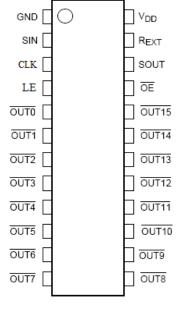


Description

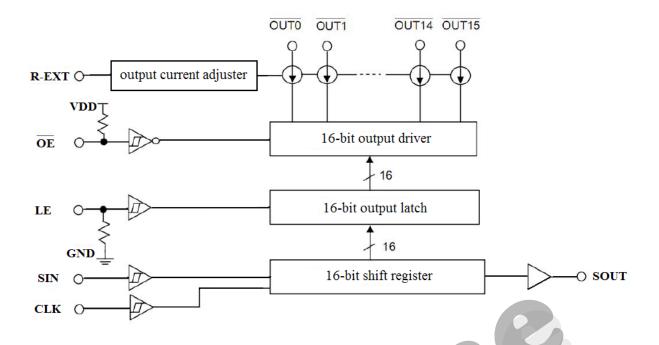
The ICN2024 is a LED module and display driver IC with 16-constant current output driving capability. The 16-output current can be adjusted by using different external resistors, which gives users flexibility in controlling the light intensity of LEDs.

The ICN2024 contains 16-bit shift registers and latches which convert serial input data into parallel output format, therefore, the ON or OFF of LED can be controlled by an external enable signal $\overline{\it oE}$. And ICN2024 exploits current presision controlling technology, which makes error between ICs less than $\pm 3\%$, and error between channels less than $\pm 1.5\%$. At ICN2024 output stage, 16-regulated output ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of forward voltage(V_F) variations. The high clock frequency, 30MHz, also satisfies the system requirements of high volume data transmission.

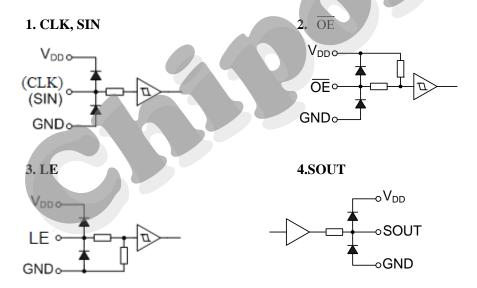

Features

- ♦ 16 constant-current output channels
- Output current setting range:
 3~45mA×16@V_{DD}=5V constant current output
 3~30mA×16@V_{DD}=3.3V constant current output
- ♦ Current accuracy
 Between channel:<± 1.5%
 Between ICs:<± 3%
- \Rightarrow Fast response of output current, \overline{OE} (min):150ns@V_{DD}=5V
- ♦ Output current adjusted through an external resistor
- ♦ I/O:Schmitt trigger input
- \Rightarrow Data transfer frequency: $f_{MAX} = 30MHz(Max)$
- \Rightarrow Power supply voltage: $V_{DD}=3.3\sim5V$

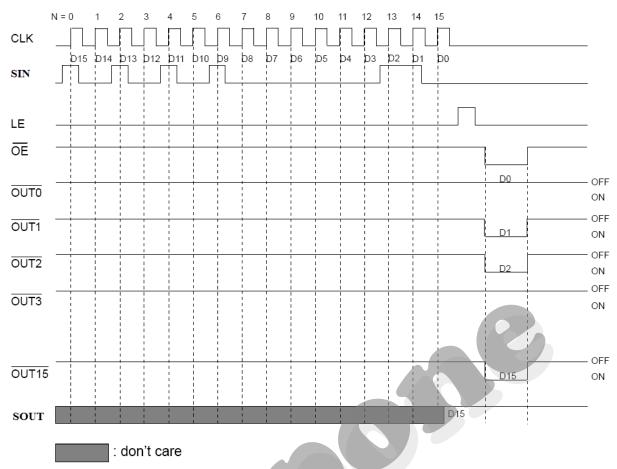
Pin Description


Pin Name	Function				
GND	Ground terminal				
SIN	Serial-data input to the shift register				
CLK	Clock input terminal for data shift on rising edge				
	Data input terminal, LE high level, serial data is				
LE	transferred to the output latch; LE low level, the data is				
	latched				
$\overline{OUT0} \sim \overline{OUT15}$	Constant current output terminal				
	Output enable terminal, \overline{OE} high level, all output drivers				
ŌE	are enabled; \overline{OE} low level, all output drivers are turned				
	OFF				
SOUT	Serial-data output to the following SIN of next driver IC				
R-EXT	Connect an external resistor for setting up output current				
K-EAI	for all output channels				
VDD	3.3V/5Vsupply voltage terminal				

- 1 -



Block Diagram



I/O equivalent Circuits

Timing Diagram

Note 1: Keep the LE pin is set to L to enable the latch circuit to hold data. When the LE pin is set to H, the latch circuit does not hold data. The data will instead pass onto output. When the $\overline{_{OE}}$ pin is set to L, the $\overline{_{OUT0}}$ to $\overline{_{OUT15}}$ output pins will go ON and OFF in response to the data. In addition, when the $\overline{_{OE}}$ pin is set to H all the output pins will be forced OFF regardless of the data.

Truth Table

CLK	LE	ŌĒ	SIN	OUT0 ··· OUT7 ··· OUT15	SOUT
	Н	L	D_n	$D_n D_{n\text{-}7} D_{n\text{-}15}$	D _{n-15}
	L	L	D_{n+1}	NO change	D _{n-14}
	Н	L	D_{n+2}	$D_{n+2} \ldots D_{n5} \ldots D_{n13}$	D _{n-13}
Ŧ	×	L	D_{n+3}	$D_{n+2} \ldots D_{n5} \ldots D_{n13}$	D _{n-13}
Ŧ	×	Н	D_{n+3}	OFF	D _{n-13}

Maximum Ratings $(T_a = 25^{\circ}C)$

Characteristic	es	Symbol	Rating	Unit
Supply Voltag	e	$V_{ m DD}$	0~7.0	V
Output Curren	t	I_{O}	45	mA
Input Voltage		V _{IN}	-0.4~V _{DD} +0.4	V
Clock Frequency		F_{CLK}	30	MHz
GND Terminal Cu	GND Terminal Current		+1000	mA
Power Dissipation	CSA-type	D	1.9	W
(On PCB, 25℃)	CSB-type	P_{D}	1.4	vv
Thermal Resistance	CSA-type	D	66.66	°C/W
Thermal Resistance	CSB-type	$R_{\text{th(j-a)}}$	88.39	C/W
Operating Temper	Operating Temperature		-40 ∼ 85	${\mathbb C}$
Storage Temperature		T_{stg}	- 55 ∼ 150	${\mathbb C}$

$\overline{DC\ Items}$ (Unless otherwise specified, T_a =-40 $^{\circ}\!\text{C}\!\sim\!85\,^{\circ}\!\text{C})$

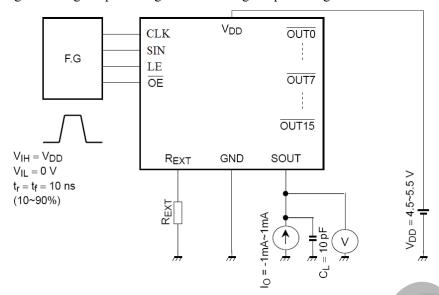
Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Voltage	V_{DD}	-	4.5	5	5.5	V
Output Voltage when ON	V _{O(ON)}	OUTn	0.7	-	4	V
High leve logic input voltage	V_{IH}	-	$0.7*V_{DD}$	-	$V_{ m DD}$	V
High leve logic input voltage	$V_{\rm IL}$		GND	-	$0.3*V_{DD}$	V
SOUT high level output Current	I _{OH}	V _{DD} =5V	-	-	-1	mA
SOUT low level output Current	IOL	$V_{DD}=5V$	-	-	1	mA
Constant current output	I_0	OUTn	3	-	45	mA

Characteristics	Symbol	Test circuit	Test Conditions	Min	Тур	Max	Unit
Serial data transfer frequency	$ m f_{CLK}$	6	-	-	-	30	MHz
Clock pulse width	t_{wCLK}	6	SCK=H or L	20	-	-	ns
Latch pulse width	$t_{ m wLE}$	6	LE=H	20	-	-	ns
Enable pulse width	$t_{ m wOE}$	6	\overline{OE} =H or L, R_{EXT} =890 Ω	150	-	1	ns
Hold time	t_{HOLD1}	6	-	5	-	ı	ns
noid time	$t_{\rm HOLD2}$	6	-	5	-	ı	ns
Satur time	t_{SETUP1}	6	-	5	-	ı	ns
Setup time	t_{SETUP2}	6	-	5	-	ı	ns
Maximum clock rise time	t _r	6		-	-	500	ns
Maximum clock fall time	t_{f}	6		-		500	ns

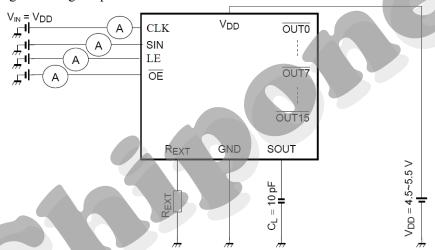
Electrical Characteristics (Unless otherwise specified, V_{DD} =4.5~5.5V, T_a =25°C)

Characteristics	Symbol	Test circuit	Test Conditions	Min	Тур	Max	Unit
High level logic output voltage	V _{OH}		I _{OH} =-1mA, SOUT	V_{DD} -0.4	1	$V_{ m DD}$	V
Low level logic output voltage	V _{OL}	1	I _{OH} =+1mA, SOUT	1	1	0.4	V
High level logic input current	1^{IH}	2	$V_{IN} = V_{DD}, \overline{OE}$, SIN, CLK	1	1	1	μА
Low level logic input circuit	$I_{\rm IL}$	3	V_{IN} =GND, LE, SIN, CLK	1	1	-1	μА
	I_{DD1}	4	Rext=open, OUT off	-	2.5	5.0	mA
	I_{DD2}	4	Rext=1240, OUT off	-	4.5	7.0	mA
Power supply current	I_{DD3}	4	Rext=620, OUT off	ı	6	9.0	mA
	I_{DD4}	4	Rext=1240, OUT on	ı	5.2	8.5	mA
	I_{DD5}	4	Rext=620, OUT on	-	6.5	9.5	mA
Constant current	I_{O1}	5	V_{DD} =5.0V, V_{O} =1.0V, R_{EXT} =1.24k Ω	-	15	-	mA
output	I_{O2}	5	V_{DD} =5.0V, V_{O} =1.0V, R_{EXT} =620 Ω	-	30	-	mA
Constant current error	ΔI_{O}	5	$V_{DD}{=}5.0V, V_{O}{=}1.0V,$ $R_{EXT}{=}1.24 \text{ k}\Omega,$ $\overline{OUT0} \sim \overline{OUT15}$	-	±1	±3	mA

Constant current power supply voltage regulation	$%{ m V}_{ m DD}$	5	V_{DD} =4.5~5.5V, V_{O} =1.0V, R_{EXT} =1.24 k Ω , $\overline{OUT0}$ ~ $\overline{OUT15}$	-	±1	-	%/V
Constant current output voltage regulation	%V _{OUT}	5	V_{DD} =5.0V, V_{O} =1.0~3.0V, R_{EXT} =1.24 k Ω , $\overline{OUT0}$ ~ $\overline{OUT15}$	-	±0.1		%/V
Pull-up resistor	R_{UP}	3	ŌĒ	250	500	800	kΩ
Pull-down resistor	R _{DOWN}	2	LE	250	500	800	kΩ

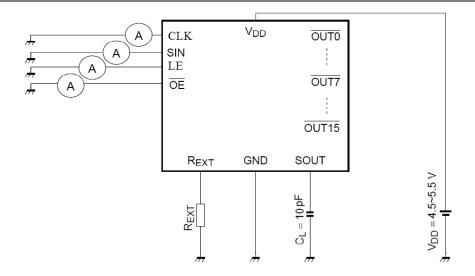

Switching Characteristics (Unless otherwise specified, $T_a = 25^{\circ}C$, $V_{DD} = 5.0V$)

Characteristics		Symbol	Test circuit	Test conditions	Min	Тур	Max	Unit
	CLK-OUT0	$t_{\rm pLH1}$	6	LE=H, \overline{OE} =L	- /	80	100	
	LE- OUT0	$t_{\rm pLH2}$	6	<u>OE</u> =L	- (80	100	
	$\overline{\text{OE}}$ - $\overline{\text{OUT0}}$	$t_{\rm pLH3}$	6	LE=H	3	115	135	
Propagation	CLK-SOUT	$t_{\rm pLH}$	6	-	(-)	20	40	
delay time	CLK-OUT0	t _{pHL1}	6	LE=H, OE=L		80	100	ns
	LE- OUTO	t _{pHL2}	6	OE =L	-	80	100	
	OE - OUTO	t _{pHL3}	6	LE=H	-	115	135	
	CLK-SOUT	$t_{ m pHL}$	6		-	20	40	
Output rise time		t _{or}	6	10~90% of voltage waveform	-	10	15	ns
Output fall time		t _{of}	6	90~10% voltage waveform	-	30	50	ns

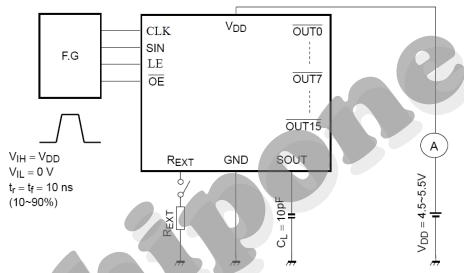


Test Circuit

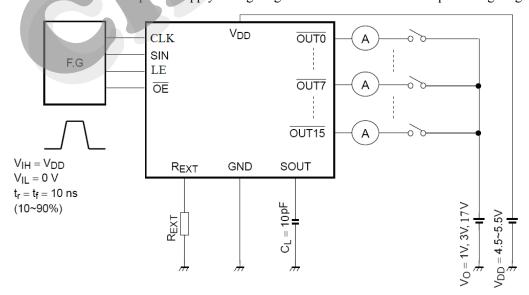
Test Circuit1: High level logic input voltage/Low level logic input voltage



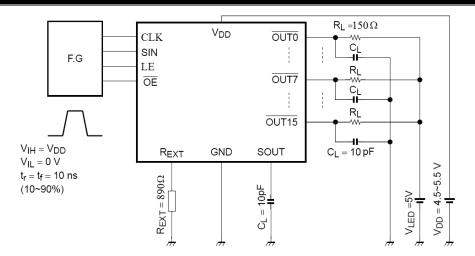
Test Circuit2: High level logic input current/Pull-down resistor



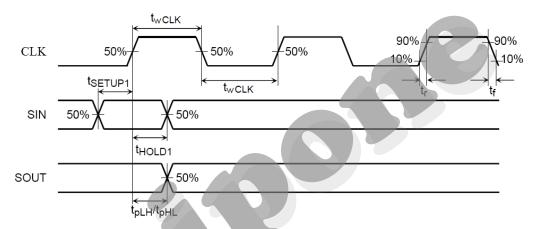
Test Circuit3: Low level logic input current/Pull-up resistor

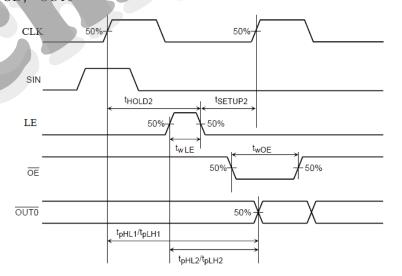


Test Circuit4: Power supply current


Test Circuit5: Constant current output/Output OFF leak current/Constant current error

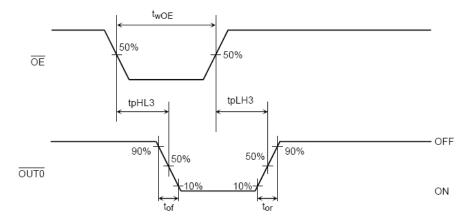
Constant current power supply voltage regulation/Constant current output voltage regulation


Test Circuit6: Switching Characteristics

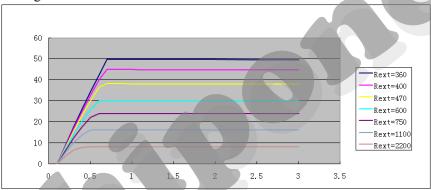


Timing Waveforms

1. CLK, SIN, SOUT

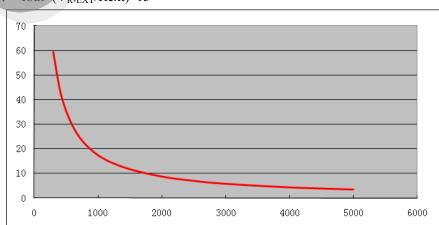


2. CLK, SIN, LE, OE, OUTO


3. OUT0

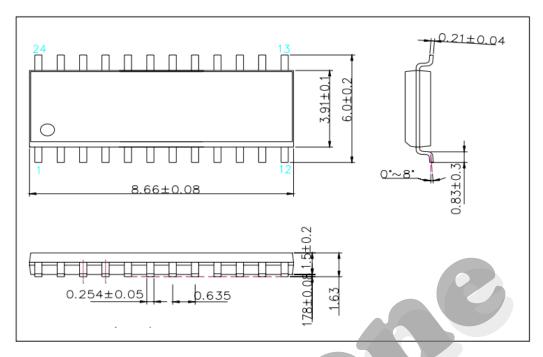
Application information

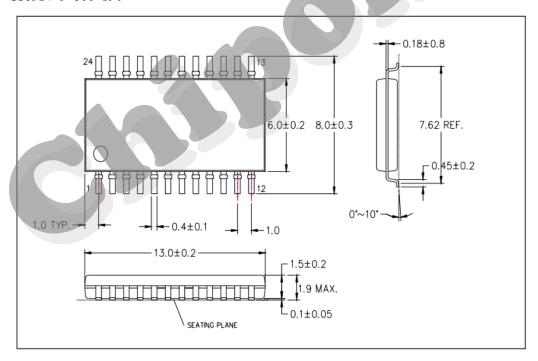
ICN2024 exploits current presision controlling technology, and provides nearly no variations in current from channel and from ICs.


- 1) The maximum current variation between channels is less than $\pm 1\%$, and that between ICs< $\pm 3\%$.
- 2) The current characteristic of output stage is flat, and can be kept constant regardless of the variations of LED forward voltage.

Adjusting Output Current

The output current of ICN2024 each channel(Iout) is set by an external resistor, Rext. The relationship equation between Iout and Rext is


 $V_{R-EXT}=1.24V$; Iout= $(V_{R-EXT}/Rext)*15$



Package Outline

(1) SSOP24-P-150-0.65

(2) SSOP24-P-300-1.0

IMPORTANT NOTICE

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright © 2010, Chipone Technology (Beijing) Co., Ltd.