

Hi5001Q 高精度无频闪调光降压、升压、升降压 LED 恒流驱动器

1

1. 特性

- 支持降压、升压、升降压拓扑
- 支持 100: 1 的 PWM 转模拟调光比
- 支持 10000: 1 双路混合调光
- 支持 10: 1 模拟调光
- 工作电压范围 6.5-75V
- 固定工作频率 130KHz
- 支持软启动
- 支持欠压保护
- 支持输出过压保护
- 转换效率>95%
- 负载调整率<±0.5%
- 低待机功耗
- 真正无频闪调光
- 支持最大输出电流设置
- 支持调光频率超过 32K
- 支持 PWM 转模拟/模拟调光/PWM 调光
- 内置 80V LDO 供电
- 恒流精度≤±3%
- 支持过温降电流
- 内驱 200mΩ /100V 的 MOS
- 封装: QFN16_4X4

2. 应用领域

- 0~10V 调光
- Dali 调光
- 智能照明
- 户外照明
- 医疗照明

3. 说明

Hi5001Q 是一款外围电路简洁的宽调光比无频闪调光 LED 恒流驱动器,支持降压、升压以及升降压拓扑的 应用,适用于 6.5-75V 输入电压范围的 LED 恒流照明 领域,调光深度深,低辉负载调整率和一致性好。

Hi5001Q 采用我司专利算法,可以实现高精度的恒流效果,输出电流恒流精度≤±3%,负载调整率<±0.5%,可以轻松满足宽输入输出电压的应用需求,全程调光无频闪。

芯片支持 PWM 转模拟调光,支持 PWM 调光,当需要更深调光比,PWM 转模拟调光和 PWM 调光配合使用,可以达到 10000:1 调光比;此外芯片 LD 脚支持0.2V 到 2.5V 的模拟调光,LD 端口接电容到地,可以设置软启动时间。

DIM、PWM、LD、UVLO 管脚内置上拉, VFB 管脚内置下拉, 不使用时可以悬空。

芯片的输出电流通过 ISENSEN 对 ISENSEP 端口的检流电阻来设定,支持降压共阳接法。

支持过温降电流、过流保护、输入欠压保护和输出过 压保护。

4. 芯片选型

型号	输出电流范围	驱动方式	封装形式	最高耐压	编带数量(颗/盘)
Hi5001Q	≤1.5A	内置 MOS	QFN16_4X4	100V	3000

5. 管脚配置

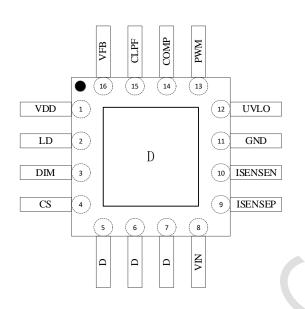


图 5.1 Hi5001Q 管脚

编号	答 脚夕 	功能描述
	管脚名称	
1	VDD	内部电源
2	LD	模拟调光
3	DIM	PWM 转模拟调光
4	CS	逐周期限流
5,6,7,EP	D	功率 MOS 的 DRAIN 端输出
8	VIN	芯片高压供电输入
9	ISENSEP	电流检测正极
10	ISENSEN	电流检测负极
11	GND	芯片地
12	UVLO	欠压保护设置
13	PWM	PWM 调光
14	COMP	环路补偿
15	CLPF	基准滤波电容
16	VFB	过压保护设置

6. 极限工作参数

符号	说明	范围	单位
VIN	外部供电输入	-0.3~80	V
ISENSEP	输出电流检测正极	-0.3~80	V
ISENSEN	输出电流检测负极	-0.3~80	V
CS	CS 管脚耐压	-0.3~60	v
D	功率 MOS 的 DRAIN 端输出	100	v
其余管脚	VDD、UVLO、VFB、LD、COMP、CLPF、DIM、PWM	-0.3~6	V
TSTG	存储温度	-40~150	°C
TA	工作温度	-40~130	°C
ESD	HBM 人体放电模式	>2	KV

7. 应用电路

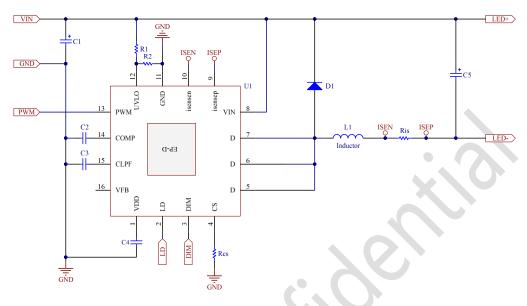


图 7.1 典型应用电路——降压共阳接法

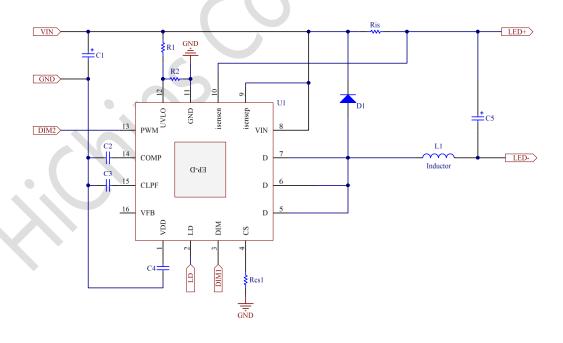


图 7.2 典型应用电路——降压不共阳接法

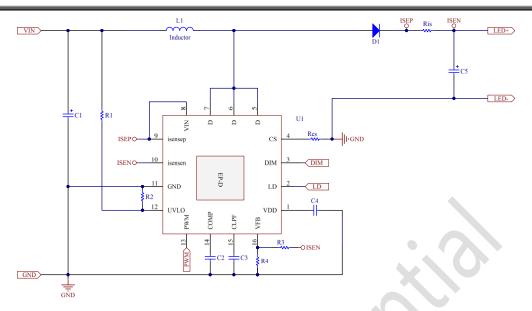


图 7.3 典型应用电路——升压接法

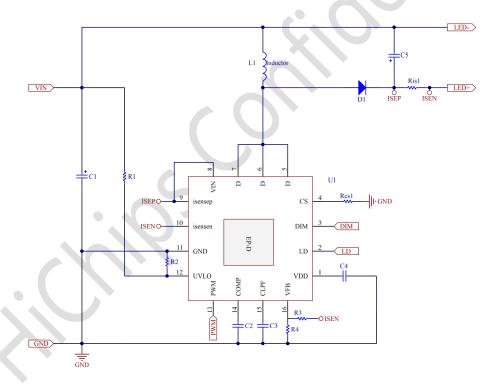


图 7.4 典型应用电路——升降压接法

8. 电气特性

(除非特殊说明,下列条件均为 T_A =25℃)

₩ □	A HH	State to the	范围			36 D.
符号	说明	测试条件	最小	典型	最大	单位
VIN 工作部分						
I_{DD}	工作电流	V _{IN} =6.5V	-	1	-	mA
I _{STANDBY}	休眠待机电流		-	-	80	uA
V _{IN}	V _{IN} 电压范围		6.5	-	75	V
$V_{ m DD}$	V _{DD} 电压		-	5.8V	-	v
U_{vLo}	欠压保护范围		3		6	V
恒流工作部分						
V_{CS}	逐周期限流电压	$V_{IN}=6.5V$		7->	340	mV
V_{IN} - V_{SENSE}	电流检测基准电压		-	251	=	mV
震荡器		X		•		
D_{MAX}	最大占空比		-	90	-	%
Fosc			-	130	-	KHz
调光端口						
$V_{\mathrm{DIM_H}}$	PWM 转模拟调光阈值上限	PWM rising	1.2	-	-	V
$V_{\mathrm{DIM_L}}$	PWM 转模拟调光阈值下限	PWM falling	-	-	0.8	V
V_{PWM_H}	PWM 调光检测阈值上限	PWM rising	1.2	-	-	V
V_{PWM_L}	PWM 调光检测阈值下限	PWM falling	-	-	0.8	V
V	模拟调光低到高调光电压范围		0.22	-	2.5	V
$V_{ m LD}$	模拟调光高到低调光电压范围		2.5	-	0.1	V
GATE 驱动						
I_{H}	驱动上拉电流		-	400	-	mA
II	驱动下拉电流		-	600	-	mA
可靠性	,					
T_{OVT}	过温保护	过温降电流的方式	-	135	-	°C
V_{OVP}	输出过压保护		1.1		1.2	V
$V_{\rm UVLO}$	输入欠压保护		1.1		1.2	V

备注:

- 1. 对于未给定上下限值的参数,本规范不保证其精度,但其典型值合理反映了器件性能。
- 2. 规格书的最小、最大参数范围由测试保证,典型值由设计、测试或统计分析保证。

9. 应用说明

Hi5001Q 是一款外围电路简洁的宽调光比无频闪调光 LED 恒流驱动芯片,支持降压、升压以及升降压拓扑的应用,适用于 6.5-75V 输入电压范围的 LED 恒流照明领域。芯片采用本司专利的恒流控制算法,输出电流恒流精度≤±3%,负载调整率<±0.5%,可以做到 100: 1 的无频闪调光,支持 10000: 1 双路混合调光,支持 10: 1 模拟调光;调光深度深,低辉负载调整率和一致性好。

9.1. 输出电流

输出电流通过 ISENSEN 对 ISENSEP 端口的检流电阻来设定,支持降压共阳接法。 通过对检流电阻采样并且和内部的 0..251V 进行比较,从而实现系统的恒流控制,输出电流公式如下:

$$I_{out} = \frac{0.251V}{Ris} (A)$$

其中 Iout 为输出电流, Ris 为系统的检流电阻。

9.2. 芯片启动

系统上电后通过 VIN 管脚对芯片供电,对连接于电源引脚的 VDD 电容充电,当电源电压高于 6.5V 后,芯片电路开始工作,直到 VDD 端口电压稳定达到钳位电压 5.8V 左右。

9.3. 调光设置

DIM 端口支持 PWM 转模拟调光和低功耗待机使能,当芯片检测到 DIM 端口低电平时间超过 80ms,芯片进入低待机模式,此时芯片工作电流<80uA,当 DIM 端口电平为高,芯片被唤醒,退出低待机模式,继续工作,PWM 转模拟调光,调光全程无频闪。

PWM 端口支持超小占空比的 PWM 调光,可以响应<60ns 的 PWM 脉宽波形,当 PWM 信号为低电平,输出关闭,当 PWM 信号为高电平,输出开启;悬空的时候默认该端口为高电平输入。

当需要更深调光比的时候,芯片还支持 PWM 转模拟调光和 PWM 调光双路混合使用,可以达到 10000: 1 调光比。

LD 端口支持模拟调光,调光范围 0.2~2.5V, 支持 10:1 模拟调光,可应用于最大电流设置。当 LD 高于 200mV 芯片开始工作, 2.5V 达到最大输出,下降到 100mV 以下,芯片关闭。当 LD 脚输入模拟调光信号时输出电流按线性变化。

LD 端口接电容到地,可以设置软启动时间。

DIM、PWM、LD 管脚内置上拉,不使用时可以悬空。

9.4. 输入欠压保护设置

通过电阻 R1 和 R2 可以设置输入的欠压保护电压,输入保护电压要比正常工作电压低 20%。UVLO 端口为欠压保护检测端口,当 UVLO 电压低于 1.1V 时芯片的 GATE 开关输出关闭,当 UVLO 的电压 高于 1.2V 时芯片的 GATE 开关输出重新开始,以确保输入电压不会低于设定电压,迟滞为 100mV。

UVLO 脚位需外接一个下拉电阻 R2,应用中对 UVLO 端口和 VIN 直接接入一个电阻 R1 即可实现过压保护:

$$V_{\rm L} = \frac{1.2 \times \left(R1 + R2\right)}{R2} (V)$$

9.5. 输出过压保护设置

通过电阻 R3 和 R4 可以设置输出的过压保护电压,输出保护电压要比正常工作电压高 20%。VFB 端口为过压保护检测端口,当 VFB 电压高于 1.2V 时芯片的 GATE 开关输出关闭,当 VFB 的电压低于 1.1V 时芯片的 GATE 开关输出重新开始,以确保输出电压不会超过设定电压,迟滞为 100mV。

VFB 脚位需外接一个下拉电阻 R4,应用中对 VFB 端口和 LED+直接接入一个电阻 R3 即可实现过压保护:

$$V_{\rm p} = 1.2 \times \left(1 + \frac{R3}{R4}\right) (V)$$

9.6. 过流保护设置

芯片通过 CS 电阻在 MOSFET 打开时检测峰值电流。峰值电流检测电阻 Rcs 工作在 NMOS 管与 GND 之间,当 NMOS 管打开,电感电流流经电阻 Rcs 产生电压 Vcs,CS 管脚检测 Vcs 电压。

当触发过电流保护,芯片 GATE 驱动管脚的占空比会缩小,限制电感电流,避免 NMOS 管 Q1 损伤。通过下面公式可计算不同条件下 Rcs 阻值:

$$I_{PK} = \frac{0.34V}{Rcs} (A)$$

其中 Ipk 为峰值电流, Rcs 为系统的峰值电流检测电阻。

9.7. 电感选择

电感的选择影响功率效率、稳态运行、瞬态行为和回路的稳定性。

电感值决定了电感的纹波电流,电感越大电流纹波越小;电流纹波太大会导致电感温度升高以及饱和 还会导致效率降低。选用电感需要注意其额定饱和电流以及是否适合高频调光。

建议电流纹波率选取 0.3~0.5 之间,选取电感饱和电流超过正常工作时电感电流峰值 30%的电感,为 了更好过 EMI, 电感类型建议选取铁硅铝材质的封闭式磁环电感。

9.7.1. 降压型应用

电感的选择可通过计算公式算出:

$$L = \frac{(V_{IN} - V_{OUT}) \times V_{OUT} \times 10^{6}}{r \times I_{OUT} \times f \times V_{IN}} (uH)$$

 V_{IN} : 输入电压, V_{OUT} : 输出电压, I_{OUT} : 输出电流,r: 电流纹波率,f: 工作频率

举例: V_{IN}=48V、V_{OUT}=36V、I_{OUT}=1A、f=130kHz、r=0.35,对于 buck 拓扑,应该在最大输入电压 V_{INMAN} (即在 D_{MIN} 时)处设计电感,代入公式计算得电感 L \approx 197.8uH,选用 200uH。

电感平均电流计算公式:

$$I_L = I_{OUT}(A)$$

电感峰峰值电流计算公式:

$$I_{PP} = \Delta I_{L} = I_{L} \times r(A)$$

电感峰值电流计算公式:

$$I_{L} = I_{OUT}(A)$$

$$I_{PP} = \Delta I_{L} = I_{L} \times r(A)$$

$$I_{PK} = I_{L} \times (1 + \frac{r}{2})(A)$$

9.7.2. 升压型应用

电感的选择可通过计算公式算出:

$$L = \frac{{V_{IN}}^2 \times (V_{OUT} - V_{IN}) \times 10^6}{{V_{OUT}}^2 \times r \times f \times I_{OUT}} (uH)$$

V_{IN}: 输入电压, V_{OUT}: 输出电压, I_{OUT}: 输出电流, r: 电流纹波率, f: 工作频率

举例: V_{IN}=12V、V_{OUT}=36V、I_{OUT}=1A、f=130kHz、r=0.35,对于 boost 拓扑,应该在最小输入电压 V_{INMIN} (即在 D_{MAX} 时)处设计电感,代入公式计算得电感 Lpprox58.6uH,选用 68uH。

电感平均电流(输入电流)计算公式:

$$I_{L} = \frac{I_{OUT}}{1 - D} \times \eta = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta} (A)$$

电感峰峰值(电流纹波)电流计算公式:

$$I_{PP} = \Delta I_{L} = I_{L} \times r(A)$$

电感峰值电流计算公式:

$$I_{PK} = I_L \times (1 + \frac{r}{2})(A)$$

 V_{IN} : 输入电压, V_{OUT} : 输出电压, I_{OUT} : 输出电流,r: 电流纹波率,f: 工作频率, η : 转换效率

9.7.3. 升降压型应用

电感的选择可通过计算公式算出:

$$L = \frac{{V_{IN}}^{2} \times V_{OUT} \times 10^{6}}{(V_{IN} + V_{OUT})^{2} \times I_{OUT} \times f \times r} (uH)$$

VIN: 输入电压, VOUT: 输出电压, IOUT: 输出电流, r: 电流纹波率, f: 工作频率

举例: $V_{IN}=12\sim36V$ 、 $V_{OUT}=24V$ 、 $I_{OUT}=1A$ 、f=130kHz、r=0.35,对于 buck-boost 拓扑,应该在最小输入电压 V_{INMIN} (即在 D_{MAX} 时) 处设计电感,代入公式计算得电感 $L\approx58.6uH$,选用 68uH。

电感平均电流计算公式:

$$I_{L} = \frac{I_{OUT}}{1 - D} \times \eta = \frac{\left(V_{IN} + V_{OUT}\right) \times I_{OUT}}{V_{IN} \times \eta} (A)$$

电感峰峰值电流计算公式:

$$I_{PP} = \Delta I_{L} = I_{L} \times r(A)$$

电感峰值电流计算公式:

$$I_{PK} = I_L \times (1 + \frac{r}{2})(A)$$

9.8. 绿流二极管选择

注意续流二极管的额定平均电流应大于流过二极管的平均电流。二极管平均电流计算公式如下:

$$I_D = I_{OUT} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) (A)$$
 (buck 拓扑)

$$I_D = I_{OUT}(A)$$
 (boost π buck-boost π !)

注意,二极管应具有承受反向峰值电压的能力。为了提高效率,选择肖特基二极管。

对 buck 拓扑,建议选择反向额定电压大于 V_{INMAX} 电压 1.5 倍、额定平均电流 \geq 3 I_{LED} 的肖特基二极管;对 boost 拓扑,建议选择反向额定电压大于 V_{OUT} 电压 1.5 倍、额定平均电流 \geq 3 I_{LED} 的肖特基二极管;

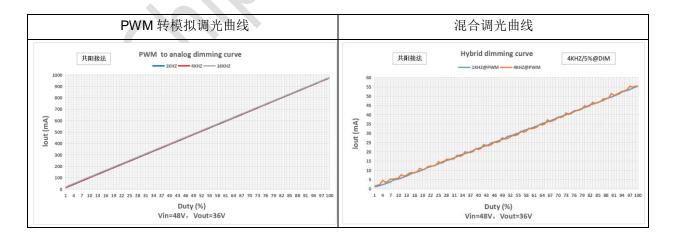
对 buck-boost 拓扑,建议选择反向额定电压大于($V_{INMAX}+V_{OUT}$)电压 1.5 倍、额定平均电流 \geq 3 I_{LE} 的 肖特基二极管。

9.9. 电容选择

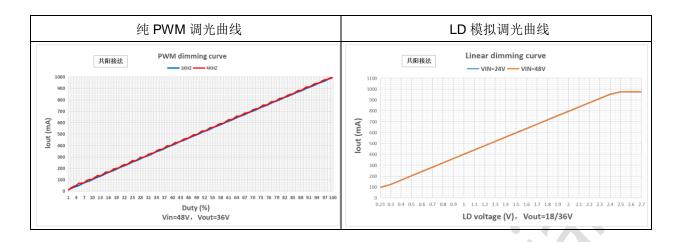
贴片电容建议选用 X5R、X7R 材质。

输入与输出稳压电容 C1、C5 按实际要求的输出纹波电流选择。

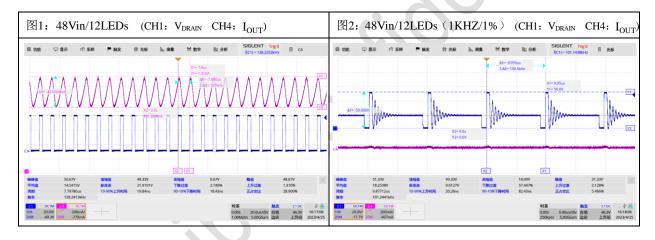
VDD 管脚需要并联一个 1.0uF 以上的旁路电容, 电容的大小选择和驱动 MOS 的大小有关系, MOS 越大, 需要的旁路电容也越大。PCB 布板时, VDD 电容需要紧挨着端口布局。

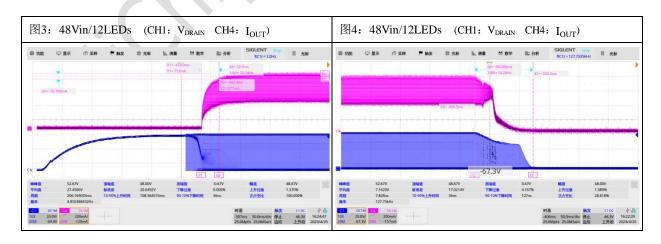

9.10. 过温处理

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度达到 135℃以上时,过温调节开始起作用;随温度升高,输入电流逐渐减小,从而限制输入功率,增强系统可靠性。

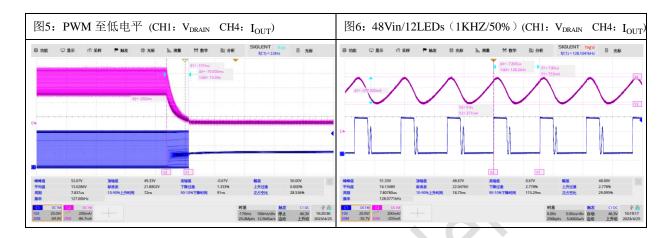

10. 典型特性曲线

以下曲线是在降压共阳型应用条件下测试:

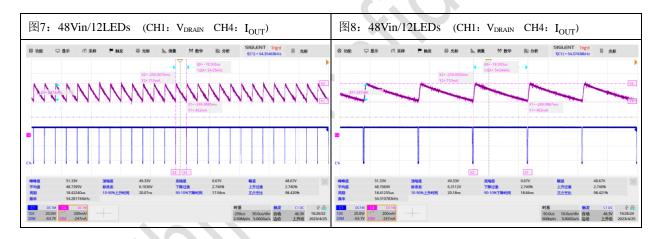

Vin=48V; Vout=12 串 4 并白灯; Iout=974/1050mA; Ris=0.25/0.24R; Rcs=0.1R; Cld、Clpf=100nF/50V; 输入输出高频噪声滤波电容: 100nF/100V; 补偿: 20K+10nF 并 100pF; NMOS=KS1222DB; f=128kHz; L=47uH(127)/68uH(铁硅铝); 输入、输出电解=47uF/100V; 续流二极管=SS510;



10.1. 稳态波形

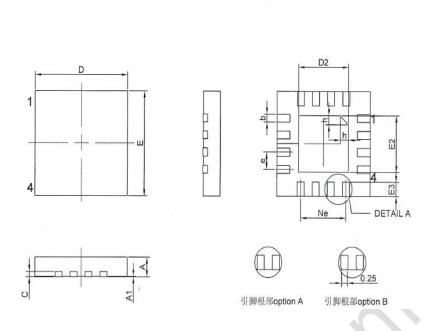


10.2. 开关机波形



10.3. PWM 调光波形

10.4. 输出短路波形



11. PCB 设计注意事项

- 一个好的 PCB 设计能够最大程度地提高系统的稳定性、终端产品的量产良率。为了提高系统 PCB 的设计水准,请尽可能遵循以下布局布线规则:
- 1. 芯片 D 端或 MOSFET Drain 端与续流二极管、功率电感的布线覆铜尽可能长度短、线宽大;
- 2. MOSFET S 端与 CS 峰值电流检测电阻的布线覆铜, CS 峰值电流检测电阻靠近 CS 与 GND 管脚;
- 3. 芯片 ISENSE 和 VIN 管脚为敏感节点,请远离功率电感、NMOS 管、续流二极管等开关切换节点, 避免受到干扰;
- 4. 检流电阻 Ris 要靠近芯片 ISENSE 和 VIN 管脚布局,走线应尽可能长度短、线宽大;
- 5. 输入电容与 CS 峰值电流检测电阻的地布线覆铜,尽可能长度短、线宽大,上下层地多打过孔连接;
- 6. 芯片的 VDD 电容、LPF 电容靠近芯片管脚与 GND 管脚布局,且 VDD 和 LPF 电容的 GND 端、芯片 GND 端与 CS 峰值电流检测电阻 GND 端保持单点连接;
- 7. 系统的输入电容尽可能靠近芯片布局,保证输入电容达到最好的滤波效果;
- 8. UVLO 脚位外接的上拉电阻 R1,应接在输入电压处,而不是 VIN 管脚,以实现输入欠压保护。

12. 封装信息

SYMBOL	MILLIMETER			
STIVIBUL	MIN	NOM	MAX	
Α	0.70	0.75	0.80	
A1	-	0.02	0.05	
* b	0.275	0.3	0.325	
С	0.203BSC			
* D	3.90	4.00	4.10	
D2	2.125	2.15	2.175	
е	0.65BSC			
Ne	1.95BSC			
* E	3.90	4.00	4.10	
E2	2.05	2.15	2.25	
 ¥ E3	0.45	0.55	0.65	
h	0.3	0.35	0.4	

注:1. 标注"*"尺寸为测量尺寸。