing Angle( $\theta$ ,  $\varphi$ ):  $0^{\circ}$ ,  $0^{\circ}$ Driving Wave frm: 1N duty, 1 $\alpha$  has


### [Note 9] Definition of Viewing Direction

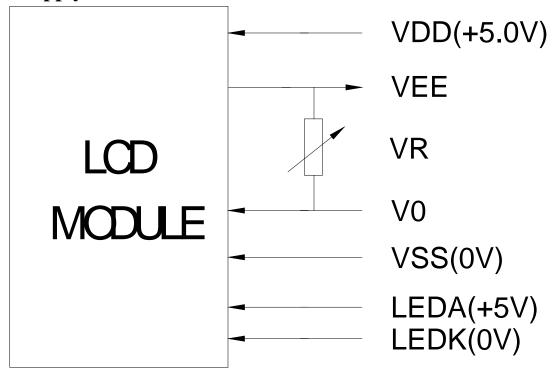



## [Note 10] Definition of viewing angle

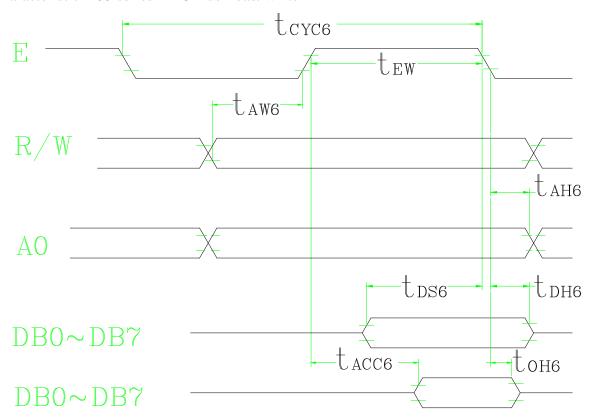



[Note 11] Description of Measuring Equipment






Transflective type

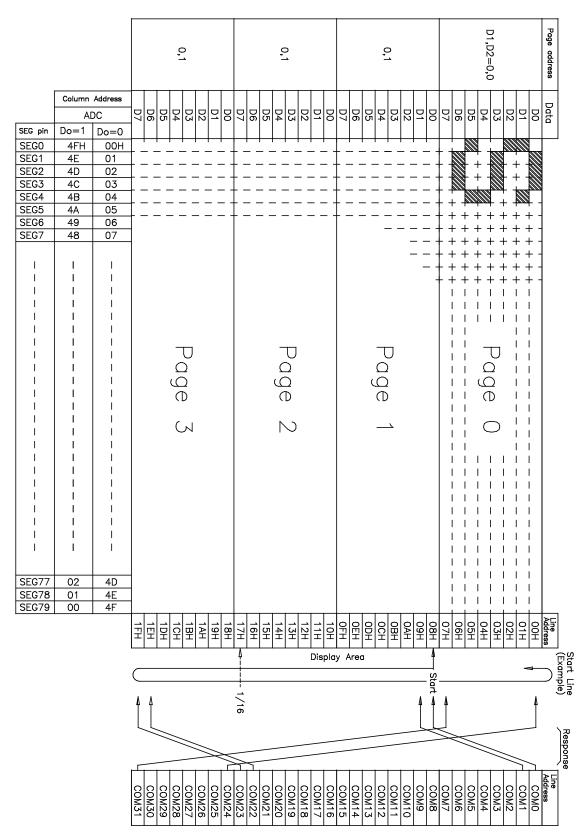

## **Block Diagram**



## **Power Supply**



**Timing Characteristics**AC Characteristic—68-series MPU Bus Read/Write




Read/Write Timing for the 68-port MPU

Ta=0~50  $^{\mbox{\tiny To}}$ C,  $V_{DD}\!\!=\!\!5.0V\!\!\pm\!10\%,$  unless state otherwise

| Dayomatar             | Carredo al        | Candition   | Rat  | ting | TT-:4 | Cion al    |  |
|-----------------------|-------------------|-------------|------|------|-------|------------|--|
| Parameter             | Symbol            | Condition   | Min. | Max. | Unit  | Signal     |  |
| Address hold time     | t <sub>AH6</sub>  | -           | 10   | -    | ns    | <b>A</b> o |  |
| Address setup time    | $t_{ m AW6}$      | -           | 20   | -    | ns    | Ao,        |  |
| System cycle time     | t <sub>CYC6</sub> | -           | 1000 | -    | ns    | R/W        |  |
| Control pulse-width   | t <sub>CC</sub>   | -           | 200  | -    | ns    | K/ W       |  |
| Data setup time       | t <sub>DS6</sub>  | -           | 80   | -    | ns    |            |  |
| Data hold time        | t <sub>DH6</sub>  | -           | 10   | -    | ns    | D0 to D7   |  |
| RD access time        | t <sub>ACC6</sub> | C 100~E     | -    | 90   | ns    | D0 to D7   |  |
| Output disable time   | t <sub>CH6</sub>  | $C_L=100pF$ | 10   | 60   | ns    |            |  |
| Rise and fall time    | $t_r, t_f$        | -           | -    | 15   | ns    | -          |  |
| Enable pulse width R/ | т                 |             | 100  | -    | ns    | Е          |  |
| Enable pulse width /W | $T_{EW}$          |             | 80   | -    | ns    | E          |  |

## **Display Data Ram Addressing**



**Display Commands** 

| Instruction                  | <b>A0</b> | RD | WR | <b>D7</b> | <b>D6</b> | <b>D5</b>  | D4        | <b>D3</b> | D2      | D1      | D0           | Function                                                                                                                                              |  |  |
|------------------------------|-----------|----|----|-----------|-----------|------------|-----------|-----------|---------|---------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Display ON/OFF               | 0         | 1  | 0  | 1         | 0         | 1          | 0         | 1         | 1       | 1       | 1/0          | To control the display ON or OFF.<br>The internal status and display<br>RAM data are not affected.<br>0:OFF, 1:ON                                     |  |  |
| Display start line           | 0         | 1  | 0  | 1         | 1         | 0          | Disp      | lay sta   | rt add  | ress (C | <b>)~31)</b> | Specifies RAM line corresponding to top line of display.                                                                                              |  |  |
| Set page address             | 0         | 1  | 0  | 1         | 0         | 1          | 1         | 1         | 0       |         | ige<br>o 3)  | To set the display RAM page in page address register.                                                                                                 |  |  |
| Set column (segment) address | 0         | 1  | 0  | 0         |           | Col        | umn a     | ddress    | s (0 to | 79)     |              | To set display RAM column address in column address register.                                                                                         |  |  |
| Status Read                  | 0         | 0  | 1  | Busy      | ADC       | ON/<br>OFF | Rese<br>t | 0         | 0       | 0       | 0            | Read the following status:  Busy  0: Ready  ADC  1: CW output  0: CCW output  ON/OFF  1: Display OFF  0: Display ON  Reset  1: Being reset  0: Normal |  |  |
| Write display data           | 1         | 1  | 0  |           |           |            | Write     | Data      |         |         |              | To write data from data bus to display RAM.                                                                                                           |  |  |
| Read display data            | 1         | 0  | 1  |           |           |            | Read      | Data      |         |         |              | To read data from display RAM to data bus                                                                                                             |  |  |
| Select ADC                   | 0         | 1  | 0  | 1         | 0         | 1          | 0         | 0         | 0       | 0       | 0/1          | 0: CW output, 1: CCW output                                                                                                                           |  |  |
| Status drive<br>ON/OFF       | 0         | 1  | 0  | 1         | 0         | 1          | 0         | 0         | 1       | 0       | 0/1          | To select static driving operation 1: Static drive, 0: Normal drivin                                                                                  |  |  |
| Select Duty                  | 0         | 1  | 0  | 1         | 0         | 1          | 0         | 1         | 0       | 0       | 0/1          | To select duty cycle 1: 1/32 duty, 0: 1/16 duty                                                                                                       |  |  |
| Read-modity-writ<br>e        | 0         | 1  | 0  | 1         | 1         | 1          | 0         | 0         | 0       | 0       | 0            | Read-modify-write ON                                                                                                                                  |  |  |
| End                          | 0         | 1  | 0  | 1         | 1         | 1          | 0         | 1         | 1       | 1       | 0            | Read-modify-write OFF                                                                                                                                 |  |  |
| Reset                        | 0         | 1  | 0  | 1         | 1         | 1          | 0         | 0         | 0       | 1       | 0            | To reset by software                                                                                                                                  |  |  |

## **Command Description**

**Display ON/OFF** 

| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |          |
|----|----|----|----|----|----|----|----|----|----|----|----------|
| 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | D  | AEH, AFH |

This command turns the display ON or OFF.

D=1 : Display ON D=0 : Display OFF

### **Display Start Line**

This command specifies the line address shown in page 14 and indicates the display line that corresponding to COM 0. The display area begins at the specified line address and continues in the line address increment direction. This area having the number of line of specified display duty is displayed. If the line address is changed dynamically by this command, the vertical smooth scrolling and paging can be used.

|   |   | WR |   |   |   |    |    |    |            |    |            |
|---|---|----|---|---|---|----|----|----|------------|----|------------|
| 0 | 1 | 0  | 1 | 1 | 0 | A4 | A3 | A2 | <b>A</b> 1 | A0 | C0H to DFF |

This command loads the display start line register.

| A4 | A3 | A2 | A1 | <b>A</b> 0 | Line Address |
|----|----|----|----|------------|--------------|
| 0  | 0  | 0  | 0  | 0          | 0            |
| 0  | 0  | 0  | 0  | 1          | 1            |
|    |    | ÷  |    |            | ÷            |
| 1  | 1  | 1  | 1  | 1          | 31           |

See the figure in page  $1\overline{4}$ .

## **Set Page address**

This command specifies the page address that corresponds to the low address of the display data RAM when it is accessed by the MPU. Any bit of the display data RAM can be accessed when its page address and column address are specified. The display status is not changed even when the page address is changed.

| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |            |
|----|----|----|----|----|----|----|----|----|----|----|------------|
| 0  | 1  | 0  | 11 | 0  | 1  | 1  | 1  | 0  | A1 | A0 | B8H to BBH |

This command loads the page address register.

| A1 | A0 | Page |
|----|----|------|
| 0  | 0  | 0    |
| 0  | 1  | 1    |
| 1  | 0  | 2    |
| 1  | 1  | 3    |

See the figure in page 14.

### **Set Column Address**

This command specifies a column address of the display data RAM. When the display data RAM is accessed by the MPU continuously, the column address in increased by 1 every time. Therefore the MPU can access to data continuously. The column address stops to be incremented at address 80, and the page address is not changed continuously.

|   |   | WR |   |    |    |    |    |    |    |    |            |
|---|---|----|---|----|----|----|----|----|----|----|------------|
| 0 | 1 | 0  | 0 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | 00H to 4FH |

This command loads the column address register.

| A6 | A5 | A4 | A3 | A2 | A1 | <b>A</b> 0 | Line Address |
|----|----|----|----|----|----|------------|--------------|
| 0  | 0  | 0  | 0  | 0  | 0  | 0          | 0            |
| 0  | 0  | 0  | 0  | 0  | 0  | 1          | 1            |
|    |    |    | :  |    |    |            | ÷            |
| 1  | 1  | 1  | 1  | 1  | 1  | 1          | 79           |

### **Read Status**

| A0 | RD | WR | D7   | D6  | D5     | D4    | D3 | D2 | D1 | D0 |            |
|----|----|----|------|-----|--------|-------|----|----|----|----|------------|
| 0  | 0  | 1  | BUSY | ADC | ON/OFF | RESET | 0  | 0  | 0  | 0  | 00H to 4FH |

Reading the command I/O register (Ao=0) yields system status information.

• The busy bit indicates whether the driver will accept a command or not.

Busy=1: The driver is currently executing a command or is resetting. No new command will be accepted.

Busy=0: The driver will accept a new command.

• The ADC bit indicates the way column addresses are assigned to a segment drivers

ADC=1: Normal. Column address  $n \rightarrow \text{segment address } n$ .

ADC=0: Inverted. Column address 79-u → segment driver u.

• The ON/OFF bit indicates the current status of the display.

It is the inverse of the polarity of the display ON/OFF command.

ON/OFF=1: Display OFF.

ON/OFF=0: Display ON.

• The RESET bit indicates whether the driver is executing a hardware or a software reset or it is in a normal operating mode.

RESET=1: Currently executing the reset command.

RESET=0: Normal operating.

### **Write Display Data**

| - |    |    |    |    |            |    |    |    |    |    |    |
|---|----|----|----|----|------------|----|----|----|----|----|----|
|   | A0 | RD | WR | D7 | D6         | D5 | D4 | D3 | D2 | D1 | D0 |
|   | 1  | 1  | 0  |    | Write Data |    |    |    |    |    |    |

To write an 8-bit data into the display RAM, at a location specified by the contents of the column address and page address register by one.

**Read Display Data** 

| A0 | RD | WR | D7 | D6        | D5 | D4 | D3 | D2 | D1 | D0 |
|----|----|----|----|-----------|----|----|----|----|----|----|
| 1  | 0  | 1  |    | Read Data |    |    |    |    |    |    |

To read an 8-bit data from the data I/O latch, updates the contents of the I/O latch with display data from the display data RAM location specified by the contents of the column address and page address registers and then increments the column address register.

After loading a new address into the column address register one dummy read is required before valid data is obtained.

### Select ADC

| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |          |
|----|----|----|----|----|----|----|----|----|----|----|----------|
| 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | D  | A0H, A1H |

This command selects the relationship between display data RAM column address and segment driver.

D=0: SEG0 ← column address 00H, ...(normal)

This command is provided to reduce restrictions on the placement of the driver ICs and routing of tracing during printed circuit board layout. In this LCD module the D should be cleared to 0.

### Static Driver ON/OFF

| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |          |
|----|----|----|----|----|----|----|----|----|----|----|----------|
| 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 0  | D  | A4H, A5H |

To force the display on and all common outputs to be selected.

D=1: Static driver ON.

D=0: Static driver OFF.

## **Select Duty**

| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |          |
|----|----|----|----|----|----|----|----|----|----|----|----------|
| 0  | 1  | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | D  | A8H, A9H |

To set the D-bit to 1 because the LCD module is 1/32 duty.

### End

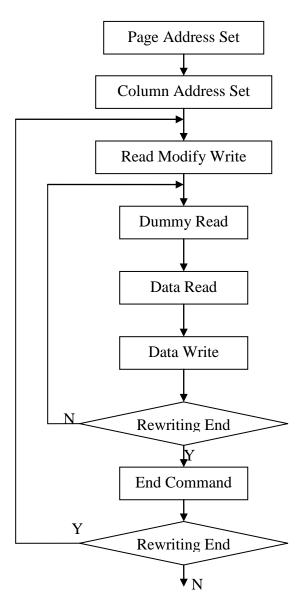
|    |    |    | 1  |    |    |    |    |    |    |    | -  |
|----|----|----|----|----|----|----|----|----|----|----|----|
| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |    |
|    |    |    |    |    |    |    |    |    |    |    | _  |
| 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0  | EE |

This command cancels the **Read-Modify-Write** mode and restores the contents of the column address register to their value prior to the receipt of the **Read-Modify-Write** command.

### Reset

|    | _  |    |    |    |    |    |    |    |    |    |     |
|----|----|----|----|----|----|----|----|----|----|----|-----|
| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
| 0  | 1  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | E2H |

This command clears:


Set the 1st line in the display start line register and to set page address register to 3 page.

It does not affect the contents of the display data RAM. When the power supply is turned on, the user must send a Reset signal into the RES pin. The Reset command cannot be used instead of this Reset signal.

Read-Modify-Write

| A0 | RD | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
|----|----|----|----|----|----|----|----|----|----|----|-----|
| 0  | 1  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | ЕОН |

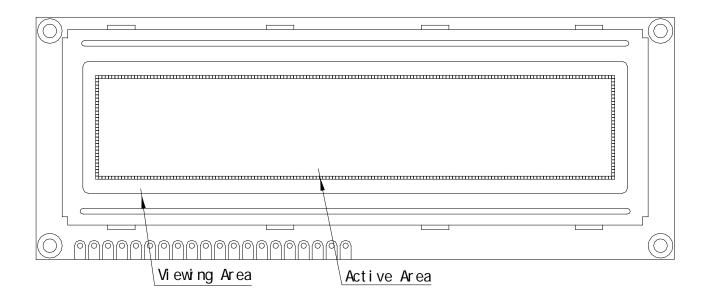
This command defeats column address register auto-increment after reading data. The current contents of the column address register are saved. This mode remains active until an **END** command is received.



## **Initialization Procedure**

Detects a rising edge or falling edge of an RES input and initializes the MPU during power-on. Initialization status:

- 1. Display is OFF
- 2. Display start line register is set to line 1
- 3. Static drive is turn off
- 4. Column address counter is set to address 0.
- 5. Page address register is set to page 3.
- 6. 1/32 duty is selected.
- 7. Forward ADC is selected(ADC command D0 is 1 and ADC status flag is 1)
- 8. Read-modify-write is OFF.


**Reliability Test** 

| No | Item                             | Conditions                                                                     |          | Note                 |
|----|----------------------------------|--------------------------------------------------------------------------------|----------|----------------------|
| 1  | High Temp. Operation             | 50°C                                                                           | 120HR    |                      |
| 2  | High Temp. Storage               | <b>70</b> ℃                                                                    | 120HR    |                      |
| 3  | Low Temp. Operation              | 0°C                                                                            | 120HR    |                      |
| 4  | Low Temp. Storage                | -20°C                                                                          | 120HR    |                      |
| 5  | High Temp./Humid Storage         | 60°C 90%RH                                                                     | 120HR    |                      |
| 6  | Thermal Shock                    | -20°C ,30min<br>+60°C ,30min                                                   | 10 cycle |                      |
| 7  | Vibration Test<br>( IEC-68-2-6 ) | Frequency: 10~55 Hz<br>Duration: 20 times, 6<br>min/time<br>Amplitude: 0.75 mm | -        |                      |
| 8  | Shock<br>( IEC 68-2-27)          | Duration : 11 mS<br>Acceleration : 100g                                        | -        | X, Y, Z<br>direction |

## **Appearance Check**

## CONDIITON OF APPEARANCE CHECK:

- (1)Specimen shall be checked by eyes in distance of 30cm under 40w-fluorescence lamp.
- (2) Checking direction shall be in 45 degree from perpendicular line op specimen surface.

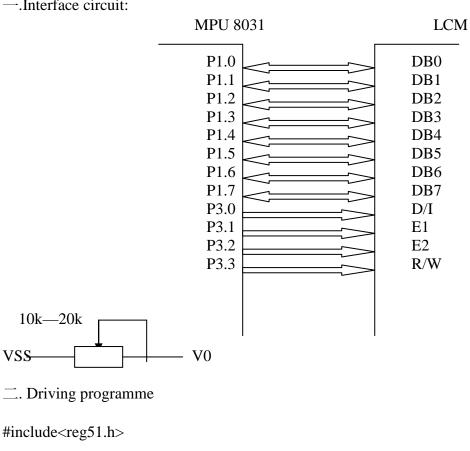


## **Handling Precautions**

- (1) Treat polarizer very carefully since it is easy to be damaged.
- (2) When cleaning the display surface, use soft cloth (e.g. gauss) with a solvent (recommended below) and wipe lightly.
  - ethyl alcohol
  - ♦ iso-prcolol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvents:


- water
- **♦** ketone
- aromatics
- (3)Direct current causes electro-chemical reaction with remarkable degradation of the display quality. Give careful consideration to prevent direct current at ON/OFF timing and during operation.
- (4) Avoid strong shock and drop from the height.
- (5)To prevent LCD panels from degradation, do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (6) Give careful consideration to avoid electrical static discharge with causes uneven contrast.
- (7)Even a small condensation on the contact pads (terminals) causes electro-chemical reaction which makes missing row and column. Give careful attention to avoid condensation. When assembling with zebra connector, clean the surface of the pads with alcohol and keep the air very clean.

# Lcd Product Quality Standard DISPLAY APPEARANCE

| No | Item                                         | Criteria                                                                                                                                                                                                                                                                                                                                     |
|----|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | inclusions (black spot,<br>white spot, dust) | (1)round type diameter mm(a*) no of defect* $a \leq 0.20 \qquad \text{neglect}$ $0.20 < a \leq 0.35 \qquad 5 \text{max}$ $0.35 < a \qquad \text{none}$ (2)linear type length mm(l) width mm(W) no. of defect na $W \leq 0.03 \qquad \text{neglect}$ $1 \leq 3 \qquad 0.03 < W \leq 0.08 \qquad 6$ $3 < 1 \qquad 0.08 < W \qquad \text{none}$ |
| 2  | scratch                                      | 1.scratch on protective film is permitted. 2.scratch on polarizer shall be as follow: (1)round type diameter mm(a*) no of defect $a \le 0.15$ neglect $0.15 < a \le 0.20$ 2 max $0.20 < a$ none (2)linear type be judged bye 1(2) linear type                                                                                                |
| 3  | dent                                         | diameter < 1.5mm                                                                                                                                                                                                                                                                                                                             |
| 4  | bubble                                       | not exceeding 0.5mm average diameter is acceptable between glass and polarizing film                                                                                                                                                                                                                                                         |
| 5  | pin hole                                     | $(a+b)/2 \le 0.15$ mm<br>maximum number: ignored<br>$0.15 < (a+b)/2 \le 0.20$ mm<br>maximum number: 10                                                                                                                                                                                                                                       |
| 6  | dot defect                                   | $(a+b)/2 \le 0.20$ mm<br>maximum number: ignored<br>$0.20 < (a+b)/2 \le 0.30$ mm<br>maximum number:5<br>x=width                                                                                                                                                                                                                              |
| 7  | 3, 11, 17, 17, 17, 17, 17, 17, 17, 17, 17    | $\begin{array}{lll} \text{diameter spec} & \text{no of defect} \\ a \leq 0.50 \text{mm} & \text{neglect} \\ 0.50 < a \leq 0.75 & 5 \\ 0.75 < a \leq 1.00 & 3 \\ 1.00 < a & \text{none} \end{array}$                                                                                                                                          |
| 8  | dot width                                    | design width ±15%                                                                                                                                                                                                                                                                                                                            |
| 9  | color tone and uniformity                    | obvious uneven color is not permitted                                                                                                                                                                                                                                                                                                        |

## Interface circuit and driving programme on LCM of dots matrix series.

### —.Interface circuit:



```
sbit di=P3^0;
sbit e1=P3^1;
sbit e2=P3^2;
sbit rw=P3^3;
unsigned char x,y;
void delay(int num)
    while(num--);
void send_command(unsigned char cmd)
    e1=e2=0;
    di=rw=0;
    P1=cmd;
    e1=e2=1;
```

```
delay(2);
    e1=e2=0;
    delay(2);
    P1=0xff;
    e1=e2=1;
}
void lw(unsigned char x,unsigned char y,unsigned char dd) {
    if (x<61)
             e1=e2=1;
         {
             di=rw=0;P1=0xb8|y;e1=1;delay(2);e1=0;delay(2);
             e1=e2=1;
             di=rw=0;P1=0x00|x;e1=1;delay(2);e1=0;delay(2);
             e1=e2=1;
             di=1;rw=0;P1=dd;e1=1;delay(2);e1=0;delay(2);
             e1=e2=1;
         }
     else
             x=x-61;e1=e2=1;
             di=rw=0;P1=0x00|x;e2=1;delay(2);e2=0;delay(2);
             e1=e2=1;
             di=rw=0;P1=0xb8|y;e2=1;delay(2);e2=0;delay(2);
             e1=e2=1;
             di=1;rw=0;P1=dd;e2=1;delay(2);e2=0;delay(2);
             e1=e2=1;
    P1=0xff;
}
void lcd_init(void) {
    unsigned char x,y;
    e1=e2=0;
    di=rw=0;
    send_command(0xae);
    send_command(0xc0);
    send_command(0xa4);
    send command(0x00);
    send_command(0xbb);
    send_command(0xa9);
    send command(0xa0);
    send_command(0xee);
    for (y=0;y<4;y++)
             for (x=0;x<122;x++) lw(x,y,0);
    send_command(0xaf);
```

```
}
unsigned char
a[16] = \{0xff,0x00,0x00,0xff,0xaa,0xaa,0x55,0x55,0xaa,0x55,0x55,0xaa,0xff,0xff,0x00,0x00\};
unsigned char code
0x00,0x00,0x00,0x00,0x00,0x3A,0x2A,0x2A,0x2A,0x2A,0x2A,0x2A,0x2A,0x3A,0x00,0x00
};
unsigned char code
unsigned char code
0,0x00,0x00,0x0F,0x04,0x04,0x04,0x04,0x1F,0x24,0x24,0x24,0x24,0x27,0x20,0x18,0x00};
unsigned char code
unsigned char code
0,0x00,0x00,0x01,0x00,0x00,0x3F,0x04,0x04,0x04,0x14,0x24,0x24,0x1F,0x00,0x00,0x00\};
unsigned char code
00,0x00,0x00,0x3F,0x04,0x08,0x04,0x03,0x00,0x3F,0x12,0x04,0x0A,0x11,0x30,0x10,0x00};
unsigned char code
00,0x00,0x00,0x00,0x10,0x18,0x14,0x12,0x11,0x10,0x10,0x14,0x18,0x30,0x00,0x00,0x00\};
unsigned char code
x00,0x00,0x00,0x1F,0x08,0x08,0x08,0x08,0x08,0x1F,0x00,0x10,0x20,0x1F,0x00,0x00};
unsigned char code
x00,0x00,0x20,0x1B,0x02,0x02,0x0A,0x32,0x02,0x0A,0x32,0x02,0x0B,0x10,0x20,0x00;
unsigned char code
x00,0x00,0x00,0x3F,0x02,0x04,0x03,0x04,0x04,0x04,0x04,0x3F,0x04,0x04,0x04,0x04,0x00\};
unsigned char code
0.0x00.0x00.0x02.0x3F.0x00.0x01.0x00.0x3F.0x21.0x12.0x0C.0x05.0x0B.0x30.0x20.0x00;
unsigned char code
0x00,0x00,0x00,0x00,0x3F,0x24,0x24,0x24,0x3F,0x00,0x3F,0x24,0x24,0x24,0x3F,0x00,0x00};
unsigned char code
0x00,0x00,0x21,0x22,0x26,0x20,0x3F,0x20,0x20,0x20,0x3F,0x20,0x24,0x22,0x23,0x00};
unsigned char code
```

x00,0x00,0x08,0x04,0x02,0x03,0x10,0x20,0x1F,0x00,0x00,0x01,0x02,0x04,0x0C,0x00};

unsigned char code

 $mo[32] = \{0x00,0x00,0x10,0xD0,0xFE,0x50,0x94,0xF4,0x5E,0x54,0x54,0x54,0x5E,0xF4,0x04,0x00,0x00,0x00,0x03,0x00,0x3F,0x00,0x24,0x25,0x15,0x0D,0x07,0x0D,0x15,0x25,0x24,0x00\};\\ unsigned char code$ 

 $\begin{aligned} & kuai[32] = & \{0x00,0x00,0x20,0x20,0xFE,0x20,0x20,0x10,0x10,0xFE,0x10,0x10,0x10,0xF0,0x00,0x00,0x00,0x08,0x0F,0x24,0x25,0x11,0x0D,0x03,0x05,0x09,0x11,0x21,0x21,0x00\}; \end{aligned}$ 

```
void write_chinese(x,y,array)
unsigned char x,y;
unsigned char array[];
    unsigned char j,dd;
    for(j=0;j<32;j++)
         dd=array[i];
         if(j<16) lw(x+j,y,dd);
         else
                    lw(x+j-16,y+1,dd);
     }
}
void main()
    unsigned char i,dd;
loop:
         lcd init();
           write_chinese(0,0,yu);
     write_chinese(16,0,xin);
    write chinese(31,0,dian);
    write_chinese(46,0,zi);
    write_chinese(61,0,you);
     write_chinese(77,0,xian);
    write chinese(92,0,gong);
    write_chinese(107,0,si);
    write chinese(0,2,d);
    write_chinese(16,2,zhen);
    write_chinese(31,2,ye);
    write_chinese(46,2,jin);
    write_chinese(61,2,xi);
    write chinese(77,2,s);
    write_chinese(92,2,mo);
    write_chinese(107,2,kuai);
    delay(60000);
           for(i=0;i<8;i++)
     {
         for(y=0;y<4;y++)
               for(x=0;x<122;x++)
               {
                   if(x\%2==0)
                   lw(x,y,a[2*i]);
```

```
else lw(x,y,a[2*i+1]); \\ \} \\ delay(60000); \\ \} \\ goto loop; \\ \\ \\
```

**Revision History** 

| Revision Content | Page | Date |
|------------------|------|------|
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |
|                  |      |      |