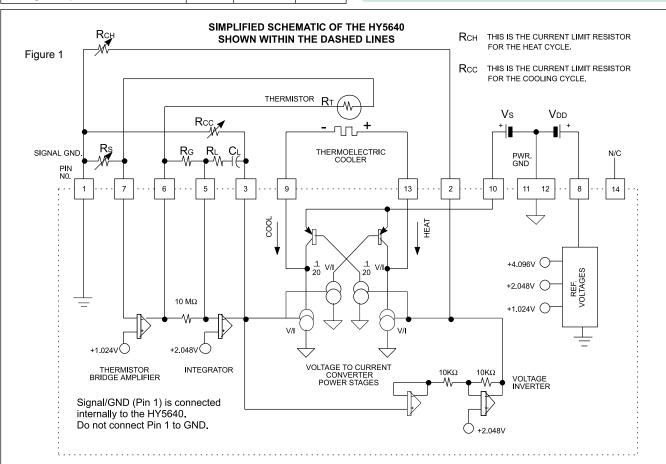


Subminiature Controller for Thermoelectric Coolers


The HY5640 is a subminiature temperature controller for thermoelectric coolers (TEC). This device is intended for "heat or cool" fixed temperature applications where front panel controls and digital readouts are not required. The HY5640 uses a thermistor bridge to precisely measure and regulate the temperature of a device affixed to a TEC. With proper heat sinking, the power stage of this device will deliver up to +/- 2 Amperes of current to a TEC. This controller was designed for single power suppply operation down to +5V. In addition, the device can be operated with dual supplies where Vs can be as low as +3V and Vpp as low as +5V.

Maximum ratings:					
Rating	Symbol	Value	Unit		
Supply Voltage 1 (Voltage on Pin 8)	VDD	+20	Volts DC		
Supply Voltage 2 (Voltage on Pin 10)	Vs	+12	Volts DC		
Current Sink (Heat and Cool Cycle)	ls	2.5	Amperes		
Maximum Power Dissipation	Рмах	6	Watts		
Operating Temperature (Case)	TMAX/MIN	100/–20	∞		
Storage Temperature	Тѕтс	-65 to +150	℃		

Features:

- ♦ Proportional/Integral (PI) control
- ♦ Small size
- ◆ Drive current to +/-2 amps
- ♦ Operation to 12 volts
- ◆ Control above/below ambient
- ◆ Temperature stability of 0.01°C
- ♦ Single supply operation
- → Thru-hole or surface-mount packaging option

Description of the HY5640 Pin Outs

• Temperature Set Resistor Rs (Pin 1 to Pin 7)

The temperature set resistor for the HY5640 controls the temperature at which the TEC will operate. When the circuit has stabilized, the resistance of the thermistor will be equal to that of the set resistor Rs. For example, if a Dale $10 k\Omega$ thermistor is used as the temperature sensing device, a set resistor of approximately $56 K\Omega$ will set an operating temperature of $-10\,^{\circ}\text{C}$. A graph of Rs vs. set temperature is shown in figure 4 when using a Dale 1M1002 thermistor.

• Thermistor, RT (Pin 6 to Pin 7)

The thermistor should be located in close proximity to the device being temperature controlled by the TEC. It should be in good thermal contact to avoid stability problems.

The HY5640 has been designed for a negative temperature coefficient thermistor. A thermistor with a positive temperature coefficient can also be used if the position of the temperature set resistor and temperature sensing resistor are changed. The same result can also be achieved by reversing the leads of the TEC in which case Rcc and Rch must be interchanged.

• Gain Set Resistor, Rg (Pin 5 to Pin 6)

The ratio of the gain set resistor RG to RL controls the response time of the servo loop. A ratio that is too large can cause slow response and a ratio that is too small can cause loop instability. In most applications RG may not be needed since a $10 M\Omega$ resistor is internal to the HY5640 and generally provides enough gain for good operation.

• Loop Stability Network, RL and CL (Pin 3 to Pin 5)

The Rc time constant of these two components is a first approximation of the thermal time constant of the servo loop. The thermal time constant of the combination of the device being cooled, the thermistor, and the TEC can be approximated by applying constant power to the TEC and measuring the length of time it takes to reach 66% of its final temperature.

For example, if the thermal time constant was observed to be 5 seconds, then a $1\mu F$ capacitor and a $4.7 M\Omega$ could be chosen as the loop stabilizing components. Typical values for loop compensation components are shown in Table 1.

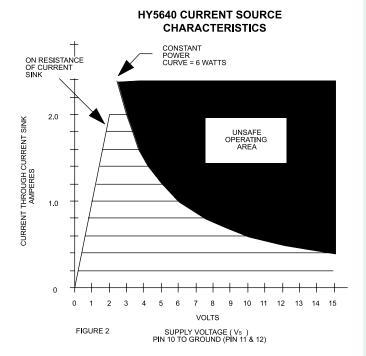
Note: The values of R_G, R_L, and C_L are generally selected by experiment. C_L should be a low leakage nonpolarized capacitor.

• Current Limit Resistors, Rcc & Rcн (Pin 1 to Pin 3, and Pin 1 to Pin 2)

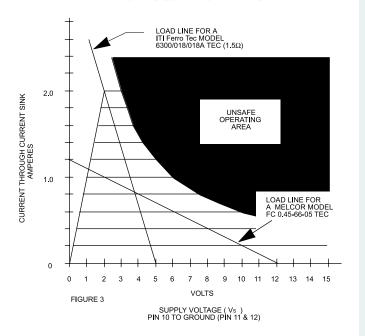
These resistors limit the maximum current that the HY5640 can supply to the TEC when in the cooling cycle and in the heating cycle. Rcc limits the maximum current for the cooling cycle and Rch limits the maximum current in the heating cycle. This feature prevents damage to the TEC during turn on. It is often desirable to limit the maximum value of heating current as much as 30% less than the maximum cooling current. This is because TECs are much more efficient heating than cooling. Figure 5 shows the approximate values for Rcc and Rch required to program a desired turn on current. For example, an Rcc value of $17 \mathrm{K}\Omega$ will limit the maximum cooling current to 1.5 Amperes and an Rch value of $13.5 \mathrm{K}\Omega$ will limit the maximum heating current to 0.5 Amperes.

• VDD (Pin 8 to Pins 11 & 12) +5 < VDD < +20 Volts

This input supplies the voltage to the internal circuitry of the HY5640. The maximum current drain at this terminal is 5mA.


• Vs (Pin 10 to Pins 11 & 12) +3 < Vs < +12 Volts

This input supplies the voltage to the HY5640 power drive circuitry. The maximum current drain at this terminal should not exceed 2 Amperes. Note that V_{DD} and V_{S} can be driven with the same power supply in the range of +5V < V_{DD} = V_{S} <+12V.


Ideally Vs is no more than 1.5V higher than the VMAX of the selected TEC. Setting Vs higher than this can cause excessive heating of the controller.

• Thermoelectric Cooler, TEC (Pin 9 to Pin 13)

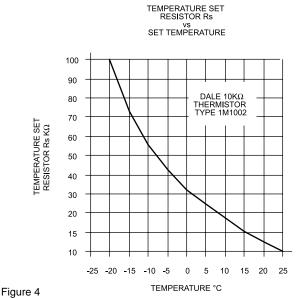
The cooling lead of the TEC should be connected to Pin 9 and the heating lead should be connected to Pin 13 of the HY5640. If the temperature of the thermistor is greater than the set temperature at turn on, maximum cooling current will flow into Pin 9 and out of Pin 13. Conversely, maximum heating current will flow into Pin 13 and out of Pin 9 if the temperature of the thermistor is less than the set temperature at turn on. The maximum turn on current is limited by Rcc and Rch. Once the TEC reaches its set temperature, the current through the TEC will decrease to exactly the value required to maintain the correct set temperature.

DETERMINATION OF THE HY5640 OPERATING POINTS USING LOAD LINES

Figure 2 illustrates the characteristics of the HY5640 power drive section. It also illustrates the unsafe operating area where the power dissipated in the device exceeds the maximum 6 Watt rating. This curve applies for both heating and cooling operation.

Note that the resistance of the power drive section is approximately one ohm when the HY5640 is fully turned on.

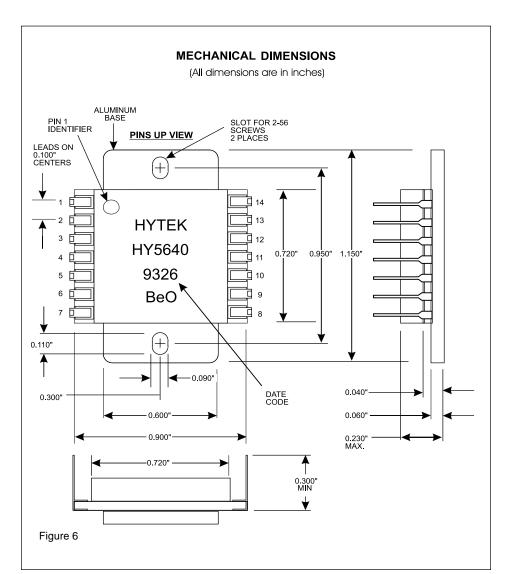
Figure 3 illustrates the locus of operating current and voltage for two different TECs.


Example 1:

A supply voltage of 5 Volts was chosen for use with the ITI Ferro Tek Model 6300/018/018A TEC. This device is rated for a maximum current of 1.8 Amperes at a maximum allowable voltage of 2.7 Volts. This is a load resistance of approximately 1.5 ohms. The intersection of the 1.5 ohm load line and the HY5640 current source characteristics defines the locus of operation voltage and current for both the HY5640 and the TEC. In this application the current was limited to 1.8 Amperes when cooling and to 0.6 Amperes when heating by proper selection of RCC and RCH.

Example 2:

A supply voltage of 12 Volts was chosen for the Melcor FC 0.45-66-05 TEC. This device has a maximum rated voltage of 7.98 Volts at a current of 0.8 Amperes. A load line for this device is also shown on the plot. Once again maximum turn on current is set by proper selection of RCC and RCH.


Note that the power dissipated in the HY5640 never exceeds the 6 Watt maximum power dissipation in both of these examples.

MAXIMUM SINK CURRENT 20 19 18 18 17 17 18 11 11 10

APPROXIMATE VALUE OF CURRENT LIMIT SET RESISTOR RCC, RCH

TEMPERATURE °C Figure 5 MAXIMUM SINK CURRENT (Is)
AMPERES

TYPICAL RESISTOR AND CAPACITOR VALUES FOR VARIOUS THERMAL TIME CONSTANTS

 $0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2.0 \quad 2.2$

THERMAL TIME CONSTANT			
T (SECONDS)	R_{L}	cL	Rg
1 2 3 5 10 15 20	10 ΜΩ 20 ΜΩ 3 ΜΩ 4.7 ΜΩ 10 ΜΩ 15 ΜΩ 20 ΜΩ	0.1 µF 0.1 µF 1.0 µF 1.0 µF 1.0 µF 1.0 µF	100ΚΩ to 10ΜΩ

TABLE 1

NOTES:

- Make certain the heat sink to which the HY5640 is mounted is flat and clean, otherwise the ceramic substrate may break.
- Use a thermal compound such as Dow Corning 340 between the HY5640 and the heat sink for good thermal conduction.
- Note that the Pin 1 identifier is shown in a bottom view. From a top view, Pin numbers ascend in clockwise fashion.

Specifications subject to change without notice.