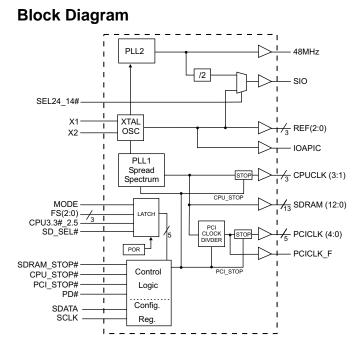
ICS9248-128

Frequency Generator & Integrated Buffers

Recommended Application:

SIS 530/620 style chipset

Output Features:


- - 3 CPU @ 2.5V/3.3V up to 133.3 MHz.
- - 6 PCI @ 3.3V (including 1 free-running)
- - 13 SDRAMs @ 3.3V up to 133.3MHz.
- - 3 REF @ 3.3V, 14.318MHz
- - 1 clock @ 24/14.3 MHz selectable output for SIO
- - 1 Fixed clock at 48MHz (3.3V)
- - 1 IOAPIC @ 2.5V / 3.3V

Features:

- Up to 133MHz frequency support
- Support power management: CPU, PCI, SDRAM stop and Power down Mode from I²C programming.
- Spread spectrum for EMI control (\pm 0.25% center spread & 0 to -0.5% down spread).
- Uses external 14.318MHz crystal
- FS pins for frequency select

Key Specifications:

- CPU CPU<175ps
- SDRAM SDRAM < 350ps
- CPU–SDRAM < 500ps
- CPU(early) PCI : 1-4ns (typ. 2ns)
- PCI PCI <500ps

Functionality

SD_SEL	FS2	FS1	FS0	CPU MHZ	SDRAM MHZ	PCI MHZ
0	0	0	0	90.00	90.00	30.00
0	0	0	1	66.70	100.05	33.35
0	0	1	0	95.00	63.33	31.66
0	0	1	1	100.00	66.66	33.33
0	1	0	0	100.00	75.00	30.00
0	1	0	1	112.00	74.66	37.33
0	1	1	0	124.00	82.66	31.00
0	1	1	1	97.00	97.00	32.33
1	0	0	0	66.70	66.70	33.35
1	0	0	1	75.00	75.00	30.00
1	0	1	0	83.30	83.30	33.32
1	0	1	1	95.00	95.00	31.66
1	1	0	0	100.00	100.00	33.33
1	1	0	1	112.00	112.00	37.33
1	1	1	0	124.00	124.00	31.00
1	1	1	1	133.30	133.30	33.33

Note: REF, IOAPIC = 14.318MHz

Pin Configuration VDDR/X VDDLAPIC 48 IOAPIC REF1/SD SEL#* *MODE/REF0 2 3 47 GNDREF 46 GNDLAPIC REF2/CPU2.5_3.3#* CPUCLK1 X1 4 5 6 7 45 X2 ΔΔ VDDPCI 43 *FS1/PCICLK_F 42 VDDLCPU *FS2.PCICLK0 8 9 41 CPUCLK2 GNDPCI CPUCLK3 40 CS9248-128 PCICLK1 PCICLK2 10 39 GNDCPU SDRAM0 38 11 PCICLK3 12 37 SDRAM1 PCICLK4 13 14 36 35 VDDSDR VDDPCI SDRAM2 SDRAM12 GNDSDR 15 34 SDRAM3 33 GNDSDR 16 *CPU_STOP#/SDRAM11 17 32 SDRAM4 *PCI_STOP# /SDRAM10 18 19 31 30 SDRAM5 VDDSDR VDDSD/C *SDRAM_STOP# /SDRAM9 20 29 SDRAM6 *PD# /SDRAM8 21 28 SDRAM7 GNDFIX GNDSDR 22 27 23 24 48MHz/FS0* SIO/SEL24 14#MHz* SDATA 26 25 SCLK

48-Pin SSOP

* Internal Pull-up Resistor of 120K to 3.3V on indicated inputs

© 2019 Renesas Electronics Corporation

Third party brands and names are the property of their respective owners.

Pin Descriptions

Pin number	Pin name	Туре	Description
1	VDDR/X	Power	Isolated 3.3 V power for crystal & reference
2 ^{1,2}	REF0	Output	3.3V, 14.318 MHz reference clock output.
2.,-	Mode	Input	Function select pin, 1=desk top mode, 0=mobile mode. Latched input.
3,9,16,22, 27,33,39	GND	Power	3.3 V Ground
4	X1	Input	14.318 MHz crystal input
5	X2	Output	14.318 MHz crystal output
6,14	VDDPCI	Power	3.3 V power for the PCI clock outputs
7 ^{1,2}	FS1	Input	Logic input frequency select bit. Input latched at power-on.
1.,-	PCICLK_F	Output	3.3 V free running PCI clock output, will not be stopped by the PCI_STOP#
8 ^{1,2}	PCICLK 0	Output	3.3 V PCI clock outputs, generating timing requirements for Pentium II
8'''	FS2	Input	Logic input frequency select bit. Input latched at power-on.
13, 12, 11, 10	PCICLK (4:1)	Output	3.3 V PCI clock outputs, generating timing requirements for Pentium II
15,28,29,31,32, 34,35,37,38	SDRAM 12, SDRAM (7:0)	Output	SDRAM clock outputs. Frequency is selected by SD-Sel latched input.
	SDRAM 11	Output	SDRAM clock outputs. Frequency is selected by SD-Sel latched input.
17 ¹	CPU_STOP#	Input	Asynchronous active low input pin used to stop the CPUCLK in low state, all other clocks will continue to run. The CPUCLK will have a "Turnon" latency of at least 3 CPU clocks.
	SDRAM 10	Output	SDRAM clock outputs. Frequency is selected by SD-SEL latched input.
18 ¹	PCI-STOP#	Input	Synchronous active low input used to stop the PCICLK in a low state. It will not effect PCICLK_F or any other outputs.
19	VDDSD/C	Power	3.3 V power for SDRAM outputs and core
	SDRAM 9	Output	SDRAM clock outputs. Frequency is selected by SD-Sel latched input.
20 ¹	SDRAM_STOP#	Input	Asynchronous active low input used to stop the SDRAM in a low state. It will not effect any other outputs.
	SDRAM 8	Output	SDRAM clock outputs. Frequency is selected by SD-Sel latched input.
21 ¹	PD#	Input	Asynchronous active low input pin used to power down the device into a low power state. The internal clocks are disabled and the VCO and the crystal are stopped. The latency of the power down will not be greater than 3ms.
23	SDATA	Input	Data input for I ² C serial input.
24	SCLK	Input	Clock input of I ² C input
25 ^{1,2}	SEL24_14#	Input	This input pin controls the frequency of the SIO. If logic 0 at power on SIO=14.318 MHz . If logic 1 at power-on SIO=24MHz.
23	SIO	Output	Super I/O output. 24 or 14.318 MHz. Selectable at power-up by SEL24_14MHz
	FS0	Input	Logic input frequency select bit. Input latched at power-on.
26 ^{1,2}	48 MHz	Output	3.3 V 48 MHz clock output, fixed frequency clock typically used with USB devices
30,36	VDDSDR	Power	3.3 V power for SDRAM outputs
40,41,43	CPUCLK (3:1)	Output	2.5 V CPU and Host clock outputs
42	VDDLCPU	Power	2.5 V power for CPU
	REF2	Output	3.3V, 14.318 MHz reference clock output.
44 ^{1,2}	CPU3.3#_2.5	Input	This pin selects the operating voltage for the CPU. If logic 0 at power on CPU=3.3 V and if logic 1 at power on CPU=2.5 V operating voltage.
45	GNDL	Power	2.5 V Ground for the IOAPIC or CPU
46 ^{1,2}	REF1	Output	3.3V, 14.318 MHz reference clock output.
<u></u>	SD_SEL#	Input	This input pin controls the frequency of the SDRAM.
47	IOAPIC	Output	2.5V fixed 14.318 MHz IOAPIC clock outputs
48	VDDLAPIC	Power	2.5 V power for IOAPIC

Notes:

1: Internal Pull-up Resistor of 120K to 3.3V on indicated inputs

Bidirectional input/output pins, input logic levels are latched at internal power-on-reset. Use 10Kohm resistor to program logic Hi to VDD or GND for logic low.

General Description

The ICS9248-128 is the single chip clock solution for Desktop/Notebook designs using the SIS style chipset. It provides all necessary clock signals for such a system.

Spread spectrum may be enabled through I^2C programming. Spread spectrum typically reduces system EMI by 8dB to 10dB. This simplifies EMI qualification without resorting to board design iterations or costly shielding. The **ICS9248-128** employs a proprietary closed loop design, which tightly controls the percentage of spreading over process and temperature variations.

Serial programming I^2C interface allows changing functions, stop clock programming and frequency selection. The SD_SEL latched input allows the SDRAM frequency to follow the CPUCLK frequency(SD_SEL=1) or other clock frequencies (SD_SEL=0)

Mode Pin - Power Management Input Control

MODE, Pin 2 (Latched Input)	Pin 17	Pin 18	Pin 20	Pin 21
0	CPU_STOP#	PCI_STOP#	SDRAM_STOP#	PD#
	(INPUT)	(INPUT)	(INPUT)	(INPUT)
1	SDRAM 11	SDRAM 10	SDRAM9	SDRAM8
	(OUTPUT)	(OUTPUT)	(OUTPUT)	(OUTPUT)

Power Management Functionality

PD#	CPU_STOP#	PCI_STOP#	SDRAM_STOP	PCICLK (0:4)	SDRAM (0:12)	PCICLK_F	CPUCLK	Crystal OSC	VCO
0	Х	х	Х	Stopped Low	Stopped Low	Stopped Low	Stopped Low	Stopped Low	Stopped Low
1	1	1	1	Running	Running	Running	Running	Running	Running
1	1	1	0	Running	Stopped Low	Running	Running	Running	Running
1	1	0	1	Stopped Low	Running	Running	Running	Running	Running
1	1	0	0	Stopped Low	Stopped Low	Running	Running	Running	Running
1	0	1	1	Running	Running	Running	Stopped Low	Running	Running
1	0	1	0	Running	Stopped Low	Running	Stopped Low	Running	Running
1	0	0	1	Stopped Low	Running	Running	Stopped Low	Running	Running
1	0	0	0	Stopped Low	Stopped Low	Running	Stopped Low	Running	Running

CPU 3.3#_2.5V Buffer selector for CPUCLK drivers.

CPU3.3#_2.5 Input level (Latched Data)	Buffer Selected for operation at:
1	2.5V VDD
0	3.3V VDD

Serial Configuration Command Bitmap

Byte 0: Functionality and frequency select register (Default = 0)

Bit		Desc	ription		PWD		
Bit 7		ter Spread Spec			- 1		
		1 - 0 to -0.5% Down Spread Spectrum					
	Bit (2, 6:4)	CPUCLK	SDRAM	PCICLK			
	0000	90.00	90.00	30.00			
	0001	66.70	100.05	33.35			
	0010	95.00	63.33	31.66			
	0011	100.00	66.66	33.33			
	0100	100.00	75.00	30.00			
	0101	112.00	74.66	37.33			
D'4	0110	124.00	82.66	31.00	0,001		
Bit	0111	97.00	97.00	32.33			
(2, 6:4)	1000	66.70	66.70	33.35	Note 1		
	1001	75.00	75.00	30.00			
	1010	83.30	83.30	33.32			
	1011	95.00	95.00	31.66			
	1100	100.00	100.00	33.33			
	1101	112.00	112.00	37.33			
	1110	124.00	124.00	31.00]		
	1111	133.30	133.30	33.33			
Bit 3	0 - Frequency is selected by hardware select, latched inputs 1 - Frequency is selected by Bit 2, 6:4						
Bit 1	0 - Normal 1 - Spread spectrum enabled						
Bit 0	0 - Running 1 - Tristate all c				0		

Note 1: Default at power-up will be for latched logic inputs to define frequency.

 I^2C readback of the power up default indicates the revision ID code in bit 2, 6:4 as shown.

Byte 1: CPU, Active/Inactive Register (1 = enable, 0 = disable)

Bit	Pin #	PWD	Description
Bit 7	-	1	(Reserved)
Bit 6	-	1	(Reserved)
Bit 5	-	1	(Reserved)
Bit 4	-	1	(Reserved)
Bit 3	40	1	CPUCLK3
Bit 2	41	1	CPUCLK2
Bit 1	43	1	CPUCLK1
Bit 0	-	Х	FS0#

Notes:

1. Inactive means outputs are held LOW and are disabled from switching.

Byte 3: SDRAM Active/Inactive Register (1 = enable, 0 = disable)

Bit	Pin #	PWD	Description
Bit 7	28	1	SDRAM7
Bit 6	29	1	SDRAM6
Bit 5	31	1	SDRAM5
Bit 4	32	1	SDRAM4
Bit 3	34	1	SDRAM3
Bit 2	35	1	SDRAM2
Bit 1	37	1	SDRAM1
Bit 0	38	1	SDRAM0

Notes:

1. Inactive means outputs are held LOW and are disabled from switching.

Byte 5: Peripheral Active/Inactive Register (1 = enable, 0 = disable)

Bit	Pin #	PWD	Description
Bit 7	-	1	(Reserved)
Bit 6	-	Х	FS2#
Bit 5	-	1	(Reserved)
Bit 4	47	1	IOAPIC
Bit 3	-	Х	SD_SEL#
Bit 2	44	1	REF2
Bit 1	46	1	REF1
Bit 0	2	1	REF0

Notes:

1. Inactive means outputs are held LOW and are disabled from switching.

Byte 2: PCI Active/Inactive Register (1 = enable, 0 = disable)

Bit	Pin #	PWD	Description
Bit 7	-	Х	FS1#
Bit 6	7	1	PCICLK_F
Bit 5	-	1	(Reserved)
Bit 4	13	1	PCICLK4
Bit 3	12	1	PCICLK3
Bit 2	11	1	PCICLK2
Bit 1	10	1	PCICLK1
Bit 0	8	1	PCICLK0

Notes:

1. Inactive means outputs are held LOW and are disabled from switching.

Byte 4: SDRAM Active/Inactive Register (1 = enable, 0 = disable)

Bit	Pin #	PWD	Description
Bit 7	-	1	(Reserved)
Bit 6	25	1	24/14MHz
Bit 5	26	1	48MHz
Bit 4	15	1	SDRAM12
Bit 3	17	1	SDRAM11
Bit 2	18	1	SDRAM10
Bit 1	20	1	SDRAM9
Bit 0	21	1	SDRAM8

Notes:

1. Inactive means outputs are held LOW and are disabled from switching.

Absolute Maximum Ratings

Supply Voltage	5.5 V
Logic Inputs	GND –0.5 V to V_{DD} +0.5 V $$
Ambient Operating Temperature	0° C to $+70^{\circ}$ C
Storage Temperature	-65°C to +150°C
Case Temperature	115°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$I_A = 0$ - /0C; Supply Voltage $V_{DD} = V_{DDL} = 3.3 \text{ V} + -5\%$ (unless otherwise stated)							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input High Voltage	V_{IH}		2		V _{DD} +0.3	V	
Input Low Voltage	V _{IL}		V _{SS} -0.3		0.8	V	
Input High Current	I_{IH}	$V_{\rm IN} = V_{\rm DD}$			5	μΑ	
Input Low Current	I_{IL1}	$V_{IN} = 0V$; Inputs with no pull-up resistors	-5			μΑ	
Input Low Current	I_{IL2}	$V_{IN} = 0V$; Inputs with pull-up resistors	-200			μΑ	
Operating Supply	I _{DD3.3OP66}	$C_L = 0 \text{ pF}$; Select @ 66 MHz		150	180	mA	
Current	I _{DD3.3OP100}	$C_L = 0 \text{ pF}$; Select @ 100 MHz		170	180	mA	
Powerdown Current	I _{DD3.3PD}	$C_L = 0$ pF; Input address to VDD or GND		260	600	μΑ	
Input Frequency	F _i	$V_{DD} = 3.3 \text{ V}$	11	14.318	16	MHz	
	C _{IN}	Logic Inputs			5	pF	
Input Capacitance ¹	C _{INX}	X1 & X2 pins	27		45	pF	
Transition time ¹	T _{trans}	To 1st crossing of target frequency			3	ms	
Clk Stabilization ¹	T _{STAB}	From $V_{DD} = 3.3$ V to 1% target frequency			3	ms	
	T _{CPU100SDRAM100}	$V_{\rm T} = 1.5 V$		300	500	ps	
Skew ¹	T _{CPU-PCI}	$V_{\rm T} = 1.5 V$	1	2.6	4	ns	

 $T_A = 0$ - 70C; Supply Voltage $V_{DD} = V_{DDL} = 3.3 \text{ V} \pm 7.5\%$ (unless otherwise stated)

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

	$1X = 0^{-7}$ (0, supply vorage vbb = 5.5 v +/- 5%, vbb = 2.5 v +/- 5% (uncess otherwise stated).								
	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
I	Operating Supply	IDD2.50P66	$C_L = 0 \text{ pF}$; Select @ 66 MHz		60	72	mA		
	Current	IDD2.50P100	$C_L = 0 \text{ pF}$; Select @ 100 MHz		80	100	mA		
ſ	Skew ¹	TCPU100SDRAM100	$V_T = 1.5V; V_{TL} = 1.25V$		230	500	ps		
		Tcpu-pci	$V_T = 1.5V; V_{TL} = 1.25V$	1	2.6	4	ns		

TA = 0 - 70C; Supply Voltage VDD = 3.3 V + 5%, VDDL = 2.5 V + 5% (unless otherwise stated).

Electrical Characteristics - CPUCLK

 $T_A = 0 - 70^{\circ} C$; $V_{DD} = V_{DDL} = 3.3 V + -5\%$; $C_L = 10 - 20 pF$ (unless otherwise stated).

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH2B}	$I_{OH} = -12 \text{ mA}$	2.4	2.2		V
Output Low Voltage	V _{OL2B}	$I_{OL} = 12 \text{ mA}$		0.3	0.4	V
Output High Current	I _{OH2B}	V _{OH} = 2 V		-16	-19	mA
Output Low Current	I _{OL2B}	V _{OL} = 0.8 V	19	22		mA
Rise Time	t_{r2B}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.45	2	ns
Fall Time	t_{f2B}^{1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		0.95	2	ns
Duty Cycle	d_{t2B}^{1}	$V_{\rm T} = 1.5 \text{ V}$	45	46	55	%
Skew	t _{sk2B} ¹	$V_{\rm T} = 1.5 \text{ V}$		65	175	ps
Jitter, Cycle-to-cycle	t _{jcyc-cyc2B} ¹	$V_{\rm T} = 1.5$ V @ CPU & SDRAM = 100 MHz		210	250	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPUCLK

 $T_A = 0 - 70^{\circ} \text{ C}$; $V_{DD} = 3.3 \text{ V} + -5\%$, $V_{DDL} = 2.5 \text{ V} + -5\%$; $C_L = 10 - 20 \text{ pF}$ (unless otherwise stated).

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH2B}	$I_{OH} = -12 \text{ mA}$	2	2.2		V
Output Low Voltage	V _{OL2B}	$I_{OL} = 12 \text{ mA}$		0.25	0.4	V
Output High Current	I _{OH2B}	V _{OH} = 1.7 V		-15	-19	mA
Output Low Current	I _{OL2B}	$V_{OL} = 0.7 V$	19	23		mA
Rise Time	t_{r2B}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.0 \text{ V}$		1.4	1.6	ns
Fall Time	t _{f2B} ¹	$V_{OH} = 2.0 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.2	1.6	ns
Duty Cycle	d _{t2B} ¹	$V_{\rm T} = 1.25 \rm V$	45	48	55	%
Skew	t _{sk2B} ¹	$V_{\rm T} = 1.25 \rm V$		50	175	ps
Jitter, Cycle-to-cycle	t _{jcyc-cyc2B} ¹	V _T = 1.25 V @ CPU & SDRAM = 100 MHz		210	250	ps

Electrical Characteristics - PCICLK

 $T_A = 0 - 70^{\circ} \text{ C}$; $V_{DD} = 3.3 \text{ V} + -5\%$, $V_{DDL} = 2.5 \text{ V} + -5\%$; $C_L = 30 \text{ pF}$ (unless otherwise stated).

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH1}	$I_{OH} = -11 \text{ mA}$	2.4	2.6		V
Output Low Voltage	V _{OL1}	$I_{OL} = 9.4 \text{ mA}$		0.3	0.4	V
Output High Current	I _{OH1}	V _{OH} = 2.0 V		-18	22	mA
Output Low Current	I _{OL1}	$V_{OL} = 0.8 V$	16	24		mA
Rise Time	t _{r1} 1	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.8	2	ns
Fall Time	t _{f1} 1	$V_{OH} = 2.4 V, V_{OL} = 0.4 V$		1.7	2	ns
Duty Cycle	d_{t1}^{1}	$V_{\rm T} = 1.5 {\rm V}$	45	49	55	%
Skew	t _{sk1} 1	$V_{\rm T} = 1.5 {\rm V}$		260	500	ps
Jitter, Cycle-to-cycle	t _{jcyc-cyc} ¹	$V_{\rm T} = 1.5 {\rm V}$		150	500	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - SDRAM

 $T_A = 0 - 70^{\circ}$ C; $V_{DD} = 3.3$ V +/- 5%, $V_{DDL} = 2.5$ V +/- 5%; $C_L = 30$ pF (unless otherwise stated).

888					
SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OH1}	$I_{OH} = -11 \text{ mA}$	2.4	2.6		V
V _{OL1}	I _{OL} = 9.4 mA		0.3	0.4	V
I _{OH1}	V _{OH} = 2.0 V		-18	22	mA
I _{OL1}	V _{OL} = 0.8 V	16	24		mA
t_{r1}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.6	2	ns
t_{f1}^{1}	$V_{OH} = 2.4 V, V_{OL} = 0.4 V$		1.6	2	ns
d_{t1}^{1}	$V_T = 1.5$ V; divide by 2 selects < 124 MHz	47	50	57	%
d_{t2}^{1}	$V_T = 1.5$ V; divide by 3 selects	45	50	55	%
d_{t3}^{1}	$V_T = 1.5$ V; selects >= 124 MHz	43	50	53	%
t _{sk1} ¹	V _T = 1.5 V; SDRAM 8, 9, 11 & 12		110	250	ps
t _{sk2} ¹	$V_{\rm T} = 1.5$ V; all except SDRAM 8, 9, 11 &	12	100	250	ps
t _{sk3} ¹	$V_{\rm T} = 1.5$ V; all SDRAMs		220	350	ps
t _{jcyc-cyc} ¹	V _T = 1.5 V		200	500	ps
	$\begin{array}{c c} V_{OH1} \\ \hline V_{OL1} \\ \hline I_{OH1} \\ \hline I_{OL1} \\ \hline t_{r1}{}^1 \\ \hline t_{f1}{}^1 \\ \hline d_{t1}{}^1 \\ \hline d_{t2}{}^1 \\ \hline d_{t3}{}^1 \\ \hline t_{sk1}{}^1 \\ \hline t_{sk2}{}^1 \\ \hline t_{sk3}{}^1 \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Electrical Characteristics - REF/48MHz/SIO $T_A = 0 - 70^{\circ} \text{ C}$; $V_{DD} = 3.3 \text{ V} + -5\%$, $V_{DDL} = 2.5 \text{ V} + -5\%$; $C_L = 20 \text{ pF}$ (unless otherwise stated).

n DD	DDL		,			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH5}	$I_{OH} = -12 \text{ mA}$	2.4	2.6		V
Output Low Voltage	V _{OL5}	$I_{OL} = 10 \text{ mA}$		0.3	0.4	v
Output High Current	I _{OH5}	V _{OH} = 2.0 V		-18	22	mA
Output Low Current	I _{OL5}	V _{OL} = 0.8 V	16	24		mA
Rise Time	t_{r5}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		2.1	4	ns
Fall Time	t_{f5}^{1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		2.1	4	ns
Duty Cycle	d_{t5}^{1}	$V_{\rm T} = 1.5 {\rm V}$	45	51	55	%
Jitter, Cycle-to- Cycle, REF	t _{jcyc-cyc, REF} ¹	$V_{\rm T} = 1.5 \ {\rm V}$		600	1000	ps
Jitter, Cycle-to- Cycle, fixed clock	$t_{jcyc-cyc, fixed}^{1}$	$V_T = 1.5 V$		400	500	ps

General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note.

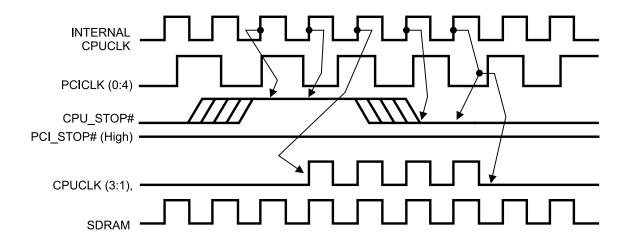
How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2
- ICS clock will *acknowledge*
- Controller (host) sends a dummy command code
- ICS clock will *acknowledge*
- Controller (host) sends a dummy byte count
- ICS clock will *acknowledge*
- Controller (host) starts sending first byte (Byte 0) through byte 5
- ICS clock will *acknowledge* each byte *one at a time*.
- Controller (host) sends a Stop bit

How to Write:						
Controller (Host)	ICS (Slave/Receiver)					
Start Bit	, , , , , , , , , , , , , , , , , , , ,					
Address						
D2 _(H)						
	ACK					
Dummy Command Code						
	ACK					
Dummy Byte Count						
	ACK					
Byte 0						
	ACK					
Byte 1						
	ACK					
Byte 2						
	ACK					
Byte 3						
	ACK					
Byte 4						
	ACK					
Byte 5						
D ()	ACK					
Byte 6	1.0%					
	ACK					
Stop Bit						

Notes:

- 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4 "Block-Read" protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I^2C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

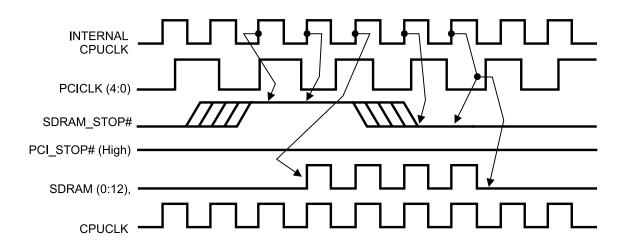

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will *acknowledge*
- ICS clock will send the *byte count*
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 6
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit

How to Read:					
Controller (Host)	ICS (Slave/Receiver)				
Start Bit					
Address					
D3 _(H)					
	ACK				
	Byte Count				
ACK					
	Byte 0				
ACK					
	Byte 1				
ACK					
	Byte 2				
ACK					
	Byte 3				
ACK					
1.01/	Byte 4				
ACK					
101/	Byte 5				
ACK					
101/	Byte 6				
ACK					
Stop Bit	Ш				

CPU_STOP# Timing Diagram

CPU_STOP# is an asychronous input to the clock synthesizer. It is used to turn off the CPU clocks for low power operation. CPU_STOP# is synchronized by the **ICS9248-128**. The minimum that the CPU clock is enabled (CPU_STOP# high pulse) is 100 CPU clocks. All other clocks will continue to run while the CPU clocks are disabled. The CPU clocks will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse. CPU clock on latency is less than 4 CPU clocks and CPU clocks off latency is less than 4 CPU clocks.

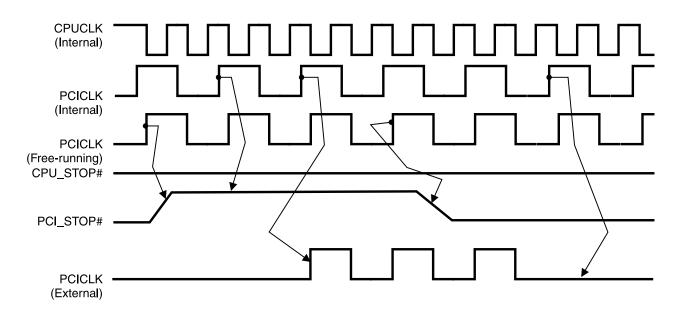


Notes:

- 1. All timing is referenced to the internal CPU clock.
- 2. CPU_STOP# is an asynchronous input and metastable conditions may exist. This signal is synchronized to the CPU clocks inside the ICS9248-128.
- 3. All other clocks continue to run undisturbed. (including SDRAM outputs).

SDRAM_STOP# Timing Diagram

SDRAM_STOP# is an sychronous input to the clock synthesizer. It is used to turn off the CPU clocks for low power operation. SDRAM_STOP# is synchronized by the **ICS9248-128**. All other clocks will continue to run while the SDRAM clocks are disabled. The SDRAM clocks will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse.


Notes:

- 2. SDRAM is an asynchronous input and metastable conditions may exist. This signal is synchronized to
- the SDRAM clocks inside the ICS9248-128.
- 3. All other clocks continue to run undisturbed.

^{1.} All timing is referenced to the internal CPU clock.

PCI_STOP# Timing Diagram

PCI_STOP# is an synchronous input to the **ICS9248-128**. It is used to turn off the PCICLK (0:4) clocks for low power operation. PCI_STOP# is synchronized by the **ICS9248-128** internally. The minimum that the PCICLK (0:4) clocks are enabled (PCI_STOP# high pulse) is at least 10 PCICLK (0:4) clocks. PCICLK (0:4) clocks are stopped in a low state and started with a full high pulse width guaranteed. PCICLK (0:4) clock on latency cycles are only one rising PCICLK clock off latency is one PCICLK clock.

Notes:

- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248 device.)
- 2. PCI_STOP# is an asynchronous input, and metastable conditions may exist. This signal is required to be synchronized inside the ICS9248.
- 3. All other clocks continue to run undisturbed.
- 4. CPU_STOP# is shown in a high (true) state.

Shared Pin Operation -Input/Output Pins

The I/O pins designated by (input/output) on the ICS9248-128 serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

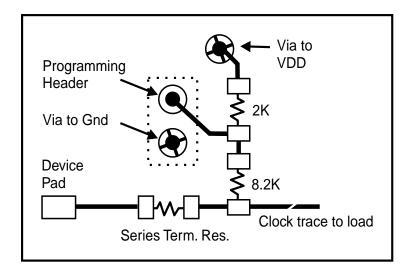
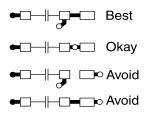
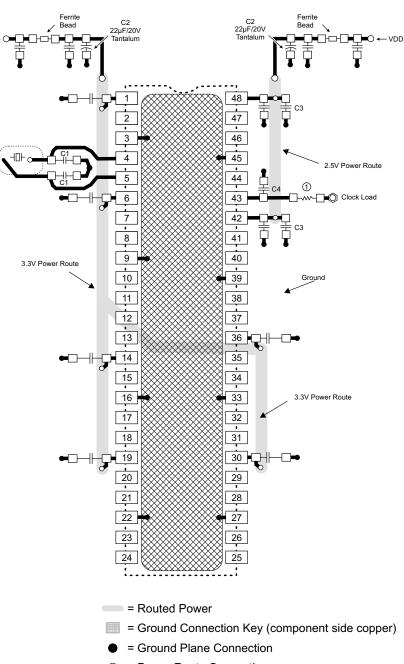


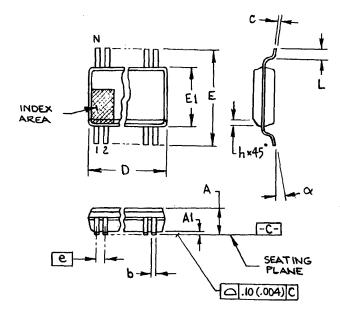
Fig. 1

General Layout Precautions:

1) Use a ground plane on the top layer of the PCB in all areas not used by traces.

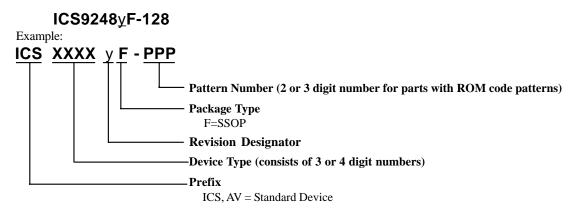

VDD


2) Make all power traces and ground traces as wide as the via pad for lower inductance.


- 1) All clock outputs should have a series terminating resistor, and a 20pF capacitor to ground between the resistor and clock pin. Not shown in all places to improve readibility of diagram.
- 2) Optional crystal load capacitors are recommended. They should be included in the layout but not inserted unless needed.

Connections to VDD:

- = Power Route Connection
- Solder Pads
- Clock Load


300 mil SSOP

SYMBOL	In Millimeters COMMON DIMENSIONS				
	MIN	MAX	MIN	MAX	
А	2.413	2.794	.095	.110	
A1	0.203	0.406	.008	.016	
b	0.203	0.343	.008	.0135	
с	0.127	0.254	.005	.010	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	10.033	10.668	.395	.420	
E1	7.391	7.595	.291	.299	
е	0.635	BASIC	0.025	BASIC	
h	0.381	0.635	.015	.025	
L	0.508	1.016	.020	.040	
Ν	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

D mm.		D (ir	nch)	
Ν	MIN	MAX	MIN	MAX
48	15.748	16.002	.620	.630
			JEDEC MO-118 DOC# 10-0034	6/1/00 REV B

Ordering Information

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/