

ICS840001I

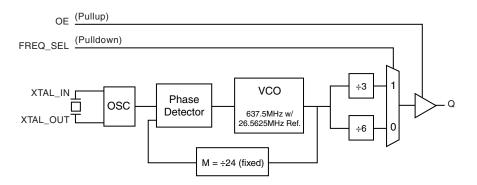
FEMTOCLOCKSTM CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

GENERAL DESCRIPTION

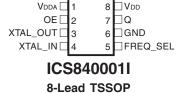
The ICS840001I is a Fibre Channel Clock Generator and a member of the HiPerClocks[™] family of high performance devices from ICS. The ICS840001I uses a 26.5625MHz crystal to synthesize either 106.25MHz or 212.5MHz, using

the FREQ_SEL pin. The ICS840001I has excellent phase jitter performance, over the 637 kHz - 5 MHz integration range. The ICS840001I is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

FEATURES


- 1 LVCMOS/LVTTL output, 7Ω typical output impedence
- Crystal oscillator interface designed for 26.5625MHz, 18pF parallel resonant crystal
- Selectable 106.25MHz or 212.5MHz output frequency
- VCO range: 560MHz to 680MHz
- RMS phase jitter @ 106.25MHz, using a 26.5625MHz crystal (637kHz - 5MHz): 0.70ps (typical)
- 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature

FUNCTION TABLE


Input	Output Frequencies			
FREQ_SEL	Output Frequencies			
0	106.25MHz (Default)			
1	212.5MHz			

Crystal: 26.5625MHz

BLOCK DIAGRAM

PIN ASSIGNMENT

8-Lead TSSOP 4.40mm x 3.0mm x 0.925mm package body G Package Top View

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

ICS8400011 FEMTOCLOCKSTM CRYSTAL-TOLVCMOS/LVTTL CLOCK GENERATOR

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1	V_{DDA}	Power		Analog supply pin.
2	OE	Input	Pullup	Output enable pin. When HIGH, Q output is enabled. When LOW, forces Q to HiZ state. LVCMOS/LVTTL interface levels.
3, 4	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.
5	FREQ_SEL	Input	Pulldown	Frequency select pin. LVCMOS/LVTTL interface levels.
eet4U.com	GND	Power		Power supply ground.
7	Q	Output		Single-ended clock output. LVCMOS/LVTTL interface levels. 7Ω typical output impedance.
8	V _{DD}	Power		Core supply pin.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
	Daway Dissination Constitutes	$V_{DD}, V_{DDA} = 3.465V$		TBD		pF
C _{PD}	Power Dissipation Capacitance	$V_{DD}, V_{DDA} = 2.625V$		TBD		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{out}	Output Impedance		5	7	12	Ω

TABLE 3. CONTROL FUNCTION TABLE

Control Inputs	Output
OE	Q
0	Hi-Z
1	Active

ICS840001I

FEMTOCLOCKSTM CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{I} -0.5V to V_{DD} + 0.5 V

Outputs, V_{O} -0.5V to V_{DD} + 0.5V

Package Thermal Impedance, θ_{1Δ} 101.7°C/W (0 mps)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

....

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current			75		mA
I _{DDA}	Analog Supply Current			8		mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current			73		mA
I _{DDA}	Analog Supply Current			8		mA

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = -40°C to 85° C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltage		$V_{DD} = 3.3V$	2		V _{DD} + 0.3	V
V_{IH}	Input High Voltage		V _{DD} = 2.5V	1.7		V _{DD} + 0.3	V
V	Input Low Voltage		V _{DD} = 3.3V	-0.3		0.8	V
V_{IL}	Input Low Voltage		V _{DD} = 2.5V	-0.3		0.7	V
1	Input High Current	FREQ_SEL	$V_{DD} = V_{IN} = 3.465 \text{V or } 2.625 \text{V}$			150	μA
IH	Input High Current	OE	$V_{DD} = V_{IN} = 3.465 \text{V or } 2.625 \text{V}$			5	μA
1	Input Low Current	FREQ_SEL	$V_{DD} = 3.465 \text{V or } 2.625 \text{V}, V_{IN} = 0 \text{V}$	-5			μΑ
I _{IL}	Input Low Current	OE	$V_{DD} = 3.465 \text{V or } 2.625 \text{V}, V_{IN} = 0 \text{V}$	-150			μΑ
V	Output High Voltage; NOTE 1		$V_{DD} = 3.465V$	2.6			V
V_{OH}			$V_{DD} = 2.625V$	1.8			V
V _{OL}	Output Low Voltage	; NOTE 1	V _{DD} = 3.465V or 2.625V			0.5	V

NOTE 1: Outputs terminated with 50Ω to $V_{DD}/2$. See Parameter Measurement Information Section,

[&]quot;Output Load Test Circuit" diagrams.

Integrated Circuit Systems, Inc.

ICS840001I

FEMTOCLOCKSTM CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

TABLE 5. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency			26.5625		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

ww DataSheet4II com

Table 6A. AC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

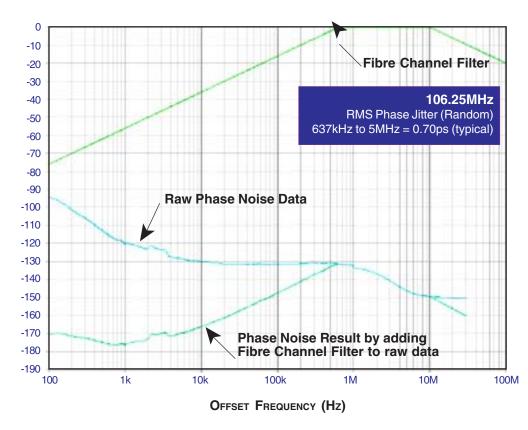
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
	Output Fraguency	FREQ_SEL = 1	186.66	212.5	226.66	MHz
OUT	Output Frequency	FREQ_SEL = 0	93.33	106.25	113.33	MHz
#::±/(CX)	RMS Phase Jitter (Random);	fOUT = 106.25MHz, (637kHz to 5MHz)		0.70		ps
<i>t</i> jit(∅)	NOTE 1	fOUT = 212.5MHz, (2.55MHz to 20MHz)		0.50		ps
t_R/t_F	Output Rise/Fall Time	20% to 80%		400		ps
odc	Output Duty Cycle			50		%

All parameters are characterized @ 212.5MHz and 106.25MHz.

NOTE 1: Please refer to the Phase Noise Plots following this section.

Table 6B. AC Characteristics, $V_{DD} = V_{DDA} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f	Output Fraguency	FREQ_SEL = 1	186.66	212.5	226.66	MHz
OUT	Output Frequency	FREQ_SEL = 0	93.33	106.25	113.33	MHz
fiit(Q)	tjit(∅) RMS Phase Jitter (Random); NOTE 1	fOUT = 106.25MHz, (637kHz to 5MHz)		0.70		ps
ijii(Ø)		fOUT = 212.5MHz, (2.55MHz to 20MHz)		0.50		ps
t_R/t_F	Output Rise/Fall Time	20% to 80%		450		ps
odc	Output Duty Cycle			50		%

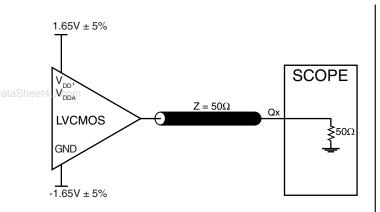

All parameters are characterized @ 212.5MHz and 106.25MHz.

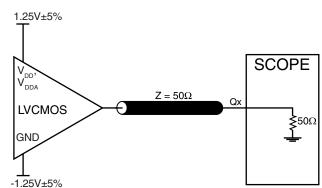
NOTE 1: Please refer to the Phase Noise Plots following this section.

ICS840001I

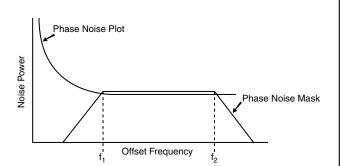
FEMTOCLOCKSTM CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

Typical Phase Noise at 106.25MHz

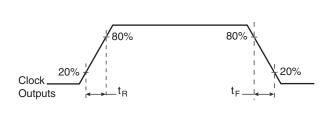



Noise Power

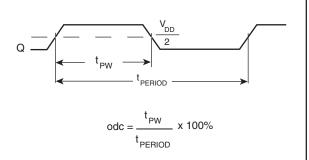
ICS840001I


FEMTOCLOCKSTM CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

PARAMETER MEASUREMENT INFORMATION



3.3V OUTPUT LOAD AC TEST CIRCUIT



RMS Jitter = Area Under the Masked Phase Noise Plot

2.5V OUTPUT LOAD AC TEST CIRCUIT

RMS PHASE JITTER

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

ICS840001I

FEMTOCLOCKSTM CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS840001I provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu\text{F}$ and a $.01\mu\text{F}$ bypass capacitor should be connected to each V_{DDA} pin.

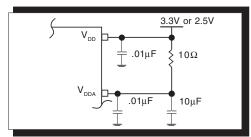
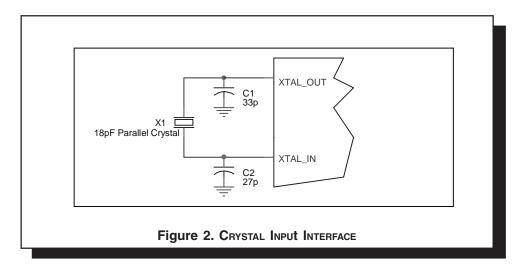



FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The ICS840001I has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 26.5625MHz, 18pF par-

allel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

Integrated Circuit Systems, Inc.

ICS840001I

FEMTOCLOCKSTMCRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

LAYOUT GUIDELINE

Figure 3A shows a schematic example of the ICS840001I. An example of LVCMOS termination is shown in this schematic. Additional LVCMOS termination approaches are shown in the LVCMOS Termination Application Note. In this example, an 18 pF parallel resonant 26.5625MHz crystal is used. The C1=27pF and C2=33pF are recommended for frequency accuracy. For

different board layout, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. The output frequency can be set at either 106.25MHz or 212.5MHz. Leaving the R1 un-installed (or install 1k Ω pull-down) will set the output frequency at 106.25MHz. Installing the R1 pull up will set the output frequency at 212.5MHz.

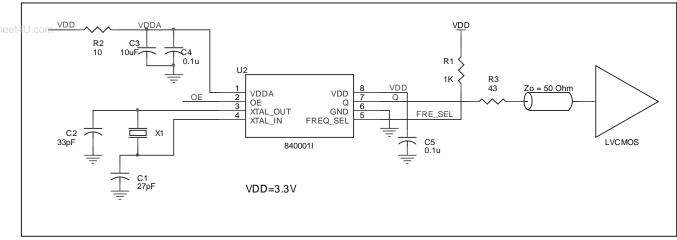


FIGURE 3A. ICS8400011 SCHEMATIC EXAMPLE

PC BOARD LAYOUT EXAMPLE

Figure 3B shows an example of P.C. board layout. The crystal X1 footprint in this example allows either surface mount (HC49S) or through hole (HC49) package. C3 is 0805. C1 and C2 are

0402. Other resistors and capacitors are 0603. This layout assumes that the board has clean analog power and ground planes.

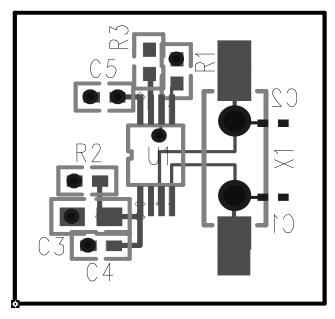


FIGURE 3B. ICS8400011 PC BOARD LAYOUT EXAMPLE

ICS840001I

FEMTOCLOCKSTMCRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

RELIABILITY INFORMATION

Table 7. $\theta_{\rm JA}{\rm vs.}$ Air Flow Table for 8 Lead TSSOP

θ_{JA} by Velocity (Meters Per Second)

0 1 2.5

Multi-Layer PCB, JEDEC Standard Test Boards 101.7°C/W 90.5°C/W 89.8°C/W

TRANSISTOR COUNT

The transistor count for ICS840001I is: 1521

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

Systems, Inc.

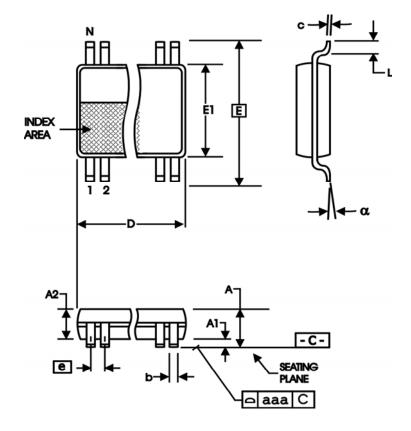


TABLE 8. PACKAGE DIMENSIONS

SYMBOL	Millin	neters			
STWIBOL	Minimum	Maximum			
N	8				
А		1.20			
A1	0.05	0.15			
A2	0.80	1.05			
b	0.19	0.30			
С	0.09	0.20			
D	2.90	3.10			
Е	6.40 E	BASIC			
E1	4.30	4.50			
е	0.65 E	BASIC			
L	0.45	0.75			
α	0°	8°			
aaa		0.10			

Reference Document: JEDEC Publication 95, MO-153

840001AGI

ICS840001I

FEMTOCLOCKSTM CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS840001AGI	001AI	8 lead TSSOP	tube	-40°C to 85°C
ICS840001AGIT	001AI	8 lead TSSOP	2500 tape & reel	-40°C to 85°C

ww.DataSheet4U.com

The aforementioned trademarks, HiPerClocks™ and FemtoClocks™ are trademarks of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.