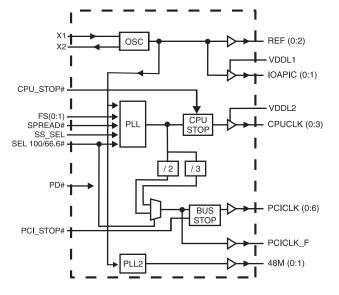


Pentium/Pro/II[™] System Clock Chip

General Description

The **ICS9248-55** is a Clock Synthesizer chip for Pentium and PentiumPro CPU based Desktop/Notebook systems that will provide all necessary clock timing.


Features include four CPU and eight PCI clocks. Three reference outputs are available equal to the crystal frequency. Additionally, the device meets the Pentium power-up stabilization requirement, assuring that CPU and PCI clocks are stable within 2ms after power-up.

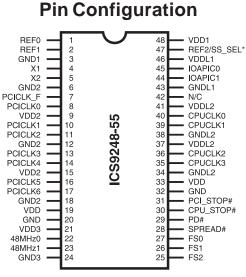
PD# pin enables low power mode by stopping crystal OSC and PLL stages. Other power management features include CPU_STOP#, which stops CPU(0:3) clocks, and PCI_STOP#, which stops PCICLK (0:6) clocks.

High drive CPUCLK outputs typically provide greater than 1 V/ns slew rate into 20pF loads. PCICLK outputs typically provide better than 1V/ns slew rate into 30pF loads while maintaining $50\pm5\%$ duty cycle. The REF clock outputs typically provide better than 0.5V/ns slew rates.

The **ICS9248-55** accepts a 14.318MHz reference crystal or clock as its input and runs on a 3.3V core supply.

Block Diagram

Power Groups


VDD = Supply for PLL core VDD1 = REF (0:2), X1, X2 VDD2 = PCICLK_F, PCICLK (0:6) VDD3 = 48MHz0, 48MHz1 VDDL1 = IOAPIC (0:1) VDDL2 = CPUCLK (0:3)

Ground Groups

GND = Ground for PLL core GND1 = REF (0:2), X1, X2 GND2 = PCICLK F, PCICLK (0:6) GND3 = 48MHz0, 48MHz1 GNDL1 = IOAPIC (0:1) GNDL2 = CPUCLK (0:3)

Features

- Generates system clocks for CPU, IOAPIC, PCI, plus 14.314 MHz REF (0:2), USB, and Super I/O
- Supports single or dual processor systems
- Supports Spread Spectrum modulation for CPU & PCI clocks, down spread -0.5%
- Skew from CPU (earlier) to PCI clock (rising edges for 100/33.3MHz) 1.5 to 4ns
- Two fixed outputs at 48MHz.
- Separate 2.5V and 3.3V supply pins
- 2.5V or 3.3V output: CPU, IOAPIC
- 3.3V outputs: PCI, REF, 48MHz
- No power supply sequence requirements
- Uses external 14.318MHz crystal, no external load cap required for $C_L{=}18pF$ crystal
- 48 pin 300 mil SSOP

48-Pin SSOP

* Internal Pull-down Resistor of 240K to GND. on indicated inputs

Pentium is a trademark on Intel Corporation.

© 2019 Renesas Electronics Corporation

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1, 2	REF0, REF1	OUT	14.318MHz clock output
3	GND1	PWR	Ground for REF outputs
4	X1	IN	XTAL_IN 14.318MHz Crystal input, has internal 33pF load cap and feed back resistor from X2
5	X2	OUT	XTAL_OUT Crystal output, has internal load cap 33pF
6, 12, 18	GND2	PWR	Ground for PCI outputs
7	PCICLK_F	OUT	Free Running PCI output
8, 10, 11, 13, 14, 16, 17	PCICLK (0:6)	OUT	PCI clock outputs. TTL compatible 3.3V
9, 15	VDD2	PWR	Power for PCICLK outputs, nominally 3.3V
19, 33	VDD	PWR	Isolated power for core, nominally 3.3V
20, 32	GND	PWR	Isolated ground for core
21	VDD3	PWR	Power for 48MHz outputs, nominally 3.3V
22, 23	48MHz (0:1)	OUT	48MHz outputs
24	GND3	PWR	Ground for 48MHz outputs
25, 26, 27	FS (0:2)	IN	Frequency Select pins
28	SPREAD#	IN	Enables Spread Spectrum feature when LOW
29	PD#	IN	Powers down chip, active low
30	CPU_STOP#	IN	Halts CPU clocks at logic "0" level when low
31	PCI_STOP#	IN	Halts PCI Bus at logic "0" level when low
37, 41	VDDL2	PWR	Power for CPU outputs, nominally 2.5V
34, 38	GNDL2	PWR	Ground for CPU outputs.
35, 36, 39, 40	CPUCLK (3:0)	OUT	CPU and Host clock outputs @ 2.5V
42	N/C	-	Not internally connected
43	GNDL1	PWR	Ground for IOAPIC outputs
44, 45	IOAPIC (0:1)	OUT	IOAPIC outputs (14.318MHz) @ 2.5V
46	VDDL1	PWR	Power for IOAPIC outputs, nominally 2.5V
47	SS_SEL	IN	±.25% Spread Spectrum Selector at power up. Logic 0 for Downspread Logic 1 for Centerspread
	REF2	OUT	14.318MHz clock output
48	VDD1	PWR	Supply for REF (0:2), X1, X2, nominal 3.3V

Select Functions

Functionality	CPU	PCI, PCI_F	REF	IOAPIC	48 MHz Selection
Tristate	HI - Z	HI - Z	HI - Z	HI - Z	HI - Z
Testmode	TCLK/21	TCLK/6 ¹	TCLK ¹	TCLK ¹	TCLK/21
Spread Spectrum	Modulated ²	Modulated ²	14.318MHz	14.318MHz	48.0MHz

FS2	FS1	FS0	CPU MHz	PCI MHz
0	0	0	133	33.25
0	0	1	83.3	41.65
0	1	0	75	37.5
0	1	1	66.6	33.3
1	0	0	124	41.33
1	0	1	133	44.3
1	1	0	112	37.3
1	1	1	100	33.3

© 2019 Renesas Electronics Corporation

Power Management

Clock Enable Configuration

CPU_STOP#	PCI_STOP#	PWR_DWN#	CPUCLK	PCICLK	Other Clocks, REF, IOAPICs, 48 MHz 0 48 MHz 1	Crystal	VCOs
Х	Х	0	Low	Low	Stopped	Off	Off
0	0	1	Low	Low	Running	Running	Running
0	1	1	Low	Running	Running	Running	Running
1	0	1	Running	Low	Running	Running	Running
1	1	1	Running	Running	Running	Running	Running

Full clock cycle timing is guaranteed at all times after the system has initially powered up except where noted. During power up and power down operations using the PD# select pin will not cause clocks of a shorter or longer pulse than that of the running clock. The first clock pulse coming out of a stopped clock condition may be slightly distorted due to clock network charging circuitry. Board routing and signal loading may have a large impact on the initial clock distortion also.

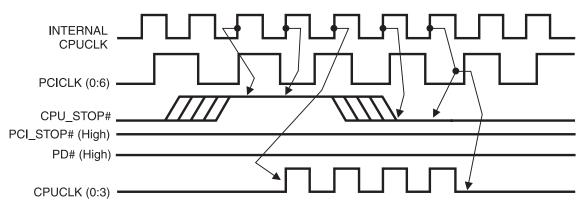
ICS9248-55 Power Management Requirements

SIGNAL	SIGNAL STATE	Latency No. of rising edges of free running PCICLK
CPU_ STOP#	0 (Disabled) ²	1
	1 (Enabled) ¹	1
PCI_STOP#	0 (Disabled) ²	1
	1 (Enabled) ¹	1
PD#	1 (Normal Operation) ³	3ms
	0 (Power Down) ⁴	2max

Notes.

1. Clock on latency is defined from when the clock enable goes active to when the first valid clock comes out of the device.

2. Clock off latency is defined from when the clock enable goes inactive to when the last clock is driven low out of the device.


3. Power up latency is when PD# goes inactive (high) to when the first valid clocks are output by the device.

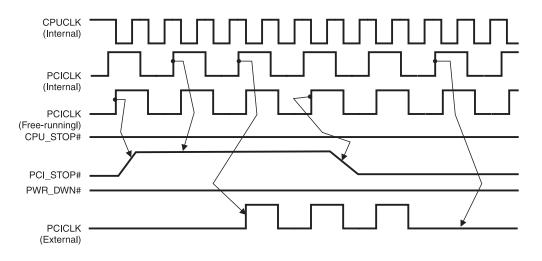
4. Power down has controlled clock counts applicable to CPUCLK, PCICLK only.

The REF and IOAPIC will be stopped independent of these.

CPU_STOP# Timing Diagram

CPUSTOP# is an asychronous input to the clock synthesizer. It is used to turn off the CPUCLKs for low power operation. CPU_STOP# is synchronized by the **ICS9248-55**. The minimum that the CPUCLK is enabled (CPU_STOP# high pulse) is 100 CPUCLKs. All other clocks will continue to run while the CPUCLKs are disabled. The CPUCLKs will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse. CPUCLK on latency is less than 4 CPUCLKs and CPUCLKs.

Notes:

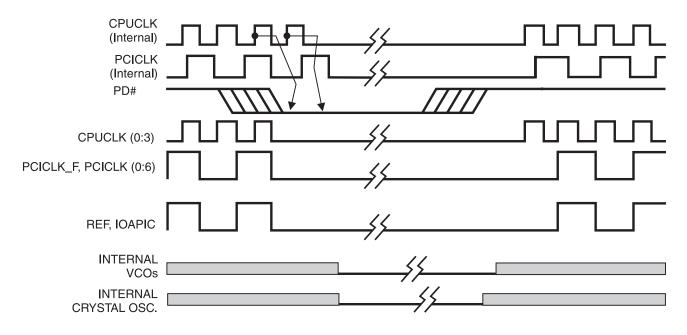

1. All timing is referenced to the internal CPUCLK.

2. CPU_STOP# is an asynchronous input and metastable conditions may exist. This signal is synchronized to

- the CPUCLKs inside the ICS9248-55.
- 3. All other clocks continue to run undisturbed.
- 4. PD# and PCI_STOP# are shown in a high (true) state.

PCI_STOP# Timing Diagram

PCI_STOP# is an asynchronous input to the **ICS9248-55**. It is used to turn off the PCICLK (0:6) clocks for low power operation. PCI_STOP# is synchronized by the **ICS9248-55** internally. The minimum that the PCICLK (0:6) clocks are enabled (PCI_STOP# high pulse) is at least 10 PCICLK (0:6) clocks. PCICLK (0:6) clocks are stopped in a low state and started with a full high pulse width guaranteed. PCICLK (0:6) clock on latency cycles are only one rising PCICLK. Clock off latency is one PCICLK clock.



Notes:

- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248 device.)
- 2. PCI_STOP# is an asynchronous input, and metastable conditions may exist. This signal is required to be synchronized
- inside the ICS9248-55.
- 3. All other clocks continue to run undisturbed.
- 4. PD# and CPU_STOP# are shown in a high (true) state.

PD# Timing Diagram

The power down selection is used to put the part into a very low power state without turning off the power to the part. PD# is an asynchronous active low input. This signal is synchronized internally by the **ICS9248-55** prior to its control action of powering down the clock synthesizer. Internal clocks will not be running after the device is put in power down state. When PD# is active (low) all clocks are driven to a low state and held prior to turning off the VCOs and the Crystal oscillator. The power on latency is guaranteed to be less than 3 ms. The power down latency is less than three CPUCLK cycles. PCI_STOP# and CPU_STOP# are don't care signals during the power down operations.

Notes:

- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248 device).
- 2. PD# is an asynchronous input and metastable conditions may exist. This signal is synchronized inside the ICS9248.
- 3. The shaded sections on the VCO and the Crystal signals indicate an active clock is being generated.

Absolute Maximum Ratings

Supply Voltage	7.0 V
Logic Inputs	GND –0.5 V to $~V_{DD}$ +0.5 V
Ambient Operating Temperature	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature	-65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

	*****8* * DD	$v_{\text{DDL}} = 5.5 v_{17} 576 \text{ (diffess otherwise stated)}$	-		-	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V _{IH}		2		V _{DD} +0.3	V
Input Low Voltage	V _{IL}		V _{SS} -0.3		0.8	V
Input High Current	I_{IH}	$V_{IN} = V_{DD}$		0.1	5	μA
Input Low Current	I _{IL1}	$V_{IN} = 0$ V; Inputs with no pull-up resistors	-5	2.0		μA
Input Low Current	I _{IL2}	$V_{IN} = 0$ V; Inputs with pull-up resistors	-200	-100		μA
Operating	I _{DD3.3OP66}	$C_L = 0 \text{ pF}$; Select @ 66MHz		60	170	mA
Supply Current	I _{DD3.3OP100}	$C_L = 0 \text{ pF}$; Select @ 100MHz		66	170	mA
Power Down Supply Current	I _{DD3.3PD}	$C_L = 0$ pF; With input address to Vdd or GND		70	600	μΑ
Input frequency	Fi	$V_{DD} = 3.3 V;$	11	14.318	16	MHz
Is much Compacitor and	C _{IN}	Logic Inputs			5	pF
Input Capacitance ¹	C _{INX}	X1 & X2 pins	27	36	45	pF
Transition Time ¹	T _{trans}	To 1st crossing of target Freq.			3	ms
Settling Time ¹	T _s	From 1st crossing to 1% target Freq.		5		ms
Clk Stabilization ¹	T _{STAB}	From $V_{DD} = 3.3$ V to 1% target Freq.			3	ms
Skew ¹	T _{CPU-PCI1}	$V_{\rm T} = 1.5 {\rm V};$	1.5	3	4	ns

 $T_A = 0 - 70C$; Supply Voltage $V_{DD} = V_{DDL} = 3.3 \text{ V} + 7.5\%$ (unless otherwise stated)

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0$ - 70C; Supply Voltage $V_{DD} = 3.3 \text{ V} + -5\%$, $V_{DDL} = 2.5 \text{ V} + -5\%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating	I _{DD2.50P66}	$C_L = 0 \text{ pF}$; Select @ 66.8 MHz		16	72	mA
Supply Current	I _{DD2.50P100}	$C_L = 0 \text{ pF}$; Select @ 100 MHz		23	100	mA
Skew ¹	t _{CPU-PCI2}	$V_{T} = 1.5 \text{ V}; V_{TL} = 1.25 \text{ V}$	1.5	3	4	ns

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPUCLK

$I_A = 0 - 70C$; $V_{DD} = 3.5 V + 7.5\%$, $V_{DDL} = 2.5 V + 7.5\%$; $C_L = 10 - 20 \text{ pF}$ (unless otherwise stated)								
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
Output High Voltage	V _{OH2B}	$I_{OH} = -12.0 \text{ mA}$	2	2.3		V		
Output Low Voltage	V _{OL2B}	$I_{OL} = 12 \text{ mA}$		0.2	0.4	V		
Output High Current	I _{OH2B}	$V_{OH} = 1.7 V$		-41	-19	mA		
Output Low Current	I _{OL2B}	$V_{OL} = 0.7 V$	19	37		mA		
Rise Time	t_{r2B}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.0 \text{ V}$		1.25	1.6	ns		
Fall Time	t_{f2B}^{1}	$V_{OH} = 2.0 \text{ V}, V_{OL} = 0.4 \text{ V}$		1	1.6	ns		
Duty Cycle	d_{t2B}^{1}	$V_{\rm T} = 1.25 \ {\rm V}$	45	48	55	%		
Skew	t _{sk2B} ¹	$V_{\rm T} = 1.25 \ {\rm V}$		30	175	ps		
Jitter, Cycle-to-cycle	t _{jcyc-cyc2B} ¹	$V_{\rm T} = 1.25 \ {\rm V}$		150	200	ps		
Jitter, One Sigma	t _{j1s2B} ¹	$V_{\rm T} = 1.25 \ {\rm V}$		40	150	ps		
Jitter, Absolute	t _{jabs2B} ¹	$V_{\rm T} = 1.25 \ {\rm V}$	-250	140	+250	ps		

MAX UNITS

0.4

-28

2

2

55

250

3

5

V V

mА

mА

ns

ns

%

ps

%

%

TYP 2.2

0.33

-41

37

1.5

1.3

54

60

1

45

-5

T. = 0 - 70C: V_{PD} = 3.3 V +/-5%. V_{PDV} = 2.5 V +/-5%: C_{I} = 10 - 20 pF (unless otherwise stated)

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - IOAPIC

$T_A = 0 - 70C; V_{DD} = 3.3$	$V + -5\%, V_{DI}$	$T_A = 0 - 70C; V_{DD} = 3.3 V + -5\%, V_{DDL} = 2.5 V + -5\%; C_L = 20 pF$							
PARAMETER	SYMBOL	CONDITIONS	MIN						
Output High Voltage	V _{OH4B}	$I_{OH} = -18 \text{ mA}$	2						
Output Low Voltage	V _{OL4B}	$I_{OL} = 18 \text{ mA}$							
Output High Current	I _{OH4B}	$V_{OH} = 1.7 V$							
Output Low Current	I _{OL4B}	$V_{OL} = 0.7 V$	29						

 $V_{\rm T} = 1.25 \ {\rm V}$

 $V_{T} = 1.25 V$

 $V_{\rm T} = 1.25 \, \rm V$

 $V_{\rm T} = 1.25 \ {\rm V}$

 $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.0 \text{ V}$

 $V_{OH} = 2.0 \text{ V}, V_{OL} = 0.4 \text{ V}$

T_{r4B}

 T_{f4B}

D_{t4B}

 t_{sk4B}^{1}

T_{j1s4B}

 T_{jabs4B}

¹Guaranteed by design, not 100% tested in production.

Rise Time¹

Fall Time¹

Duty Cycle¹

Skew¹

Jitter, One Sigma¹

Jitter, Absolute¹

Electrical Characteristics - PCICLK

 $T_A = 0 - 70C; V_{DD} = V_{DDL} = 3.3 V + -5\%; C_L = 30 pF$

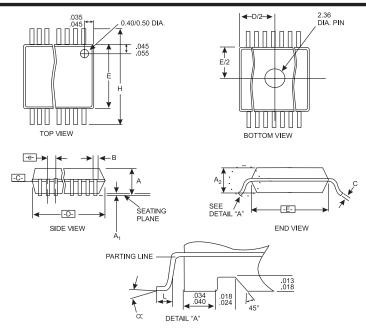
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH1}	$I_{OH} = -11 \text{ mA}$	2.4	3.1		V
Output Low Voltage	V _{OL1}	$I_{OL} = 9.4 \text{ mA}$		0.1	0.4	V
Output High Current	I _{OH1}	$V_{OH} = 2.0 V$		-62	-22	mA
Output Low Current	I _{OL1}	$V_{OL} = 0.8 V$	16	57		mA
Rise Time ¹	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.5	2	ns
Fall Time ¹	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.1	2	ns
Duty Cycle ¹	d _{t1}	$V_{\rm T} = 1.5 {\rm V}$	45	50	55	%
Skew ¹	t _{sk1}	$V_{\rm T} = 1.5 {\rm V}$		140	500	ps
Jitter, One Sigma ¹	t _{j1s1}	$V_{\rm T} = 1.5 {\rm V}$		17	150	ps
Jitter, Absolute ¹	t _{jabs1}	$V_{\rm T} = 1.5 {\rm V}$	-500	70	500	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - REF

 $T_A = 0 - 70C$; $V_{DD} = V_{DDL} = 3.3 \text{ V} + -5\%$; $C_L = 10 - 20 \text{ pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH5}	$I_{OH} = -12 \text{ mA}$	2.6	3.1		V
Output Low Voltage	V _{OL5}	$I_{OL} = 9 \text{ mA}$		0.17	0.4	V
Output High Current	I _{OH5}	$V_{OH} = 2.0 V$		-44	-22	mA
Output Low Current	I _{OL5}	$V_{OL} = 0.8 V$	29	42		mA
Rise Time ¹	t _{r5}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.4	2	ns
Fall Time ¹	t _{f5}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.1	2	ns
Duty Cycle ¹	d _{t5}	$V_{\rm T} = 1.5 {\rm V}$	45	53	55	%
Jitter, One Sigma ¹	t _{j1s5}	$V_{\rm T} = 1.5 {\rm V}$		1	3	%
Jitter, Absolute ¹	t _{jabs5}	$V_{\rm T} = 1.5 {\rm V}$		3	5	%

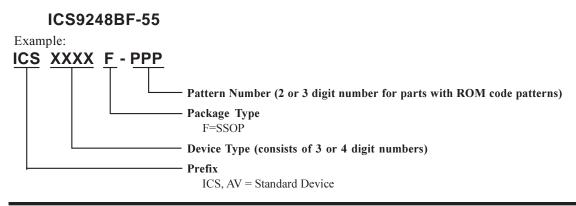

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - 48 MHz

$T_A = 0^{-7} 0$											
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS					
Frequency Accuracy ¹	F _{ACC48m}				167	ppm					
Output High Voltage	V _{OH5}	$I_{OH} = -12 \text{ mA}$	2.6	3		V					
Output Low Voltage	V _{OL5}	$I_{OL} = 9 \text{ mA}$		0.14	0.4	V					
Output High Current	I _{OH5}	$V_{OH} = 2.0 V$		-44	-22	mA					
Output Low Current	I _{OL5}	$V_{OL} = 0.8 V$	16	42		mA					
Rise Time ¹	t _{r5}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.2	4	ns					
Fall Time ¹	t _{f5}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.2	4	ns					
Duty Cycle ¹	d _{t5}	$V_{\rm T} = 1.5 {\rm V}$	45	52	55	%					
Jitter, One Sigma ¹	t _{j1s5}	$V_{\rm T} = 1.5 \rm V$		1	3	%					
Jitter, Absolute ¹	t _{jabs5}	$V_{\rm T} = 1.5 ~{\rm V}$		3	5	%					

 $T_A = 0 - 70C; V_{DD} = V_{DDL} = 3.3 V + -5\%; C_L = 10 - 20 pF$ (unless otherwise stated)

¹Guaranteed by design, not 100% tested in production.



SSOP Package

SYMBOL	COMMON DIMENSIONS			VARIATIONS	D			Ν
	MIN.	NOM.	MAX.		MIN.	NOM.	MAX.	
А	.095	.101	.110	AC	.620	.625	.630	48
A1	.008	.012	.016	AD	.720	.725	.730	56
A2	.088	.090	.092					
В	.008	.010	.0135					
С	.005	.006	.0085					
D	See Variations							
Е	.292	.296	.299					
e	0.025 BSC			1				
Н	.400	.406	.410	1				
h	.010	.013	.016	1				
L	.024	.032	.040					
N	See Variations							
~	0°	5°	8°]				
Х	.085	.093	.100					

This table in inches

Ordering Information

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/