

HY4222 Datasheet

Table of Contents

1.	GENERAL DESCRIPTION
2.	FEATURES4
3.	APPLICATIONS
4.	ORDERING INFORMATION
5.	APPLICATION CIRCUIT
6.	PIN CONFIGURATION
7.	PIN DEFINITION
8.	FUNCTION OUTLINE
9.	BLOCK DIAGRAM10
10.	ELECTRICAL CHARACTERISTICS 11
11.	DATA COMMANDS17
12.	DETAILED DESCRIPTION
13.	OPERATION EXAMPLE
14.	PACKAGE INFORMATION
15.	REVISION RECORD

Attention :

- HYCON Technology Corp. reserves the right to change the content of this datasheet without further notice. For most up-to-date information, please constantly visit our website: <u>http://www.hycontek.com</u>.
- 2. HYCON Technology Corp. is not responsible for problems caused by figures or application circuits narrated herein whose related industrial properties belong to third parties.
- 3. Specifications of any HYCON Technology Corp. products detailed or contained herein stipulate the performance, characteristics, and functions of the specified products in the independent state. We does not guarantee of the performance, characteristics, and functions of the specified products as placed in the customer's products or equipment. Constant and sufficient verification and evaluation is highly advised.
- 4. Please note the operating conditions of input voltage, output voltage and load current and ensure the IC internal power consumption does not exceed that of package tolerance. HYCON Technology Corp. assumes no responsibility for equipment failures that resulted from using products at values that exceed, even momentarily, rated values listed in products specifications of HYCON products specified herein.
- 5. Notwithstanding this product has built-in ESD protection circuit, please do not exert excessive static electricity to protection circuit.
- 6. Products specified or contained herein cannot be employed in applications which require extremely high levels of reliability, such as device or equipment affecting the human body, health/medical equipments, security systems, or any apparatus installed in aircrafts and other vehicles.
- 7. Despite the fact that HYCON Technology Corp. endeavors to enhance product quality as well as reliability in every possible way, failure or malfunction of semiconductor products may happen. Hence, users are strongly recommended to comply with safety design including redundancy and fire-precaution equipments to prevent any accidents and fires that may follow.
- 8. Use of the information described herein for other purposes and/or reproduction or copying without the permission of HYCON Technology Corp. is strictly prohibited.

1. General Description

The HY4222 operates with 1-to-3 Li Metal battery cell as a stand–along battery gauge. Minimum firmware development support is required from system. The device uses GaugePackTM algorithm, which mixes Coulomb–Counting and Open–Circuit–Voltage (OCV) measurements with battery cell characteristics to manage battery gauge, to maintain accurate battery capacity estimates with compensation for age and self–discharge effects. The device provides voltage, current and thermal protection alerts, and also provides nonvolatile Flash memory for user purpose. The measured, estimated data set, and specific application information on the device are accessible via a proprietary 2–Wire (I^2C) interface.

2. Features

- Used as Stand–alone Battery Gauge for 1-to-3 Li Metal Cell Battery Applications
 - Provide 1 to 3 Cell Series Options
 - Integrate Dual 16–Bit ADCs for Precision Voltage, Current, and Temperature Measurements
 - Use a Low Cost and Low Value Sense Resistor with Calibration for Current Measurement
 - Use Integrated and External Temperature Sensors for Temperature Measurement
- Integrate Accurate Battery Capacity Estimate System
 - Integrate GaugePackTM Algorithm Mixed Algorithm with Coulomb Counting, Open Circuit Cell Voltage Measurement and Cell Characteristics
 - Compensate Age and Self–Discharge Effects Automatically
 - Require No Fully Battery Charge-to-Discharge or Discharge-to-Charge Recycling for Capacity Learning Process
 - Backup Specific Battery Capacity Information to Nonvolatile (NV) Flash Memory Automatically
- Feature Programmable Protection Alerts
 - Protections for Voltage, Current, and Temperature Faults
 - Provide Pin Alert Indication for Temperature
- Backup Battery Lifetime Data to Nonvolatile (NV) Flash Memory Automatically
- Provide 96 Bytes Nonvolatile (NV) User Scratch Pad Flash Memory
- Support Low Power Modes Management
- Support 2–Wire (I²C) Communication Interface
- Support LEDs for Capacity Indication

• Tiny, RoSH-free / Pb-free, 4.4mm x 6.5mm 20-pin TSSOP Package

3. Applications

- E-Bikes
- E-Power Tools
- Portable Instruments

4. Ordering Information

Device No. ¹	Package Type	Pins	Pins Package Drawing		Code ²	Material Composition	MSL ³
HY4222-T020	TSSOP	20	Т	020	-	Green ⁴	MSL-3

1 Device No – Package Type Description

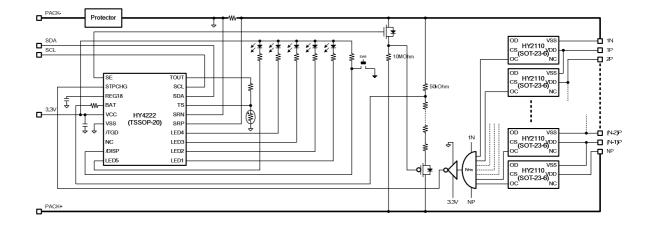
Ex: You request blank code in DFN14 package for HY4141. The device No.

will be HY4141-C014

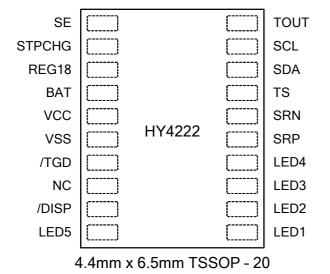
з MSL:

The Moisture Sensitivity Level ranking conforms to IPC/JEDEC J-STD-020

industry standard categorization. The products are processed, packed,


transported and used with reference to IPC/JEDEC J-STD-033.

4 Green (RoHS & no Cl/Br):


HYCON products are Green products that compliant with RoHS directive and are Halogen free (Br/Cl<0.1%)

5. Application Circuit

6. Pin Configuration

7. Pin Definition

PIN	TYPE ⁽¹⁾	NAME	DESCRIPTION
1	0	SE	Shutdown Enable Indication Output.
			Used to indicate the device in Hibernate mode. A push-pull output. Active
			high.
2	I	STPCHG	Stop Charge Input.
			Used to indicate the fully charge termination. Active high.
3	OA	REG18	1.8V Regulated Power Output.
			A 1.8V regulated voltage output. Only for device use. Connect a 1uF
			ceramic capacitor to VSS.
4	IA	BAT	Battery Voltage Sense Input.
			Used to measure battery voltage. Connect to battery positive terminal.
5	OA	VCC	Regulated Power Supply.
			A 3.3V regulated voltage output. Only for device use. Connect a 1uF
			ceramic capacitor to VSS.
6	Р	VSS	Device Ground.
7	IA	/TGD	Temperature Good Indication Output.
			Used to indicate no temperature fault when configured. A push-pull
			output. Active low.
8		NC	No Connection.
9	I	/DISP	LED Display Control Input.
			Connect to VSS via the button.
10	IA	LED5	LED Display Input 5.
			Used to indicate a ration of battery capacity. Active low.
11	IA	LED1	LED Display Input 1.
			Used to indicate a ration of battery capacity. Active low.
12	IA	LED2	LED Display Input 2.
			Used to indicate a ration of battery capacity. Active low.
13	IA	LED3	LED Display Input 3.
			Used to indicate a ration of battery capacity. Active low.
14	IA	LED4	LED Display Input 4.
			Used to indicate a ration of battery capacity when configured. Active low.
15	IA	SRP	Current Sense Positive Input.
			Connect to a $5m\Omega$ to $20m\Omega$ current sense resistor. Connect near to battery
			negative terminal.
16	IA	SRN	Current Sense Negative Input.
			Connect to a $5m\Omega$ to $20m\Omega$ current sense resistor. Connect near to VSS.
17	IA	TS	Thermistor Sense Input.

PIN	TYPE ⁽¹⁾	NAME	DESCRIPTION
			Used to measure temperature in battery pack. Connect to a thermistor.
18	I/OD	SDA	Serial Data Input/Output.
			Slave I ² C communication data line. Open-drain output. Use with an
			external 10kΩ pull–up resister.
19	Ι	SCL	Serial Clock Input.
			Slave I^2C communication clock line. Use with an external $10k\Omega$ pull–up
			resister.
20	OA	TOUT	Power Output to Thermistor Network.
			Connect to a pull-up resistor that connects a thermistor to VSS.

NOTE: (1) I = DIGITAL INPUT; O = DIGITAL OUTPUT; OD = OPEN-DRAIN OUTPUT; IA = ANALOG INPUT; OA = ANALOG OUTPUT; P

= POWER CONNECTION.

8. Function Outline

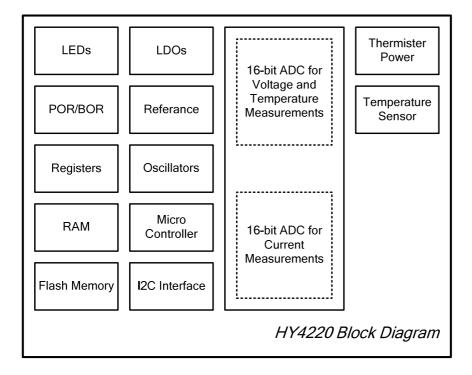
The HY4222 functions as an accurate battery gauge for a battery pack using 1-to-3 Li Metal cell. The device provides accurate estimates of capacity information and timely voltage, temperature and current measurements. Minimum firmware development support is required from system.

The proprietary GaugePack[™] mixing Coulomb Counting and Open Circuit Cell Voltage (OCV) related algorithms estimates battery capacity to be the key to support battery information, such as State–Of–Charge (SOC), based on battery cell characteristics. With compensation for age and self–discharge effects exercised, the performance of battery gauge is well improved. The configurable capacity learning process does not require any fully charge-to-discharge or discharge-to-charge battery cycling, and offers best opportunity to update status of battery capacity. The critical capacity information is periodically backed up into the integrated Flash memory in case of loss of power. The HY4222 supports four LEDs to indicate battery capacity in configurable settings.

The HY4222 integrates two sets of precision 16–bit delta-sigma ADCs for voltage, temperature, and current measurements. The performance of measurements is optimized with appropriate calibrations and compensations during manufacturing and normal operation. The current is measured across a low costly, small value sense resistor (1m Ω to 4m Ω typically) located between battery and package terminals. The temperature can be measured from the integrated temperature sensor and the external thermistor network powered and controlled by the device. Users can specify characteristics of NTC thermistor in Flash memory.

The HY4222 features protection alerts for voltage, current and temperature faults during operation. The related thresholds and delays can be configured in user programmable Flash memory. A specific pin is assigned to indicate the temperature alert, and can be used to control external components.

Battery cell and application information is stored in non-volatile Flash memory. Many of these Flash memory locations are accessible during application development. They can not be accessed directly during end–equipment operation. Access to these memory locations is achieved through individual commands, a sequence of data–flash–access commands, or use of the companion evaluation software.



The HY4222 provides 96 bytes of user programmable Flash memory, partitioned into three 32–byte blocks: Manufacturer Info Block A, Manufacturer Info Block B, and Manufacturer Info Block C. This data space is accessed through a Data Flash interface.

The HY4222 uses a proprietary 2–Wire (I²C) communication interface, and executes commands. The measured, estimated data set, protection alerts, and specific application information are accessed through a series of commands, called *Standard Commands*. Further capability is provided by *Extended Commands*. These commands are used to read and write information contained within the HY4222 control and status registers, as well as the Flash memory locations. The 7–bit address 1011000 is assigned to the HY4222.

The HY4222 offers four power modes: NORMAL, SLEEP, FULLSLEEP, and HIBERNATE, to minimize power consumption and transits between modes automatically with appropriate configurable settings and communication events. Some of these modes can be initiated through commands.

9. Block Diagram

10. Electrical Characteristics ABSOLUTE MAXIMUM RATINGS

Voltage on BAT pins relative to VSS	–0.3V to 16V
Voltage on REG18, VCC pins relative to VSS	–0.3V to 3.6V
Voltage on SRP, SRN, TS, TOUT, STPCHG pins	-0.3V to VCC + 0.3V
relative to VSS	
Voltage on SDA, SCL, SE, /TGD, LED5, LED4, LED3,	–0.3V to 6.0V
LED2, LED1 pins relative to VSS	
Functional Temperature Range	–40℃ to +100℃
Storage Temperature Range	–65℃ to +150℃
Soldering Temperature (10 Sec)	+260 ℃

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

ELECTRCAL CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V \text{ to } 5.5V. C_{VCC} = 1 uF. C_{REG18} = 1 uF. T_A = -40^{\circ}C \text{ to } +85^{\circ}C.$ Unless otherwise noted, typical values are at $T_A = 25^{\circ}C$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Supply Voltage	V _{cc}	Normal operation.	3.0	3.3	3.6	V
Supply Voltage	VCC	No Flash writes.	2.45		3.0	v
		NORMAL Mode. (Note 1)		130		
	I _{CC}	I _{LOAD} > I _{SLEEP}		130		
	1	SLEEP Mode.		60		
Supply Current	I _{SLP}	$I_{LOAD} \leq I_{SLEEP}$		60		
	1	FULLSLEEP Mode.		20		μA
	I _{FULLSLP}	$I_{LOAD} \leq I_{SLEEP}$		20		
	I _{HIB}	HIBERNATE Mode.		6		
	IHIB	$I_{LOAD} \leq I_{HIBERNATE}$		0		
Power–Up Communication	t			350		ms
Delay	t _{PUCD}			550		1115
TOUT, SDA, SE	V _{OL}	I _{OL} = 3mA			0.4	V
Output Logic Low	VOL	$I_{OL} = 511A$			0.4	v
TOUT	V	I _{он} = –1mA	V _{cc} –			V
Output Logic High	V _{OH(PP)}	$I_{OH} = -111A$	0.5			v
SDA, SE	E	External pull-up resisters	V			
	$V_{OH(OD)}$	to VCC.	V _{CC} – 0.5			V
Output Logic High		I _{OH} = -3mA	0.5			

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Supply Voltage	N/	Normal operation.	3.0	3.3	3.6	V
Supply Vollage	V _{cc}	No Flash writes.	2.45		3.0	v
SDA, SCL, STPCHG	V		-0.3		0.6	V
Input Logic Low	V _{IL}		-0.3		0.0	v
SDA, SCL STPCHG	V		1.0		V	V
Input Logic High	$V_{IH(OD)}$		1.2		V_{CC}	v
BAT			V _{SS} –		V_{SS} +	V
Input Voltage Range			0.125		5.5	v
SRP, SRN			V_{SS} –		V_{SS} +	V
Input Voltage Range			0.25		0.25	v
TS			V _{SS} –		V_{CC} –	V
Input Voltage Range			0.125		0.1	V

POWER-ON RESET

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V \text{ to } 5.5V. C_{VCC} = 1 \text{uF. } C_{REG18} = 1 \text{uF. } T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Unless otherwise noted, typical values are at $T_A = 25^{\circ}\text{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Power-On-Reset Voltage	V _{POR}	Rising-edge voltage at VCC.	2.05	2.20	2.30	V
Hysteresis Voltage	V_{POR_HYS}		45	115	185	mV

1.8V LDO REGULATOR

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V \text{ to } 5.5V. C_{VCC} = 1uF. C_{REG18} = 1uF. T_A = -40^{\circ}C \text{ to } +85^{\circ}C.$ Unless otherwise noted, typical values are at $T_A = 25^{\circ}C$)

PARAMETER	SYMBOL	CONDITION	S	MIN	ТҮР	МАХ	UNITS
Regulator Output Voltage,		2.7V ≤ V _{CC} I _{REG18} ≤ 16mA	–40°C to	1.70	1.80	1.90	
REG18	V _{REG}	$2.45V \le V_{CC} \le 2.7V$ $I_{REG18} \le 3mA$	-40 C to +85°C	1.65			V
		$V_{CC} = 2.7V$ $I_{REG_OUT} \le 16mA$	–40°C to			280	
Regulator Dropout Voltage	V _{DO}	V _{CC} = 2.45V I _{REG18} ≤ 3mA	+85°C			50	mV
Short Circuit Current Limit	I _{SHORT_REG} 18	V _{REG18} = 0V	–40°C to +85°C			250	mA

THERMISTOR DRIVE CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V$ to 5.5V. $C_{VCC} = 1uF. C_{REG18} = 1uF. T_A = -40^{\circ}C$ to +85°C. Unless otherwise noted,

typical values are at $T_A = 25^{\circ}C$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Voltage	V _{TOUT}	$I_{TOUT} = 0$		V_{CC}		V
TOUT Pass Element	P	I _{TOUT} = 1mA		FO	100	0
Resistance	$R_{DS,ON}$			50	100	Ω

ULTRA HIGH FREQUENCY OSCILLATOR CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V \text{ to } 5.5V. C_{VCC} = 1 \text{uF. } C_{REG18} = 1 \text{uF. } T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Unless otherwise noted, typical values are at $T_A = 25^{\circ}\text{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Operating Frequency	f _{OSC}			8		MHz
Startup Delay	t _{sxo}			2.5	5	ms

HIGH FREQUENCY OSCILLATOR CHARACTERISTICS

(V_{CC} = 3.3V. V_{BAT} = 2.45V to 5.5V. C_{VCC} = 1uF. C_{REG18} = 1uF. T_A = -40°C to +85°C. Unless otherwise noted,

typical values are at $T_A = 25^{\circ}C$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Operating Frequency	f _{OSC}			2		MHz
Startup Delay	t _{sxo}			2.5	5	ms

LOW FREQUENCY OSCILLATOR CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V \text{ to } 5.5V. C_{VCC} = 1 \text{ uF. } C_{REG18} = 1 \text{ uF. } T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Unless otherwise noted, typical values are at $T_A = 25^{\circ}\text{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Operating Frequency	f _{osc}			32.768		KHz
		0 ≤ Ta ≤ 60ºC	-1.5	0.25	1.5	
Frequency Error	f _{EIO}	–20ºC ≤ Ta ≤ 70ºC	-2.5	0.25	2.5	%
		–40ºC ≤ Ta ≤ 85ºC	-4.0	0.25	4.0	
Startup Delay	t _{sxo}				500	μs

INTEGRATING ADC (COULOMB COUNTER) CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V \text{ to } 5.5V. C_{VCC} = 1 \text{ uF. } C_{REG18} = 1 \text{ uF. } T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Unless otherwise noted, typical values are at $T_A = 25^{\circ}\text{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input voltage Range $(V_{SRN} and V_{SRP})$	V _{SR,IN}	$V_{SR} = V_{SRP} - V_{SRN}$	-0.25		0.25	V
(VSRN and VSRP)						

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Conversion Time	t _{sxo}	Single conversion		1		S
Resolution		Single conversion	15		16	bits
Full Scale Error	V _{SR,ERR}			0.35		%
Full Scale Drift	V _{SR,DRIFT}			150		PPM/°C
Offset Error	V _{SR,OS}			10		μV
Offset Error Drift	V _{SR,OS,DRI} FT			0.4	2.45	μV/°C
Integral Nonlinearity Error	I _{NL}			±0.00 7	±0.034	FSR
Effective Input resistance	Z _{SR,IN}		2.5			MΩ
Input Leakage Current	I _{SR,LKG}				0.3	μA

ADC (TEMPERATURE AND BATTERY MEASUREMENT) CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 2.45V$ to 5.5V. $C_{VCC} = 1$ uF. $C_{REG18} = 1$ uF. $T_A = -40$ °C to +85°C. Unless otherwise noted, typical values are at $T_A = 25$ °C)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input voltage Range	V _{ADC,IN}		-0.2		1	V
Conversion Time	t _{sxo}	Single conversion		250		ms
Resolution		Single conversion	14		15	bits
Offset Error	V _{ADC,OS}			10		μV
Full Scale Error	$V_{ADC,ERR}$			0.1	0.7	%
Full Scale Drift	V _{ADC,DRIFT}			50		PPM/°C
Input Offset	V _{ADC,OS}			1		mV
Offset Error Drift	V _{ADC,OS,DR}			2.5	18	μV/°C
Integral Nonlinearity Error	I _{NL}			±0.00 7	±0.034	FSR
Effective Input resistance	Z _{ADC,IN}		2.5			MΩ
Input Leakage Current	I _{ADC,LKG}				0.3	μA

DATA FLASH MEMORY CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 3.3V. C_{VCC} = 1uF. C_{REG18} = 1uF. T_A = -40^{\circ}C$ to +85°C. Unless otherwise noted, typical values are at $T_A = 25^{\circ}C$)

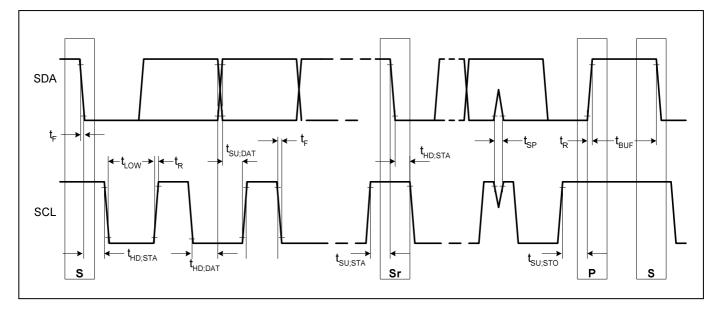
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Retention	T _{DR}		10			Years

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Flash Programming Write			20000			Cycles
Cycles			20000			Cycles
Row Programming Time	t _{ROWPROG}				2	ms
Mass Erase Time	t _{MassErass}				200	ms
Page Erase Time	t _{PageErass}				20	ms
Flash Write Supply Current	I _{CCPROG}			5	10	mA
Flash Erase Supply Current	I _{CCERASE}			5	10	mA

2-WIRE INTERFACE COMMUNICATION TIMING CHARACTERISTICS

 $(V_{CC} = 3.3V. V_{BAT} = 1.8V. C_{VCC} = 1uF. C_{REG18} = 1uF. T_A = -40^{\circ}C$ to +85°C. Unless otherwise noted, typical values are at $T_A = 25^{\circ}C$)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
SCL Clock Frequency	f _{SCL}	(Note 1)	0		400	KHz
Bus Free Time Between a STOP and START Condition	t _{BUF}		1.3			μs
Hold Time (Repeated) START Condition	t _{hd:sta}	(Note 2)	0.6			μs
Low Period of SCL Clock	t _{LOW}		1.3			μs
High Period of SCL Clock	t _{HIGH}		0.6			μs
Setup Time for a Repeated START Condition	t _{su:sta}		0.6			μs
Data Hold Time	t _{HD:DAT}	(Note 3, 4)	0		0.9	μs
Data Setup Time	t _{SU:DAT}	(Note 3)	100			ns
Rise Time of Both SDA and SCL Signals	t _R		20 + 0.1C _B		300	ns
Fall Time of Both SDA and SCL Signals	t _F		20 + 0.1C _B		300	ns
Setup Time for STOP Condition	t _{su:sto}		0.6			μs
Spike Pulse Widths Suppressed by Input Filter	t _{sP}	(Note 5)	0		50	ns
Capacitive Load for Each Bus Line	C _B	(Note 6)			400	pF
SCL, SDA Input Capacitance	C _{BIN}				60	pF


Note 1: Timing must be fast enough to prevent the HY4222 from entering sleep mode due to bus low for period > t_{SLEEP} .

Note 2: f_{SCL} must meet the minimum clock low time plus the rise/fall times.

Note 3: The maximum t_{HD:DAT} has only to be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

- **Note 4:** This device internally provides a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- Note 5: Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.
- Note 6: C_b total capacitance of one bus line in pF.

Figure 1. I²C Bus Timing Diagram

11. Data Commands Standard Commands

The HY4222 uses a series of 2–byte standard communication protocol to enable system reading and writing of battery information. Each standard command has associated command code(s), as indicated in Table 1. Because each command consists of two bytes of data, two consecutive transmissions must be executed both to initiate the command function, and to read or write the corresponding two bytes of data. Additional options for transferring data, such as spooling, are described in Section, f^2C *Interface*. Standard commands are accessible in NORMAL mode operation. The read/write permissions depend on the NORMAL access mode, FULL ACCESS, SEALED or UNSEALED (for details about the access modes, refer to Section *Access Modes*.)

COMMAND	SEALED ¹	UNSEALED ¹	NAME	FORMAT ²	MINIMUM	ΜΑΧΙΜυΜ	DEFAULT	UNIT
0x00 / 0x01	R/W	R/W	Control()	Hex	0x0000	Oxffff	_	_
0x02 / 0x03	R/W	R/W	AtRate()	12	-32768	0	—	mA
0x04 / 0x05	R	R/W	AtRateTimeToEmpty()	U2	0	65535	—	minute
0x06 / 0x07	R	R/W	Temperature()	U2	0	65535	—	0.1ºK
0x08 / 0x09	R	R/W	Voltage()	U2	0	65535	—	mV
0x0a / 0x0b	R	R	Flags()	U2	0x0000	Oxffff	—	—
0x0c / 0x0d	R	R/W	NominalAvailableCapacity()	U2	0	65535	—	mAh
0x0e / 0x0f	R	R/W	FullAvailableCapacity()	U2	0	65535	—	mAh
0x10 / 0x11	R	R/W	RemainingCapacity()	U2	0	65535	—	mAh
0x12 / 0x13	R	R/W	FullChargeCapacity()	U2	0	65535	—	mAh
0x14 / 0x15	R	R/W	AverageCurrent()	12	-32768	32767	—	mA
0x16 / 0x17	R	R/W	RunTimeToEmpty()	U2	0	65535	—	minute
0x18 / 0x19	R	R/W	AverageTimeToFull()	U2	0	65535	—	minute
0x1a / 0x1b	R	R/W	StandbyCurrent()	12	-32768	32767	—	mA
0x1c / 0x1d	R	R/W	StandbyTimeToEmpty()	U2	0	65535	—	minute
0x1e / 0x1f	R	R/W	MaxloadCurrent()	12	-32768	32767	—	mA
0x20 / 0x21	R	R/W	MaxloadTimeToEmpty()	U2	0	65535	—	minute
0x22 to 0x27			Re	eserved				
0x28 / 0x29	R	R/W	InternalTemperature()	U2	0	65535	—	0.1ºK
0x2a / 0x2b	R	R/W	CycleCount() ³	U2	0	05505	0	cycle
0x2a / 0x2D			CycleCount()	U2 0		65535	0	count
0x2c / 0x2d	R	R/W	RelativeStateOfCharge()	U2	0	200	_	%

Table 1. STANDARD COMMANDS

_													
	0x2e / 0x2f	R	R/W	StateOfHealth()	U2	0	200	_	% / num				
	0x30 / 0x31	R	R/W	Current()	12	-32768	32767		mA				
	0x32 / 0x33	R	R	SafetyStatus()	U2	0x0000	0xffff	0x0000	—				
	0x34 to 0x37		Reserved										
	0x70 / 0x71	R	R/W	Pack Voltage()	U2	0	65535	_	2mV				

1. SEALED and UNSEALED modes are entered via commands to Control() plus access keys.

2. I2 = 2-byte Signed Integer; U2 = 2-byte Unsigned Integer.

 Critical register value is automatically saved to Flash Data during NORMAL mode operation and recalled from Flash Data on Power–On–Reset procedure.

Control Commands

Issuing command *Control()* requires a series of 2–byte standard communication protocol. These additional bytes specify the specific control function desired during normal operation and features when the HY4222 is in different access modes, as indicated in Table 2.

COMMAND	SEALED	FUNCTION	DESCRIPTION	DEFAULT
0x0000	R	ControlStatus()	Reports the status of data flash checksum, hibernate, etc.	0x0040
0x0001	R	DeviceType()	Reports the device type (HY4222).	0x4230
0x0002	R	FirmwareVersion()	Reports the firmware version on the device.	0x0100
0x0003	R	HardwareVersion()	Reports the hardware version on the device.	0x0001
0x0004	R	DFChecksum()	Calculates a Data Flash checksum and reports the checksum on a read.	_
0x000c	R	DFVersion()	Reports the Data Flash version on the device.	—
0x0010	W	SetFullSleep()	Forces ControlStatus().FULLSLEEP to 1.	—
0x0011	W	SetHibernate()	Forces ControlStatus().HIBERNATE to 1.	_
0x0012	W	ClearHibernate()	Forces ControlStatus().HIBERNATE to 0.	—
0x0013	No	SetShutdown()	Enables the SE pin to change state.	_
0x0014	No	ClearShutdown()	Disables the SE pin from changing state.	_
0x0020	No	SealedDevice()	Places the device into SEALED state.	_
0x0022	R	IFChecksum()	Calculates an Instruction Flash checksum and reports the checksum on a read.	—
0x0040	No	CalibrationMode()	Places the device in calibration mode.	_
0x0041	No	Reset()	Forces a full reset of the device. It is a one-shot action.	_
0x0042	W	QuickStart()	Forces a re-calculation about capacity information.	_
0x0046	W	ClearLearned()	Forces Flag().LRND to 0.	_
0x0051	W	LEDsON()	Force enabled LEDs turned on for a LED hold time.	_
0x0052	w	LEDsOFF()	Force enabled LEDs turned off for a LED hold time.	—
0x0053	W	DisplayON()	Force activated LEDs to simulate the function of /DISP pin.	—

Table 2. Control() SUBCOMMANDS

Extended Commands

Extended commands offer more functionality beyond the standard commands. Each extended command has associated command code(s), as indicated in Table 3. The command code(s) is not limited to be a 2–byte word. The read/write permissions depend on the NORMAL access mode, FULL ACCESS, SEALED or UNSEALED (for details about the access modes, refer to Section *Access Modes*.)

COMMAND	SEALED	UNSEALED	DESCRIPTION	FORMAT ¹	UNIT
0x38	R	R	WakeCurrentThreshold()	11	mV
0x39	R	R	Operation Cfg B()	Hex	
0x3a / 0x3b	R	R	Operation Cfg A()	Hex	
0x3c / 0x3d	R	R	DesignCapacity()	U2	mAh
0x3e	N/A	R/W	DataFlashClass() ²	Hex	_
0x3f	N/A	R/W	DataFlashBlock() ²	Hex	_
0x40 to 0x53	R/W	R/W	BlockData() / Authenticate() ³	Hex	_
0x54	R/W	R/W	BlockData() / AuthenticateCheckSum() ³	Hex	_
0x55 to 0x5f	R	R/W	BlockData()	Hex	_
0x60	R/W	R/W	BlockDataChecksum()	Hex	_
0x61	R/W	R/W	BlockDataControl()	Hex	_
0x62	R	R	DeviceNameLength()	Hex	_
0x63 to 0x69	R	R	DeviceName()	Hex	_

Table 3. EXTENDED COMMANDS

1. I1 = 1-byte Signed Integer; U2 = 2-byte Unsigned Integer.

2. In SEALED mode, Data Flash CANNOT be accessed through commands 0x3e and 0x3f.

3. The BlockData() command area shares functionality for accessing general data flash and for using Authentication.

Data Flash

In HY4222, Data Flash is a non-volatile memory that contains initialization default values, battery status, calibration information, configuration information, and application information. The Data Flash can be access in several different ways, depending on what mode the HY4222 is operating in and what data is being accessed. The Data Flash locations are summarized in Table 5.

CLASS	SUBCLASS ID	SUBCLASS	OFFSET	FORMATE	NAME	MINIMUM	MAXIMUM	DEFAULT	UNIT
1 st Level Safety	1	Voltage	0	12	Low Temp Over Voltage (LT OV) Threshold	3400	5000	4300	mV
1 st Level Safety	1	Voltage	2	12	Low Temp Over Voltage (LT OV) Recovery	0	4400	3900	mV
1 st Level Safety	1	Voltage	4	12	Standard Temp Over Voltage (ST OV) Threshold	3400	5000	4500	mV
1 st Level Safety	1	Voltage	6	12	Standard Temp Over Voltage (ST OV) Recovery	0	4400	4100	mV
1 st Level Safety	1	Voltage	8	12	High Temp Over Voltage (HT OV) Threshold	3400	5000	4400	mV
1 st Level Safety	1	Voltage	10	12	High Temp Over Voltage (HT OV) Recovery	0	4400	4000	mV
1 st Level Safety	1	Voltage	12	U1	Over Voltage (OV) Time	0	240	8	s
1 st Level Safety	1	Voltage	13	12	Under Voltage (UV) Threshold	0	3500	2200	mV
1 st Level Safety	1	Voltage	15	12	Under Voltage (UV) Recovery	0	3600	3000	mV
1 st Level Safety	1	Voltage	17	U1	Under Voltage (UV) Time	0	240	8	S
1 st Level Safety	1	Current	32	12	Charge Over Current (COC) Threshold	0	65535	6000	mA
1 st Level Safety	1	Current	34	12	Charge Over Current (COC) Recovery	0	65535	300	mA
1 st Level Safety	1	Current	36	U1	Charge Over Current (COC) Time	0	240	8	S

Table 5. DATA Flash SUMMARY

1 st Level Safety	1	Current	38	12	Discharge Over Current (DOC) Threshold	0	65535	6000	mA
1 st Level	1	Current	40	12	Discharge Over Current	0	65535	300	mA
Safety					(DOC) Recovery				
1 st Level	1	Current	42	U1	Discharge Over Current	0	240	8	s
Safety					(DOC) Time				
1 st Level	1	Current	50	U1	Current Recovery Time	0	240	8	s
Safety	I	Guirein	50	01	Current Necovery Time	0	240	0	5
1 st Level		-			Charge Over Temp 1		0550	550	
Safety	1	Temp	71	12	(COT1) Threshold	0	2550	550	0.1ºC
1 st Level					Charge Over Temp 1				
Safety	1	Temp	66	U1	(COT1) Time	0	240	2	S
1 st Level					Charge Over Temp 1				
Safety	1	Temp	67	12	(COT1) Recovery	0	2550	500	0.1ºC
1 st Level					Discharge Over Temp 1				
Safety	1	Temp	74	12	(DOT1) Threshold	0	2550	600	0.1ºC
1 st Level					Discharge Over Temp 1				
	1	Temp	76	U1		0	240	2	s
Safety					(DOT1) Time				
1 st Level	1	Temp	77	12	Discharge Over Temp 1	0	2550	550	0.1ºC
Safety					(DOT1) Recovery				
1 st Level	1	Temp	84	12	Discharge Start High Temp	0	1200	600	0.1ºC
Safety					(DHT) Threshold				
1 st Level	1	Temp	86	12	Discharge Start High Temp	0	1200	550	0.1ºC
Safety					(DHT) Recovery				
Charge Ctrl	5	Charge Temp	0	12	JEITA Temp 1 (JT1)	-400	1200	0	0.1ºC
					JEITA Temp 2				
Charge Ctrl	5	Charge Temp	2	12	(JT2)	-400	1200	120	0.1ºC
					JEITA Temp 3				
Charge Ctrl	5	Charge Temp	4	12	(JT3)	-400	1200	450	0.1ºC
					JEITA Temp 4				
Charge Ctrl	5	Charge Temp	6	12		-400	1200	550	0.1ºC
					(JT4)		16-		0.425
Charge Ctrl	5	Charge Temp	8	12	Temp Hysteresis	0	100	10	0.1ºC
General Cfg	3	General Data	0	H1	Operation Cfg B	0x00	0xff	0xF0	_
General Cfg	3	General Data	1	H1	Operation Cfg A High	0x00	Oxff	0xB3	_
General Cfg	3	General Data	2	H1	Operation Cfg A Low	0x00	0xff	0x00	_

Battery Cfg	3	Battony Data	3	12	Design Canacity (DC)	0	32767	1000	mAh
Battery Cig	3	Battery Data	3	12	Design Capacity (DC)	0	32767	1000	
Battery Cfg	3	Battery Data	5	U2	Design Age	0	25600	640	(1/256)% per 100 cycles
Battery Cfg	3	Battery Data	7	12	Termination Voltage	0	4500	3000	mV
Charge Ctrl	3	Charge Termination	11	12	Charging Voltage	0	1000	4100	mV
Charge Ctrl	3	Charge Termination	13	11	Taper Voltage	0	1000	100	mV
Charge Ctrl	3	Charge Termination	14	12	Taper Current	0	1000	100	mA
Charge Ctrl	3	Charge Termination	16	l1	Current Taper Window	0	60	40	s
Charge Ctrl	3	Charge Termination	17	11	Minimum Taper Charge	0	1000	25	0.01mAh
Gauge	3	Current Data	18	12	Initial Maximum Current	-32767	0	-200	mA
Gauge	3	Current Data	20	12	Initial Standby Current	-256	0	-10	mA
Gauge	3	Current Data	22	12	State Of Health Current	-32767	0	-400	mA
Gauge	3	Current Threshold	24	12	Quit Current Threshold	0	1000	10	mA
Gauge	3	Learning Threshold	28	H1	Relaxation Voltage Time Threshold	0x00	0xff	0x10	_
Gauge	3	Learning Threshold	29	U1	SOC Delta Threshold	0	255	30	%
Gauge	3	Learning Threshold	30	U1	SOC Learning Qualification	0	255	15	%
Gauge	3	Learning Threshold	31	U1	SOC Learning High Threshold	0	255	40	%
Gauge	3	Learning Threshold	32	U1	SOC Learning Low Threshold	0	255	20	%
Gauge	3	Capacity Threshold	33	12	SOC1 Set Threshold	0	255	82	4mAh
Gauge	3	Capacity Threshold	35	12	SOC1 Clear Threshold	0	255	96	4mAh
Gauge	3	Capacity Threshold	37	12	SOCF Set Threshold	0	255	41	4mAh
Gauge	3	Capacity Threshold	39	12	SOCF Clear Threshold	0	255	55	4mAh
Gauge	3	Current Sense	41	12	Sense Resistor	0	65535	10000	μΩ

Gauge	3	Current Sense	43	12	Sense Resistor Temp Coefficient	-3840	3840	0	0.117 ppm/ºK
Power	3	Current Threshold	45	11	Sleep Current	0	100	8	mA
Power	3	Current Threshold	46	11	Hibernate Current	0	255	3	mA
Power	3	Voltage Threshold	47	12	Hibernate Voltage	2400	3000	2550	mV
Power	3	Current Threshold	49	12	Charge Current Threshold	0	1000	40	mA
Power	3	Current Threshold	51	11	Discharge Current Threshold	0	255	30	mA
Power	3	Time Threshold	52	U1	Full Sleep Wait Time	0	255	0	s
Power	3	Current Threshold	53	11	Wake Current Threshold	0	255	10	mV
Flash Cfg	3	Voltage Threshold	56	12	Flash Update OK Voltage	2000	20000	3100	mV
Gauge	3	Capacity Data	58	12	Reserve Capacity	0	9000	0	mAh
Gauge	3	Capacity Data	60	12	Empty Detect Slope	0	2000	3	mV/%
Gauge	3	Capacity Data	61	11	Empty Detect Count	0	100	3	count
LED Support	3	LED Cfg	96	11	LED Flash Period	0	255	1	0.1m
LED Support	3	LED Cfg	97	11	LED Blink Period	0	255	2	0.1m
LED Support	3	LED Cfg	98	11	LED Hold Time	0	255	40	0.1m
LED Support	3	LED Cfg	99	11	LED Delay Time	0	255	10	0.1m
Manufacture Data	6	Manufacture Data	0	H2	Pack Lot Code	0x0000	Oxffff	0x0000	
Manufacture Data	6	Manufacture Data	2	H2	PCB Lot Code	0×0000	Oxffff	0x0000	
Manufacture Data	6	Manufacture Data	4	H2	Firmware Revision	0×0000	Oxffff	0x0110	_
Manufacture Data	6	Manufacture Data	6	H2	Hardware Revision	0×0000	0xffff	0x0010	_
Manufacture	6	Manufacture	8	H2	Cell Revision	0x0000	0xffff	0x0000	

		1		1		1			
Data		Data							
Manufacture	6	Manufacture	10	H2	Flack Data Davisian	0~0000	0.444	0.0000	
Data	6	Data	10	ΠZ	Flash Data Revision	0x0000	0xffff	0x0000	—
Manufacture	0	Manufacture	10	110	Davies Trans	00000	0.444	01000	
Data	6	Data	12	H2	Device Type	0x0000	0xffff	0x4230	—
Manufacture		Manufacture							
Data	6	Data	32	H2	Specification Info	0x0000	0xffff	0x0031	—
Manufacture		Manufacture							
Data	6	Data	34	U2	Manufacturer Date	0	65535	0	_
Manufacture		Manufacture							
Data	6	Data	36	H2	Serial Number	0x0000	0xffff	0x0001	_
Manufacture		Manufacture							
Data	6	Data	38	S21	Manufacturer Name	—	—	Hycontek	ASCII
Manufacture		Manufacture							
Data	6	Data	50	S21	Device Name	—	_	HY4222	ASCII
Manufacture		Manufacture							
Data	6	Data	58	S5	Device Chemistry	—	_	LIFP	ASCII
								0123456789AB	
Manufacturer	32	Manufacturer	0 – 31	S32	Block A [0 – 31]	_	_	CDEF0123456	_
Info		Info						789ABCDE	
Manufacturer		Manufacturer						0123456789AB	
Info	32	Info	32 – 63	S32	Block B [0 – 31]	_	_	CDEF012	_
Manufacturer		Manufacturer						0123456789AB	
Info	32	Info	64 – 95	S32	Block C [0 – 31]	_	_	CDEF012	_
Thermistor	30	Data	0 – 93	147	Thermistor Info	_	_	_	_
Lifetime Data	9	Temp Data	0	12	Lifetime Maximum Temp	0	1400	300	0.1ºC
Lifetime Data	9	Temp Data	2	12	Lifetime Minimum Temp	0	1400	200	0.1ºC
					Lifetime Maximum Cell				
Lifetime Data	9	Voltage Data	4	12	Voltage	0	32767	3500	mV
	c.				Lifetime Minimum Cell		007-7		
Lifetime Data	9	Voltage Data	6	12	Voltage	0	32767	3200	mV
	_	0			Lifetime Maximum Charge				
Lifetime Data	9	Current Data	12	12	Current	-32767	32767	1500	mA
1.00	<u>^</u>			10	Lifetime Maximum			0000	
Lifetime Data	9	Current Data	14	12	Discharge Current	-32767	32767	-3000	mA
L		1	1	1					

Gauge 9 Gauge 9	Battery Data			Design Capacity				mAh
	Battery Data	78	U2	Cycle Count	0	65535	0	Cycle
Gauge 9	Battery Data	80	12	Cell Age	0	3200	1000	0.1%
Lifetime Data 9	Current Data	82	12	Lifetime Maximum Average Discharge Current	-32767	32767	-1000	mA
Lifetime Data 9	Temp Data	84	12	Lifetime Average Temp	0	1400	250	0.1ºC
Lifetime Data 9	Temp Data	86	12	Lifetime Over Temp Count	0	65535	0	count
Lifetime Data 9	Temp Data	88	12	Lifetime Over Temp Duration	0	65535	0	s
Lifetime Data 9	Voltage Data	90	12	Lifetime Over Voltage Count	0	65535	0	count
Lifetime Data 9	Voltage Data	92	12	Lifetime Over Voltage Duration	0	65535	0	s
Lifetime Data 9	Temp Data	94	14	Lifetime Temp Sample Count	0	14000000	0	num
Lifetime Data 9	Flash Data	96	12	Lifetime Flash Update Count	0	32767	0	num
Lifetime Data 7	Resolution	0	11	Lifetime Temp Resolution	0	255	10	0.1ºC
Lifetime Data 7	Resolution	1	11	Lifetime Voltage Resolution	0	255	25	mV
Lifetime Data 7	Resolution	2	11	Lifetime Current Resolution	0	255	100	mA
Lifetime Data 7	Resolution	3	11	Lifetime Update Time	0	65535	60	s
Calibration 2	Data	0	13	CC Gain	—	_	_	_
Calibration 2	Data	3	13	Voltage Gain	_	_	—	_
Calibration 2	Data	8	12	Internal Temp Gain		_	_	-
Calibration 2	Data	6	12	External Temp 1 Gain	_		_	
Calibration 2	Data	10	13	CC Offset	_		_	_
Calibration 2	Data	17	14	CC Count	_	_	_	_
Calibration 2	Data	19	U1	CC Time	0	255	180	s
Security 31	Codes	0	H4	Unseal Key 0	0×00000000	Oxffffffff	0x28804288	_
Security 31	Codes	8	H4	Unseal Key 1	0x00000000	0xffffffff	0x28751690	_
1	Codeo	4	H4	Full Access Key 0	0x00000000	0xfffffff	0xfffffff	
Security 31	Codes	-		-				

Note: (1) Encoded battery profile information created by HY4222EV software.

12. Detailed Description

Manufacturer Information Blocks

The HY4222 contains 96 bytes of user programmable Data Flash storage: Manufacturer Info Block A, Manufacturer Info Block B, Manufacturer Info Block C. The method for accessing these memory locations is slightly different, depending on whether the device is in FULL ACCESS, UNSEALED, or SEALED mode.

Access Modes

The HY4222 provides three security modes (FULL ACCESS, UNSEALED, and SEALED) that control Data Flash access permissions according to Table 4. Data Flash locations, specified in Table 5, are accessible to user. Manufacturer information refers to the three reserved 32–byte blocks.

Table 4. Data Flash Access

SECURITY MODE	DATA FLASH ACCESS	MANUFACTURER INFORMATION	KEY ACCESS
FULL ACCESS	R/W	R/W	R/W
UNSEALED ACCESS	R/W	R/W	R
SEALED ACCESS	NONE	R (A); R/W (B, C)	NONE

Only the FULL ACCESS mode allows the HY4222 to write the access–mode transition keys: Full Access Key and Unseal Key.

Battery Parameter Measurement

The HY4222 uses two sets of ADCs to make voltage, temperature and current measurements. Measurement sequence repeats continuously while the HY4222 is in NORMAL mode. All measured results can be accessed via I²C interface.

Voltage Measurement

The battery voltage is measured across the positive and negative terminals of battery pack periodically. The values are updated within 1 second.

Temperature Measurement

The HY4222 uses the integrated temperature sensor and an external thermistor network to measure temperature. The values are updated within 1 second. Characteristics of the external thermistor can be programmed into Data Flash. Depending on the setting of *[TEMPS]* bit in *Operation Cfg A()* register, the device will use the selected temperature measurement for capacity estimate.

Current Measurement

The HY4222 continually measures the current flow into and out of battery by measuring the voltage drop across a low value, approximately 10m Ω , current sense resistor, R_{SNS}. The voltage sense range between the SRP and SRN pins is ±160mV with a resolution of 1mA. The HY4222 detects charge activity when V_{SR} = V_{SRP} – V_{SRN} is positive, and discharge activity when V_{SR} = V_{SRP} – V_{SRN} is negative. The values are updated within 1 second.

Charge and Discharge Coulomb Counting

The HY4222 continuously integrates the current measurements over time, using an internal counter. The fundamental rate of the counter is 0.65nVh.

Power Modes

The HY4222 has four power modes: NORMAL, SLEEP, FULLSLEEP, and HIBERNATE. In NORMAL mode, the HY4222 is fully powered and executes any allowable task. Otherwise, the HY4222 operates in other power saving modes, if the battery voltage is above the Power–On–Reset (POR) threshold voltage.

Shutdown Enable (SE Pin)

The SE pin indicates the HIBERNATE mode. The feature is useful to shutdown any device in a deeply discharged battery to protect the battery. Note that the SE pin can not indicate the HIBERNATE mode and used as the shutdown feature during Power–On–Reset (POR).

The following bits are use to configure and control SE pin:

- One *Operation Cfg A()* bit, also stored in Data Flash, enables or disables the System Shutdown functionality.
 - SE_EN bit: If set, enable the System Shutdown functionality, and the SE pin is active. Default is 1.
- Two *Control*() subcommands enable or disable the System Shutdown functionality.

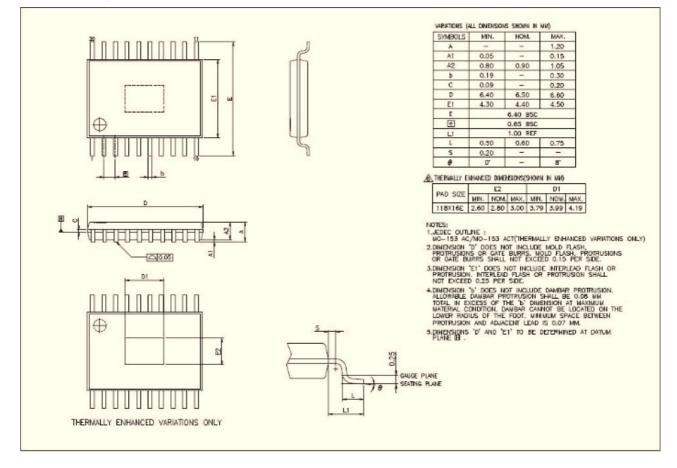
- *SetShutdown()* (0x0013): Enable the System Shutdown functionality, activate the SE pin, and set the SHUTDOWN bit *ControlStatus()*.
- *ClearShutdown()* (0x0014): Disable the System Shutdown functionality, pull the SE pin down, and clear the SHUTDOWN bit in *ControlStatus()*.
- Two *ControlStatus()* bits indicate the status on SE pin.
 - SE (default = 0): If set, the SE pin is active by SE_EN bit in Operation Cfg A().
 - SHUTDOWN (default = 0): If set, the System Shutdown functionality is enabled by the *SetShutdown()* subcommand.
- Two *Operation Cfg A()* bits, also stored in Data Flash, bits control the state of the SE pin.
 - SE_POL (default = 1): If set, active high to indicate the System Shutdown state on the SE pin.

Temperature Good (/TGD Pin)

The pull-down /TGD pin indicates the battery operation temperature is under safe range. The pin is pulled high if a temperature safety protection is detected. The feature is useful to turn off current path to battery if a temperature safety protection is detected. Note that the /TGD pin can not indicate the safety alerts during Power–On–Reset (POR).

Charge Termination Enable (STPCHG Pin)

The asserted STPCHG pin functions as the input to indicate the device a Charge Termination state happening. Either the Charge Termination threshold set in Flash memory satisfied or the STPCHG pin asserted can indicate a fully charged battery.


The following bits are use to configure and control STPCHG pin:

- One *Operation Cfg B()* bit, also stored in Data Flash, enables or disables the System Shutdown functionality.
 - STP_EN bit: If set, enable the Charge Termination functionality, and the STPCHG pin is active. Default is 1.
- One *Operation Cfg B()* bits, also stored in Data Flash, bits control the state of the STPCHG pin.
 - STP_POL (default = 1): If set, active high to indicate the device the Charge Termination state happening through the STPCHG pin.

13. Operation Example

14. Package Information

15. Revision Record

Major differences are stated thereinafter:

Version	Page	Revision Summary
1.0	29	New
1.1	29	Updated from 1.0
1.2	31	Updated from 1.1
1.3	31	Updated from 1.2
1.4	31	Updated from 1.3
1.5	31	Updated from 1.4
1.6	30	Updated from 1.5