
Direct Rambus[™] Clock Generator Lite

General Description

ICS9219 is a High-speed clock generator providing 400 or 533 MHz differential clock source for direct Rambus[™] memory system. **ICS9219** takes a crystal as an input reference source, and produces the differential output clock required for the Rambus channel. **ICS9219** provides a solution for a broad range of Direct Rambus memory applications. **ICS9219** can be used in single or dual Rambus channels. An additional LVCMOS output, which provides a reference clock at the crystal frequency for the other system blocks is also included.

Features

- Compatible with all Direct Rambus™ based ICs
- Provides differential clock source for direct Rambus memory system with 1GHz data transfer rate capability
- Cycle to Cycle jitter is less than 100ps
- 3.3V <u>+</u> 4% supply
- LVCMOS REF clock @ crystal frequency
- Output edge rate control to minimize EMI

Pin Configuration

GND 2 15 VDD	
X2 3 🖸 14 GND	
X1 4 76 13 BUSCLKT VDD 5 8 12 BUSCLKC	
REF 6 🗳 11 GND	
GND 7 10 VDD	
FS1* <u>8</u> 9FS2*	

16-Pin 173 mil TSSOP

* Pins have 60K internal pull-up to VDD

Table 1. PLL Multiplier Selection and Output Frequency

FS0	Mult	BUSCLK ¹
0	16	400.00
1	21.33 ²	533.30

Notes:

1 Output frequencies are based on 25MHz XTAL Input

multipliers are also applicable to spread spectrum modulated input clocks.

2 Default muliplier value at power up.

Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDT	PWR/IN	Power supply, nominal 3.3V/Test mode
2	GND	PWR	Ground pin.
3	X2	OUT	Crystal output (14MHz to 25MHz)
4	X1	IN	Crystal input (14MHz to 25MHz)
5	VDD	PWR	Power supply, nominal 3.3V
6	REF	OUT	Reference of Input
7	GND	PWR	Ground pin.
8	FS1*	IN	Frequency select pin.
9	FS2*	IN	Real-time frequency select pin with internal 120Kohm pull-up resistor (check
9	F32	IIN	SMBus HW/SW setting for priority).
10	VDD	PWR	Power supply, nominal 3.3V
11	GND	PWR	Ground pin.
12	BUSCLKC	OUT	Output clock connected to the Rambus channel. This output is the complement
12	BUSCERC	001	of BUSCLK.
13	BUSCLKT	OUT	Output clock connected to the Rambus channel. This output is the true
15	BUSCENT	001	component of BUSCLK.
14	GND	PWR	Ground pin.
15	VDD	PWR	Power supply, nominal 3.3V
16	FS0*	IN	Frequency select pin.

* Pins have 60K internal pull-up to VDD

Table 2: Function Table

	F	FS(2:0))	INPUT				
VDDT	FS2			BUSCLKT	BUSCLKC	REF		
3.3V	0	0	0	16	NORMAL	INPUT x MULT	BUSCLKC	INPUT
3.3V	1	1	1	21.33	NORMAL	INPUT x MULT	BUSCLKC	INPUT
3.3V	1	1	0	16	NORMAL	INPUT x MULT	BUSCLKC	INPUT
3.3V	0	0	1	21.33	NORMAL	INPUT x MULT	BUSCLKC	INPUT
3.3V	1	0	Х	-	TEST	BUSCLKT/2	BUSCLKC/2	INPUT
3.3V	0	1	Х	-	TEST	BUSCLKT/4	BUSCLKC/4	INPUT
0	0	0	Х	-	TEST	X1	X1(INVERT)	INPUT
0	1	1	Х	-	TEST	X1	X1(INVERT)	INPUT
0	1	0	Х	-	TEST	X1/2	X1(INVERT)/2	INPUT
0	0	1	Х	-	TEST	X1/4	X1(INVERT)/4	INPUT

Absolute Maximum Ratings over operating free-air temperature

Supply voltage range, V _{DD} or V _{DDT} (see Note 1)	0.5 V to 4 V
Input voltage range, V _I , at any input terminal	
Output voltage range, V _O , at any output terminal (BUSCLKT/C)	0.5 V to V _{DD} + 0.5 V
ESD rating (MIL-STD 883C, Method 3015)	> 2 kV, Machine Model >200 V
Operating free-air temperature range, T _A	0°C to 85°C
Storage temperature range, T _{stg}	

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to the GND terminals.

Recommended Operating Conditions

		MIN	NOM	MAX	UNIT	
Supply voltage, V _{DD}	Supply voltage, V _{DD}			3.6	V	
Low-level input voltage, VIL	FS (2:0)			$0.35 \times V_{DD}$	V	
High-level input voltage, V _{IH}	FS (2:0)	0.65 x V _{DD}			v	
Internal pullup resistance	FS (2:0)	90		150	kΩ	
Input frequency at crystal input		14.0625	25	26	MHz	
Low-level output current, Ior		BUSCLKT/C		16	mA	
		REF		10		
High-level output current, I _{OH}		BUSCLKT/C		-16	mA	
		REF		-10		
Input capacitance (CMOS), C _L	FS (2:0)			15	рF	
	X1, X2			15	рі	
Operating free-air temperature		0		85	С	

Timing Requirements

	MIN	MAX	UNIT
Clock cycle time, t _(CYCLE)	2.5	3.7	ns
Input slew rate, S _R	0.5	4	V/ns
State transition latency (V_{DDX} or S0 to CLKs - normal mode), $t_{(STL)}$		3	ms

Crystal Specifications

	MIN	MAX	UNIT
Frequency	14.0625	26	MHz
Frequency tolerance (at 25°C) ± 3°C)	-15	15	ppm
Equivalent resistance ($C_L = 10 \text{ pF}$)		100	Ω
Temperature drift (-10°C to 75°C)		10	ppm
Drive level	0.01	1500	μΩ
Motional inductance	20.7	25.3	mH
Insulation resistance	500		MΩ
Spurious attenuation ratio (at frequency ±500 kHz)	3		dB
Overtone spurious	8		dB

0931B-10/25/04

© 2019 Renesas Electronics Corporation

Electrical Characteristics over Recommended Operating Free-Air Temperature

	PARAMETER		TEST CONDI	MIN	TYP**	MAX	UNIT	
V _x		Differential crossing-point output voltage		See Figures 1 and 2		1.6	1.85	V
V _{cos}	Peak-to-peak output voltage swing, single ended		V _{OH} - V _{OL}	See Figure 1	0.4	0.6	0.7	V
V _{IK}	Input clamp	o voltage	$V_{DD} = 3V$	l ₁ = -18 mA			-1.2	V
R _i	Input resistance	X1, X2	$V_{DD} = 3.3V$	$V_1 = V_0$		>50		k
		X2	$V_{DD} = 3.3V$	$V_0 = 2V$			27	mA
I _{IH}	High-level input current	FS0	V _{DD} = 3.6V	$V_{I} = V_{DD}$			10	٣A
	ourront	FS1, FS2	V _{DD} = 3.6V	$V_{I} = V_{DD}$			10	mA
		X2	V _{DD} = 3.6V	$V_0 = 0V$			-5.7	mA
I _{IL}	Low-level input current	FS0	V _{DD} = 3.6V	$V_1 = 0V$	-30		-100	س ۸
	current	FS1, FS2	V _{DD} = 3.6V	$V_1 = 0V$	-10		-50	mA
			See Figure	e 1			2.1	
V _{OH}	High-level output voltage	BUSCLKT/C, REF	V _{DD} = min to max	I _{OH} = -1 mA	V _{DD} - 0.1V			V
			$V_{DD} = 3V$	I _{он} = -16 mA	2.2	2.5		
	Low-level output voltage		See Figure 1		1			
V _{OL}			V _{DD} = min to max	I _{он} = 1 mA		0.05	0.1	V
	, enage		$V_{DD} = 3V$	I _{OH} = 16 mA		0.25	0.5	
	High-level output	BUSCLKT/C,	V _{DD} = 3.135V	$V_0 = 1V$		-50	-32	
I _{OH}		REF	$V_{DD} = 3.3V$	V _o = 1.65V		-50		mA
			V _{DD} = 3.465V	V _o = 3.135V	-21	-15		
	Low-level output	BUSCLKT/C,	V _{DD} = 3.135V	V ₀ = 1.95V	43	69		
I _{OL}	current	-	$V_{DD} = 3.3V$	V ₀ = 1.65V		69		mA
	llich level duragesie -		V _{DD} = 3.465V	$V_0 = 0.9V$	4.0	30	36	
r _{он}	High-level dynamic o	•	$\angle I_0$ - 14.5 mA to $\angle I_0$ - 16.5 mA		12	25	40	
r _{oL}	Low-level dynamic o	•	$\angle I_0$ - 14.5 mA to $\angle I_0$ - 16.5 mA		12	17	40	
Co	Output capacitance	BUSCLKC, REF					3	pF
I _{DD}	Static suppl	y current	Outputs high or low $(V_{DDT} = 0V)$				6.5	mA
I _{DDL}	Static suppl	y current	Outputs high or low				50	mA
I _{DD (NORMAL)}	Supply current in	n normal state	400 MHz			84	100	mA
. (533MHz			91	120	mA

* V_{DD} refers to any of the following: V_{DD} , V_{DDT} . ** All typical values are at V_{DD} = 3.3V, T_A 25°C.

 4 r_o = $\angle V_{o}/\angle I_{o}$. This is defined at the output terminals, not at the measurement point of figure 1.

Switching Characteristics over Recommended Operating Free-Air Temperature Range.

					-			
	PARAMETER		TEST CONDITIONS*	MIN	TYP**	MAX	UNIT	
t _(CYCLE)	Clock cycle time (BUSCLKT/C)			1.8		3.7	ns	
+	Total jitter over 1, 2, 3, 4, 5 or 6 clock	400 MHz	Soo Figuro 2		42	50		
tj	cycles	533 MHz	See Figure 3		33	50	ps	
+	Long-term jitter	400 MHz	See Figure 4			300	00	
t _{JL}	Long-term jitter	533 MHz	See Figure 4			300	ps	
D_C	Output duty cycle over 10,000	cycles	See Figure 5	43%	51	53%		
+	Output cycle-to-cycle duty cycle error	400 MHz			30	50		
t _{DC,ERR}		533 MHz	See Figure 6		30	50	ps	
t _{CR} , t _{DF}	Output rise and fall times (measured at 20%-80% of output voltage)	BUSCLKT/C	See Figure 7	120	250	400	ps	
$\Delta t_{\rm RF}$	Difference between rise and fall times device (20% ± 80%) tCR - t	0	See Figure 7		50	100	ps	
t _{CYCLE(L)}	Clock cycle time (REF)			80		142.2	ns	
t _(CJ)	REF cycle jitter		See Figure 8	-0.2	0.1	0.2	ns	
t _(CJ10)	REF 10-cycle jitter		Measured at 50%	-1.3 t _(CJ)		1.3 t _(CJ)	ns	
D _{C(2)}	Output duty cycle	REF		47%	50	53%		
t_{CRL}, t_{CFL}	Output rise and fall times (measured at 20%-80% of output voltage)	REF	See Figure 7		0.8	1	ns	
	PLL loop bondwidth		fmod = 50 kHz			-3	dB	
	PLL loop bandwidth		fmod = 8 MHz	-20			uБ	

0931B-10/25/04

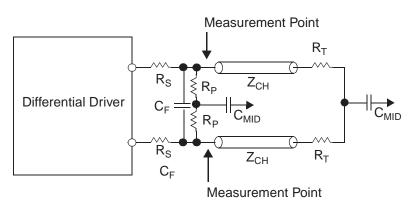
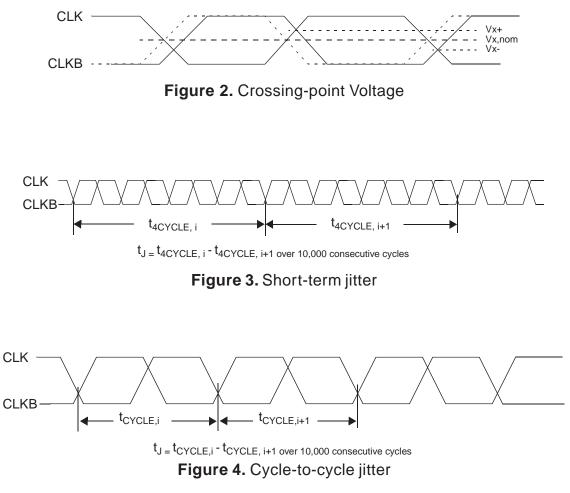



Figure 1. Example System Clock Driver Equivalent Circuit

0931B-10/25/04

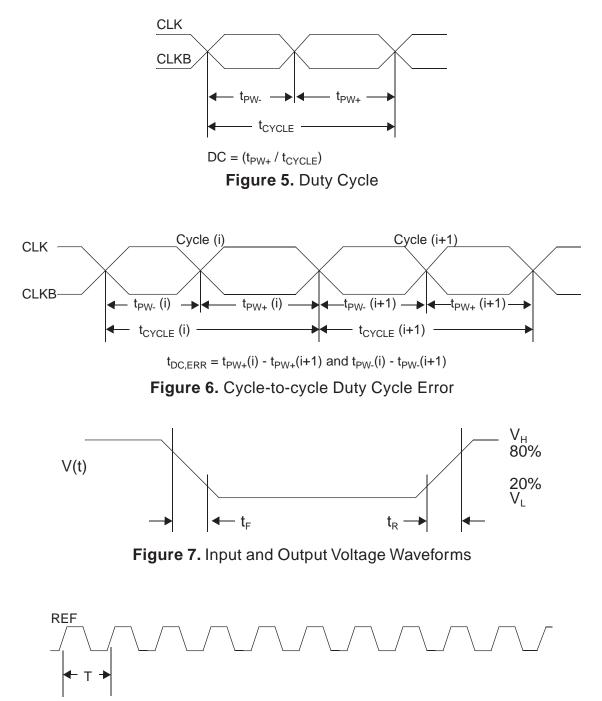
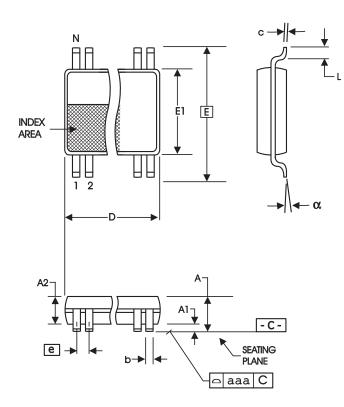



Figure 8. REF Jitter

0931B-10/25/04

4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25.6 mil)

		(173 mii)	(25.6 MII)		
		In Milli	meters	In In	ches	
	SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS	
		MIN	MAX	MIN	MAX	
	А		1.20		.047	
Ī	A1	0.05	0.15	.002	.006	
Ī	A2	0.80	1.05	.032	.041	
Ī	b	0.19	0.30	.007	.012	
Ī	С	0.09	0.20	.0035	.008	
	D	SEE VAR	RIATIONS	SEE VARIATIONS		
	Е	6.40 E	BASIC	0.252 BASIC		
	E1	4.30	4.50	.169	.177	
	е	0.65 BASIC		0.0256 BASIC		
Ī	L	0.45	0.75	.018	.030	
	Ν	SEE VARIATIONS		SEE VARIATIONS		
	α	0°	8°	0°	8°	
	aaa		0.10		.004	

VARIATIONS

N	Dr	nm.	D (inch)			
IN	MIN	MAX	MIN	MAX		
16	4.90	5.10	.193	.201		
Reference Doc IEDEC Publication 95 MO-153						

Reference Doc.: JEDEC Publication 95, MO-153 10-0035

Ordering Information

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/