

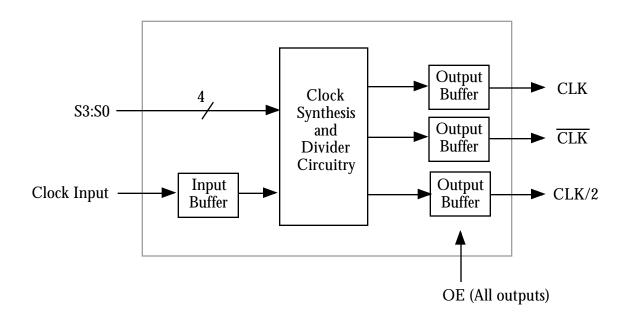
ADVANCE INFORMATION

ICS548-03

Low Skew Clock Inverter and Divider

Description

The ICS548-03 is a low cost, low skew, high performance general-purpose clock designed to produce a set of one output clock, one inverted output clock, and one clock divided-by-2. Using our patented analog Phase-Locked Loop (PLL) techniques, the device operates from a frequency range from 10 MHz to 120 MHz in the PLL mode, and up to 160 MHz in the non-PLL mode.

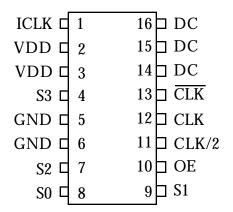

In applications that to need maintain low phase noise in the clock tree, the non-PLL (when S3=S2=1) mode should be used.

This chip is not a zero delay buffer. Many applications may be able to use the ICS527 for zero delay dividers.

Features

- Packaged in 16 pin narrow (150 mil) SOIC
- Input clock up to 160 MHz in the non-PLL mode
- Provides clock outputs of CLK, CLK, and CLK/2
- Low skew (500 ps) on CLK, CLK, and CLK/2
- · All outputs can be tri-stated
- Entire chip can be powered down by changing one or two select pins
- 3.3V or 5.0V operating voltage

Block Diagram



ADVANCE INFORMATION

Low Skew Clock Inverter and Divider

Pin Assignment

CLK, CLK, and CLK/2 Select Table (in MHz)

S 3	S2	S1	S0	CLK, CLK	CLK/2	PLL	Input Range
0	0	0	0	Low	Low	Off	Power down
0	0	0	1	Input/4	Input/8	On	20 -120
0	0	1	0	Input	Input/2	On	20 -120
0	0	1	1	Input/2	Input/4	On	20 -120
0	1	0	0	Low	Low	Off	Power down
0	1	0	1	Input x 2	Input	On	20 - 60
0	1	1	0	Input/5	Input/10	On	20 -120
0	1	1	1	Input/3	Input/6	On	20 - 120
1	0	0	0	Low	Low	Off	Power down
1	0	0	1	Input/4	Input/8	On	10 - 60
1	0	1	0	Input	Input/2	On	10 - 60
1	0	1	1	Input/2	Input/4	On	10 - 60
1	1	0	0	Low	Low	Off	Power down
1	1	0	1	Input/6	Input/12	Off	0 - 160
1	1	1	0	Input/8	Input/16	Off	0 - 160
1	1	1	1	Input/2	Input/4	Off	0 - 160

Pin Descriptions

Number	Name	Type	Description
1	ICLK	ČÍ	Input Clock. Connect to a CMOS level input clock.
2	VDD	P	Connect to +3.3V or +5.0V.
3	VDD	P	Connect to +3.3V or +5.0V.
4	S3	I	Clock Select Pin 3. See above table.
5	GND	P	Connect to ground.
6	GND	P	Connect to ground.
7	S2	I	Clock Select Pin 2. See above table.
8	S0	I	Clock Select Pin 0. See above table.
9	S1	I	Clock Select Pin 1. See above table.
10	OE	I	Output Enable. Tri-states all clock outputs when low.
11	CLK/2	O	Clock Output divided by 2. See above table.
12	CLK	0	Clock Output. See above table.
13	CLK	0	Inverted Clock Output. See above table.
14	DC	-	Don't Connect. Do not connect anything to this pin.
15	DC	-	Don't Connect. Do not connect anything to this pin.
16	DC	-	Don't Connect. Do not connect anything to this pin.

Key: I = Input; O = Output; P = Power Supply connection; CI = Clock Input

ADVANCE INFORMATION

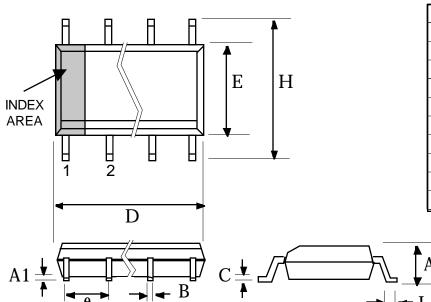
Low Skew Clock Inverter and Divider

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units		
ABSOLUTE MAXIMUM RATINGS (stresses beyond these can permanently damage the device)							
Supply Voltage, VDD	Referenced to GND			7	V		
Inputs	Referenced to GND	-0.5		VDD+0.5	V		
Clock Output	Referenced to GND	-0.5		VDD+0.5	V		
Ambient Operating Temperature		0		70	°C		
Soldering Temperature	Max of 10 seconds			260	°C		
Storage temperature		-65		150	°C		
DC CHARACTERISTICS (VDD = 3.3V unless otherwise noted)							
Operating Voltage, VDD		3		5.5	V		
Input High Voltage, VIH, ICLK only	ICLK (Pin 1)	(VDD/2)+1	VDD/2		V		
Input Low Voltage, VIL, ICLK only	ICLK (Pin 1)		VDD/2	(VDD/2)-1	V		
Input High Voltage, VIH	All other inputs	2			V		
Input Low Voltage, VIL	All other inputs			0.8	V		
Output High Voltage, VOH, CMOS level	IOH=-8mA	VDD-0.4			V		
Output High Voltage, VOH	IOH=-12mA	2.4			V		
Output Low Voltage, VOL	IOL=12mA			0.4	V		
IDD Operating Supply Current, 100 MHz clock	S3=S2=S0=0, S1=1		TBD		mA		
Short Circuit Current	Each output		±50		mA		
Input Capacitance, S3, S2, S1, S0, and OE	All inputs		5		pF		
AC CHARACTERISTICS (VDD = 3.3V unless of	therwise noted)						
Input Frequency, clock input, PLL on		10		120	MHz		
Input Frequency, clock input, PLL off		0		160	MHz		
Output Frequency (see table on page 2)	Mode dependent	0		120	MHz		
Output Clock Rise Time	0.8 to 2.0V		1		ns		
Output Clock Fall Time	2.0 to 0.8V		1		ns		
Output Clock Duty Cycle	at VDD/2	45	49 to 51	55	%		
Output Enable Time, OE high to output on				50	ns		
Output Disable Time, OE low to tri-state				50	ns		
Absolute Clock Period Jitter, PLL modes	Deviation from mean		TBD		ps		
One Sigma Clock Period Jitter, PLL modes			TBD		ps		
Output clock skew for CLK, CLK, or CLK/2	at VDD/2			500	ps		

Note 1: The phase relationship between input and output clocks can change at power up. Use the ICS570 or ICS527 Zero Delay Buffers for a guaranteed phase relationship.

External Components/Application Information


The device requires a 0.01 μ F decoupling capacitor between pins 3 and 5, as close to the pins as possible. Connect pin 2 directly to pin 3, and pin 6 directly to pin 5. Series termination resistors of 33 — can be used on all used clock outputs, also close to the device. Leave any unused clock outputs floating. There are no pull-up resistors on the input pins, so they should be connected directly to VDD or ground.

ICS548-03

Low Skew Clock Inverter and Divider

Package Outline and Package Dimensions

(For current dimensional specifications, see JEDEC publication no. 95.)

16 pin SOIC narrow

	Inc	hes	Millimeters		
Symbol	Min	Max	Min	Max	
Α	0.059	0.069	1.50	1.75	
A1	0.004	0.0098	0.10	0.25	
В	0.013	0.020	0.33	0.51	
С	0.007	0.0098	0.19	0.25	
D	0.386	0.394	9.80	10.00	
E	0.150	0.157	3.80	4.00	
e	.050 BSC		1.27 BSC		
Н	0.228	0.244	5.80	6.20	
L	0.016	0.05	0.41	1.27	

Ordering Information

Part/O	rder Number	Marking	Package	Temperature
ICS	S548M-03	ICS548M-03	16 pin SOIC	0 to 70 °C
ICS	548M-03T	ICS548M-03	16 pin SOIC on tape and reel	0 to 70 °C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.