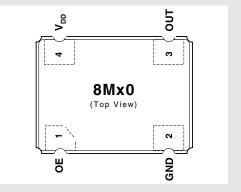
PRELIMINARY


ICS8Mx0

Crystal Oscillator: LVCMOS/LVTTL CLOCK OUTPUT

ICS8Mx0

LOW JITTER, HIGH FREQUENCY XTAL OSCILLATOR

- Stable, ultra low jitter, LVCMOS/LVTTL clock generation
- For Gigabit Ethernet, Fibre Channel, PCI-Express, other applications
- Clock output frequencies from 75 to 250 MHz
- One single-ended LVCMOS/LVTTL clock output
- Output Enable (OE) pin (tri-state when low)
- Small 4-pin 5 x 7 x 1.5mm SMT ceramic package
- Low profile package allows back-side PCB mounting
- Pb-free RoHS compliant (by default; no additional code required)
- 2.5V or 3.3V device power supply options
- Commercial (0 to +70 °C) and Industrial (-40 to +85 °C) temperatures
- Frequency stability of ±50 or ±100 ppm (including initial accuracy, operating temperature variation, supply voltage variation, load variation, reflow drift, and aging for 10 years)
- Low phase jitter < 1 ps rms maximum (12kHz to 20MHz)

4-pin CERHERMETIC 5 x 7 x 1.5mm SMT

ELECTRICAL SPECIFICATIONS

Unless stated otherwise, V_{DD} = 3.3 Volts ± 0.3V or 2.5 Volts ± 5%, T_A = 0 °C to +70 °C (commercial), T_A = -40 °C to +85 °C (industrial), C_L ≤ 25pF

	Parameter		Min	Тур	Max	Unit	C	onditions
DC CHARA	ACTERISTICS							
Power Supply (V _{DD} pin)	Power Supply Voltage	V_{DD}	3.0	3.3	3.6	V	3.3V operation	
			2.375	2.5	2.625	٧	2.5V operation	in 8M J 0 and 8M K 0 only
7	Power Supply Current	I _{DD}		75		mA	OE =	V _{DD}
	Current with Output Disable	I _{OED}			<0.6	mA	OE =	GND
	Input Capacitance	C _{IN}		4		pF		
Output Enable (OE pin)	Input High Voltage	$V_{\rm IH}$	0.7 x V _{DD}			V		
LVCMOS/LVTTL	Input Low Voltage	$V_{\rm IL}$			$0.3 \times V_{DD}$	V		
	Input High Current	I _{IH}			5	μΑ	V _{DD} =	V _{IN} = 3.6V or 2.625V
	Input Low Current	I _{IL}	-150			μΑ	V _{DD} =	3.6V or 2.625V, V _{IN} = 0V
	Internal Pull-up Resistor	R _{PULLUP}		51		kΩ		
Clock Output	Output High Voltage ¹	V_{OH}	V _{DD} - 0.4			V	V -	: 3.3V + 0.3V or 2.5V + 5%
Level (OUT pin)	Output Low Voltage ¹	V _{OL}			0.4	V	$V_{DD} = 3.3V \pm 0.3V$ or $2.5V \pm 5\%$	
LVCMOS/LVTTL	Output Load Condition (fan out)	C _L			25	pF	f _O <u><</u> 250MHz	
	Output Impedance	R _{OUT}	5	7	12	Ω		
AC CHARA	ACTERISTICS							
Output	Output Frequency Range		75		250	MHz		All conditions
(OUT pin)	Frequency Stability error	$\Delta f/f_{O}$			±100	ppm p-p	VDD, TA & load varia	Includes frequency set, VDD, TA & load variation,
					±50	ppm p-p		reflow drift, 10 yr. aging
	Output Duty Cycle	odc		50		%	V _{TH} =	V_{DD} / 2 , $C_L \leq Max. pF$
	Output Rise Time	t _R			1.5	ns	20% to 80% of V _{DD ,} C _L ≤ Max. pF	
	Output Fall Time	t _F			1.5	ns		
	Oscillator Start-up Time	t _{osc}			10	ms	Time at Min. V _D	_D (3.0V or 2.375V) to be 0s
	RMS Phase Jitter, (Random) ²	t jit(Ø)			< 1 design target	ps rms	(design target)	
	Jitter	t _{DS} ²		0.2		ps	Deterministic	
		t _{RS} 3		3		ps	Random	σ of Random jitter
		t _{RMS} 3		3		ps	Root Mean Square	$\boldsymbol{\sigma}$ of Total jitter distribution
		t _{p-p} 3		25		ps	Peak to Peak	
		t _{acc} 3		4		ps	Accumulated Jitter	n = 2 to 50,000 cycles

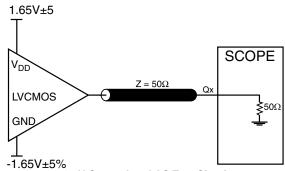
Note 1: Outputs terminated with 50Ω to $V_{DD}/2$. See PARAMETER MEASUREMENT INFORMATION, Output Load AC Test Circuit diagrams.

Note 2: Measured using an Aeroflex PN9500 with a 12 kHz to 20MHz integration range. Note 3: Measured using a Wavecrest SIA-3000

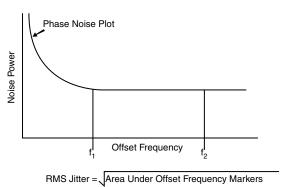
Note 3. Weasured using a wavecrest SIA-3000.					
SUPPLY VOLTAGE & FREQUENCY ACCURACY					
G	=	3.3V	±50 ppm		
Н	=	3.3V	± 100 ppm		
J	=	3.3/2.5V	± 50 ppm		
K	=	3.3/2.5V	± 100 ppm		

Crystal Oscillator: LVCMOS/LVTTL CLOCK OUTPUT

PRELIMINARY


PIN DESCRIPTIONS					
1	OE	Input	Internal pull-up resistor	Output enable pin. LVCMOS/LVTTL interface levels.	
2	GND	Power		Power supply ground.	
3	OUT	Output	No internal terminator	Single-ended clock output. LVCMOS/LVTTL interface levels.	
4	V_{DD}	Power		Power supply pin.	

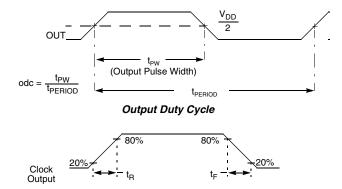
For typical value of internal pull-up resistor, see DC Characteristics.


ABSOLUTE MAXIMUM RATINGS				
Inputs	V_{l}	-0.5 to $V_{\rm DD}$ +0.5	V	
Outputs	Vo	-0.5 to V _{DD} +0.5	V	
Positive Supply Voltage	V_{DD}	4.6	V	
Package Thermal Impedenc	е	TBD	°C/W (0 lfpm)	
Storage Temperature	Ts	-40 to +100	°C	

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in DC Characteristics, or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

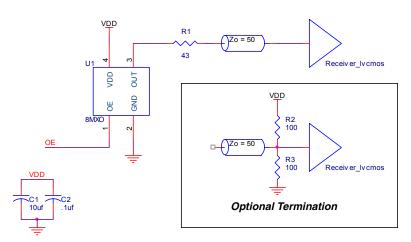
PARAMETER MEASUREMENT INFORMATION

3.3V Output Load AC Test Circuit



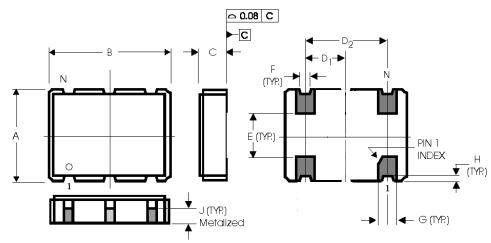
RMS Phase Jitter

1.25V±5 V_{DD} LVCMOS

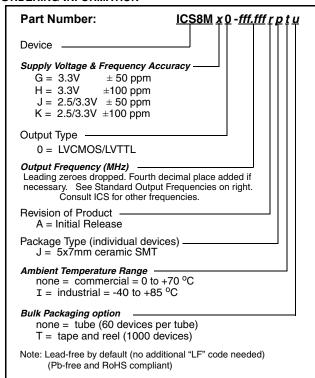

GND $Z = 50\Omega$ $Z = 50\Omega$

2.5V Output Load AC Test Circuit

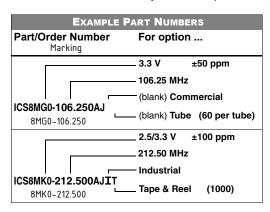
Output Rise and Fall Time


APPLICATION INFORMATION

LVCMOS Application Schematic / Power Supply Filtering (Decoupling Circuit)


DEVICE PACKAGE OUTLINE - 4-pin, 5 x 7 x 1.5mm SMT CERHERMETIC

SYMBOL	DIMENSION IN MM			
SYMBOL	NOMINAL	TOLERANCE		
Α	5	± 0.15		
В	7	± 0.15		
С	1.5	± 0.15		
D_1	2.54	± 0.13		
D_2	5.08	± 0.13		
E	2.6	± 0.13		
F	0.6	± 0.13		
G	1.4	± 0.13		
Н	0.15 Ref.	_		
J	0.65 Ref.	_		


Device Package Outline

ORDERING INFORMATION

EXAMPLE OUTPUT FREQUENCIES						
75.000	100.000	106.250				
125.000	150.000	155.520				
156.250	187.500	200.000				
212.500	250.000					

Consult ICS for the availability of other frequencies

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.