1:2 LVCMOS/LVTTL-to-LVCMOS/LVTTL Zero Delay Buffer for Audio

ICS87002-05

DATA SHEET

General Description

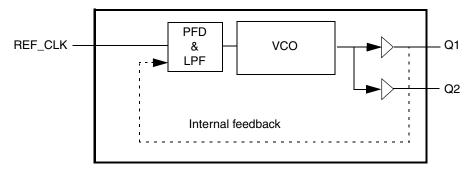
The ICS87002-05 is a 1:2 LVCMOS/LVTTL low phase noise Zero Delay Buffer and is optimized for audio frequencies.

The device uses third generation FemtoClock® Technology for an optimum of high frequency and

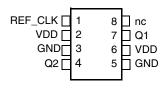
excellent phase jitter performance, combined with a low power consumption.

The device utilizes an internal feedback loop therefore eliminating the complexity of an external feedback loop.

The device utilizes a 3.3V supply and is packaged in a small, lead-free (RoHS 6) 8-lead SOIC package.


Features

- Third generation FemtoClock® technology
- Low phase noise zero delay buffer
- · Low skew outputs
- One LVCMOS/LVTTL clock input
- Two LVCMOS/LVTTL outputs
- Phase noise: -125dBc/Hz @1kHz offset; -130dBc/Hz @100kHz offset
- Cycle-to-cycle jitter: 60ps (maximum)
- 0°C to 70°C ambient operating temperature
- Full 3.3V supply voltage


	_
REF_CLK Frequencies	
11.2896MHz	
12.288MHz	
16.384MHz	
16.9344MHz	
18.432MHz	
22.5792MHz	
24.576MHz	

Supported Input Reference Clock Frequencies

Block Diagram

Pin Assignment

ICS87002-05 8-lead SOIC 3.8mm x 4.8mm x 1.47mm M Package Top View

1

Number	Name	Туре	Description
1	REF_CLK	Input	Single-ended reference clock input. LVCMOS/LVTTL interface levels.
2, 6	V _{DD}	Power	Power supply pin.
3, 5	GND	Power	Power supply ground.
4, 7	Q2, Q1	Output	Single-ended clock outputs. 15 Ω typical output impedance. LVCMOS/LVTTL interface level.
8	nc	Unused	No connect.

Table 1. Pin Descriptions

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance	V _{DD} = 3.6V		8		pF
R _{OUT}	Output Impedance	$V_{DD} = 3.3V \pm 0.3V$		15		Ω

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DD} + 0.5V
Package Thermal Impedance, θ_{JA}	96°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, V_{DD} = 3.3V±0.3V, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.0	3.3	3.6	V
I _{DD}	Power Supply Current	No load			85	mA

Table 3B. LVCMOS/LVTTL DC Characteristics, V_{DD} = 3.3V±0.3V, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		(V _{DD} /2) + 1			V
V _{IL}	Input Low Voltage				(V _{DD} /2) - 1	V
I _{IH}	Input High Current	$V_{DD} = 3.6V$			150	μA
IIL	Input Low Current	V _{DD} = 3.6V	-150			μA
V _{OH}	Output High Voltage	I _{OH} = -25mA	2.4			V
V _{OL}	Output Low Voltage	I _{OL} = 25mA			0.4	V

AC Characteristics

Table 4. AC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

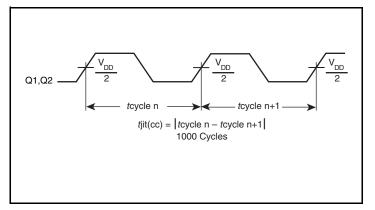
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
fouт	Output Frequency; NOTE 1		11.2783		24.6005	MHz
<i>t</i> sk(o)	Output Skew				20	ps
t _{PD}	Propagation Delay		200		1150	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	425		1450	ps
idc	Input Duty Cycle	f _{IN} = 24.576MHz	30		70	%
odc	Output Duty Cycle	At V _{DD} /2	48		52	%
<i>t</i> jit(cc)	Cycle-to-cycle Jitter, NOTE 2, 3				60	ps
<i>t</i> jit(per)	Period Jitter (pk-pk), NOTE 2, 3			50	75	ps
	Long Term Jitter, NOTE 4	N = 512 Cycles		100	300	ps
	Phase Noise, Relative to Carrier;	1kHz offset		-125		dBc/Hz
	NOTE 5	100kHz offset		-130		dBc/Hz

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

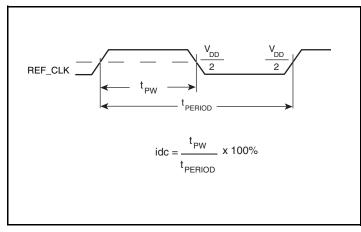
NOTE 1: Device operation is guaranteed for the standard audio reference frequencies of 11.2896MHz, 12.288MHz, 16.384MHz, 16.9344MHz, 18.432MHz, 22.5792MHz and 24.576MHz. A variation of up to ±1000ppm in reference clock is acceptable at these frequencies.

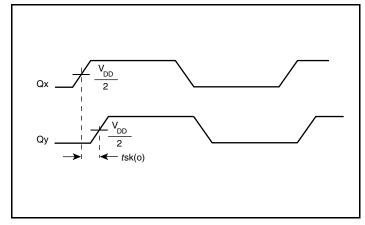

NOTE 2: Measured at 22.5792MHz and 24.576MHz input clock.

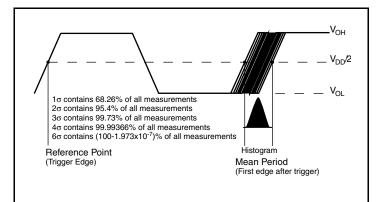
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

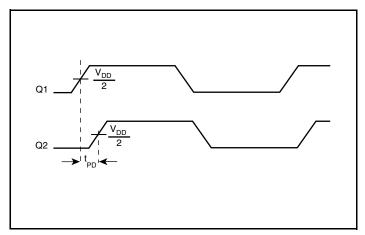

NOTE 4: Measured at 24.576MHz input clock and cycle N = 512.

NOTE 5: Measured at 24.576MHz input clock from 100Hz to 5MHz.


Parameter Measurement Information


LVCMOS/LVTTL Output Load AC Test Circuit

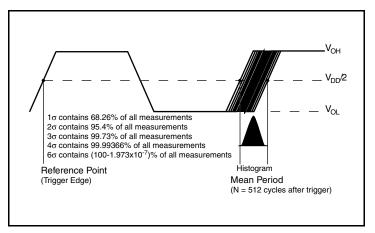

Cycle-to-Cycle Jitter


Input Duty Cycle

Output Skew



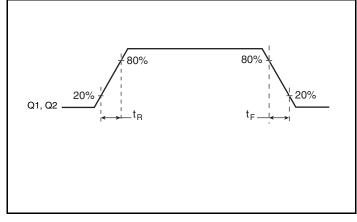
Period Jitter



Propagation Delay

Parameter Measurement Information, continued

Long Term Jitter


Applications Information

Recommendations for Unused Output Pins

Outputs:

LVCMOS Outputs

All unused LVCMOS output can be left floating. There should be no trace attached.

Output Rise/Fall Time

Schematic Example

Figure 1 shows an example of ICS87002-05 application schematic. In this example, the device is operated at V_{DD} = 3.3V. The input is driven by a 3.3V LVCMOS driver. One example of an LVCMOS

termination is shown in this schematic. The decoupling capacitors should be located as close as possible to the power pin.

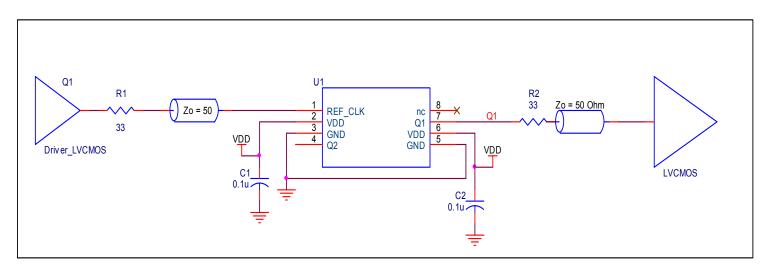


Figure 1. ICS87002-05 Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS87002-05. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS87002-05 is the sum of the core power plus the power dissipation in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 0.3V = 3.6V$, which gives worst case results.

Power (core)_{MAX} = $V_{DD MAX} * I_{DD} = 3.6V *85mA = 306mW$

Total Static Power:

= Power (core)_{MAX} = 306mW

Dynamic Power Dissipation at F_{OUT MAX} (24.576MHz)

```
Total Power (F_{OUT\_MAX}) = [(C_{PD} * N) * Frequency * (V_{DDO})<sup>2</sup>] = [(8pF *2) * 24.576MHz * (3.6V)<sup>2</sup>] = 5.1mW per output N = number of outputs
```

Total Power

Static Power + Dynamic Power Dissipation
= 306mW + 5.1mW
= 311mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = $\theta_{JA} * Pd_{total} + T_A$

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 96°C/W per Table 5 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 70° C + 0.311W *96°C/W = 99.9°C. This is below the limit of 125°C.

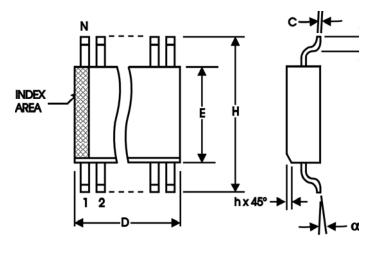
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

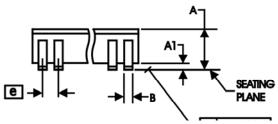
Table 5. Thermal Resistance θ_{JA} for 8 Lead SOIC, Forced Convection

θ _{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	96.0°C/W	87°C/W	82.0°C/W		

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for an 8-lead SOIC


θ_{JA} vs. Air Flow				
Linear Feet per Minute				
Multi-Layer PCB, JEDEC Standard Test Boards	96°C/W	87°C/W	82°C/W	


Transistor Count

The transistor count for ICS87002-05 is: 2267

Package Outline and Package Dimensions

Package Outline - M Suffix for 8 Lead SOIC

Table 7. Package Dimensions

All Din	nensions in M	illimeters				
Symbol	ool Minimum Maximum					
Ν		8				
Α	1.35	1.75				
A1	0.10	0.25				
В	0.33	0.51				
С	0.19	0.25				
D	4.80	5.00				
Е	3.80	4.00				
е	1.27	Basic				
Н	5.80	6.20				
h	0.25	0.50				
L	0.40	1.27				
α	0°	8°				

Reference Document: JEDEC Publication 95, MS-012

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
87002BM-05LF	P0003	Lead-Free, 8-lead SOIC	Tube	0°C to 70°C
87002BM-05LFT	P0003	Lead-Free, 8-lead SOIC	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
В	4	4	AC Characteristics Table - changed Min. and Max. f _{OUT} values. NOTE 1 - changed ±100pm to ±1000ppm.	4/16/10

6024 Silver Creek Valley Road San Jose, California 95138

Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT **Technical Support**

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.