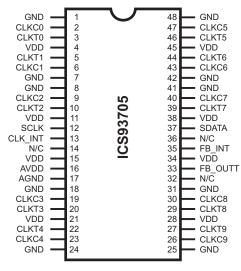


# **DDR Phase Lock Loop Zero Delay Clock Buffer**

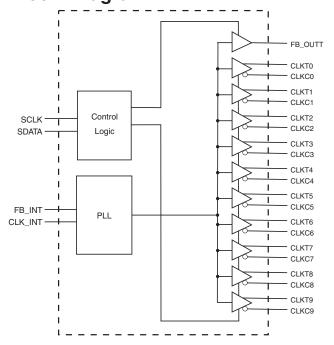
#### **Recommended Application:**

DDR Zero Delay Clock Buffer


#### **Product Description/Features:**

- Low skew, low jitter PLL clock driver
- I<sup>2</sup>C for functional and output control
- Feedback pins for input to output synchronization
- · Spread Spectrum tolerant inputs
- 3.3V tolerant CLK\_INT input

### **Switching Characteristics:**


- PEAK PEAK jitter (66MHz): <120ps</li>
- PEAK PEAK jitter (>100MHz): <75ps</li>
- CYCLE CYCLE jitter (66MHz):<120ps</li>
- CYCLE CYCLE jitter (>100MHz):<65ps
- OUTPUT OUTPUT skew: <100ps
- Output Rise and Fall Time: 450ps 950ps
- DUTY CYCLE: 49% 51%

### **Pin Configuration**



48-Pin SSOP

## **Block Diagram**



## **Functionality**

| II.           | IPUTS                 |      | OUTP | PLL State |              |  |
|---------------|-----------------------|------|------|-----------|--------------|--|
| AVDD          | CLK_INT               | CLKT | CLKC | FB_OUTT   | PLL State    |  |
| 2.5V<br>(nom) | L                     | L    | Н    | L         | on           |  |
| 2.5V<br>(nom) | Н                     | Н    | L    | Н         | on           |  |
| 2.5V<br>(nom) | <20MHz <sup>(1)</sup> | Z    | Z    | Z         | off          |  |
| GND           | L                     | L    | Н    | L         | Bypassed/off |  |
| GND           | Н                     | Н    | L    | Н         | Bypassed/off |  |

0418D-04/28/05



# **Pin Descriptions**

| PIN NUMBER                              | PIN NAME  | TYPE | DESCRIPTION                                                                                                                                 |
|-----------------------------------------|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 7, 8, 18, 24, 25,<br>31, 41, 42, 48  | GND       | PWR  | Ground                                                                                                                                      |
| 26, 30, 40, 43, 47,<br>23, 19, 9, 6, 2  | CLKC(9:0) | OUT  | "Complementary" clocks of differential pair outputs.                                                                                        |
| 27, 29, 39, 44, 46,<br>22, 20, 10, 5, 3 | CLKT(9:0) | OUT  | "True" Clock of differential pair outputs.                                                                                                  |
| 4, 11, 15, 21, 28, 34, 38, 45,          | VDD       | PWR  | Power supply 2.5V                                                                                                                           |
| 12                                      | SCLK      | IN   | Clock input of I <sup>2</sup> C input, 5V tolerant input                                                                                    |
| 13                                      | CLK_INT   | IN   | "True" reference clock input, 3.3V tolerant input                                                                                           |
| 14, 32, 36                              | N/C       | -    | Not connected                                                                                                                               |
| 16                                      | AVDD      | PWR  | Analog power supply, 2.5V                                                                                                                   |
| 17                                      | AGND      | PWR  | Analog ground.                                                                                                                              |
| 33                                      | FB_OUTT   | OUT  | "True" Feedback output, dedicated for external feedback. It switches at the same frequency as the CLK. This output must be wired to FB_INT. |
| 35                                      | FB_INT    | IN   | "True" Feedback input, provides feedback signal to the internal PLL for synchronization with CLK_INT to eliminate phase error.              |
| 37                                      | SDATA     | I/O  | Data pin for I <sup>2</sup> C circuitry 5V tolerant                                                                                         |

Byte 0: Output Control (1= enable, 0 = disable)

| BIT   | PIN# | PWD | DESCRIPTION |
|-------|------|-----|-------------|
| Bit 7 | -    | 1   | Reserved    |
| Bit 6 | -    | 1   | Reserved    |
| Bit 5 | -    | 1   | Reserved    |
| Bit 4 | -    | 1   | Reserved    |
| Bit 3 | -    | 1   | Reserved    |
| Bit 2 | -    | 1   | Reserved    |
| Bit 1 | -    | 1   | Reserved    |
| Bit 0 | -    | 1   | Reserved    |

Byte 1: Output Control (1= enable, 0 = disable)

| BIT   | PIN# | PWD | DESCRIPTION |
|-------|------|-----|-------------|
| Bit 7 | -    | 1   | Reserved    |
| Bit 6 | -    | 1   | Reserved    |
| Bit 5 | -    | 1   | Reserved    |
| Bit 4 | -    | 1   | Reserved    |
| Bit 3 | -    | 1   | Reserved    |
| Bit 2 | -    | 1   | Reserved    |
| Bit 1 | -    | 1   | Reserved    |
| Bit 0 | -    | 1   | Reserved    |

# RENESAS

Byte 2: Reserved (1= enable, 0 = disable)

| BIT   | PIN# | PWD | DESCRIPTION |
|-------|------|-----|-------------|
| Bit 7 | ı    | 1   | Reserved    |
| Bit 6 | -    | 1   | Reserved    |
| Bit 5 | -    | 1   | Reserved    |
| Bit 4 | -    | 1   | Reserved    |
| Bit 3 | -    | 1   | Reserved    |
| Bit 2 | -    | 1   | Reserved    |
| Bit 1 | -    | 1   | Reserved    |
| Bit 0 | -    | 1   | Reserved    |

Byte 3: Reserved (1= enable, 0 = disable)

| BIT   | PIN# | PWD | DESCRIPTION |
|-------|------|-----|-------------|
| Bit 7 | -    | 1   | Reserved    |
| Bit 6 | -    | 1   | Reserved    |
| Bit 5 | -    | 1   | Reserved    |
| Bit 4 | -    | 1   | Reserved    |
| Bit 3 | -    | 1   | Reserved    |
| Bit 2 | -    | 1   | Reserved    |
| Bit 1 | -    | 1   | Reserved    |
| Bit 0 | -    | 1   | Reserved    |

Byte 4: Reserved (1= enable, 0 = disable)

| PIN# | PWD  | DESCRIPTION                                  |  |  |  |  |
|------|------|----------------------------------------------|--|--|--|--|
| -    | 1    | Reserved                                     |  |  |  |  |
| -    | 1    | Reserved                                     |  |  |  |  |
| -    | 1    | Reserved                                     |  |  |  |  |
| -    | 1    | Reserved                                     |  |  |  |  |
| -    | 1    | Reserved                                     |  |  |  |  |
| -    | 1    | Reserved                                     |  |  |  |  |
| -    | 1    | Reserved                                     |  |  |  |  |
| -    | 1    | Reserved                                     |  |  |  |  |
|      | PIN# | PIN# PWD - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |  |  |  |  |

Byte 5: Reserved (1= enable, 0 = disable)

| BIT  | PIN#   | PWD | DESCRIPTION |
|------|--------|-----|-------------|
| Bit7 | 3,2    | 1   | CLK0 (T&C)  |
| Bit6 | -      | 1   | -           |
| Bit5 | 10, 9  | 1   | CLK2 (T&C)  |
| Bit4 | 20, 19 | 1   | CLK3 (T&C)  |
| Bit3 | 22, 23 | 1   | CLK4 (T&C)  |
| Bit2 | 27, 26 | 1   | CLK9 (T&C)  |
| Bit1 | -      | 1   | Reserved    |
| Bit0 | -      | 1   | Reserved    |

Byte 6: Reserved (1= enable, 0 = disable)

| BIT  | PIN#   | PWD | DESCRIPTION     |
|------|--------|-----|-----------------|
| Bit7 | -      | 0   | Reserved (Note) |
| Bit6 | - 0    |     | Reserved (Note) |
| Bit5 | -      | 0   | Reserved (Note) |
| Bit4 | 29, 30 | 1   | CLK8 (T&C)      |
| Bit3 | 39, 40 | 1   | CLK7 (T&C)      |
| Bit2 | 44, 43 | 1   | CLK6 (T&C)      |
| Bit1 | 46, 47 | 1   | CLK5 (T&C)      |
| Bit0 | -      | 1   | Reserved        |

Note: Don't write into these registers (7:5), writing into these registers can cause malfunction.



### **Absolute Maximum Ratings**

Supply Voltage (VDD & AVDD).....--0.5V to 3.6V

Logic Inputs . . . . . . . . . . . . . GND -0.5 V to  $V_{DD}$  +0.5 V

Ambient Operating Temperature . . . . . . .  $0^{\circ}$ C to  $+85^{\circ}$ C Storage Temperature . . . . . . . . . .  $-65^{\circ}$ C to  $+150^{\circ}$ C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

### **Electrical Characteristics - Input / Supply / Common Output Parameters**

 $T_A = 0 - 70^{\circ}C$ ; Supply Voltage  $V_{DD} = 2.5 V + -0.2 V$  (unless otherwise stated)

| PARAMETER                        | SYMBOL             | CONDITIONS                                  | MIN | TYP  | MAX | UNITS |
|----------------------------------|--------------------|---------------------------------------------|-----|------|-----|-------|
| Input High Current               | I <sub>IH</sub>    | $V_I = V_{DD}$ or GND                       |     |      |     | μΑ    |
| Input Low Current                | I <sub>IL</sub>    | $V_I = V_{DD}$ or GND                       |     |      |     | μА    |
| Operating Cumply Current         | I <sub>DD2.5</sub> | C <sub>L</sub> = 0 pF at 133 MHz            |     | 245  | 300 | mA    |
| Operating Supply Current         | I <sub>DDPD</sub>  | $C_L = 0 pF$                                |     |      | 100 | μА    |
| Output High Current              | I <sub>OH</sub>    | $V_{DD} = 2.3V$ , $V_{OUT} = 1V$            |     | -43  | -18 | mA    |
| Output High Current              | I <sub>OL</sub>    | $V_{DD} = 2.3V, V_{OUT} = 1.2V$             | 26  | 43   |     | mA    |
| High Impedance Output<br>Current | I <sub>OZ</sub>    | $V_{DD} = 2.7V$ , $V_{OUT} = V_{DD}$ or GND |     |      | 10  | μА    |
| Input Clamp Voltage              | V <sub>IK</sub>    | lin = -18 mA;                               |     |      |     | V     |
| Lligh lovel Output Voltage       | V                  | $V_{DD}$ = min to max, $I_{OH}$ = -1mA      | 2.1 | 2.42 |     | V     |
| High-level Output Voltage        | $V_{OH}$           | $V_{DD} = 2.3V, I_{OH} = -12mA$             |     | 1.87 |     | V     |
| Low lovel Output Voltage         | V <sub>OL</sub>    | $V_{DD}$ = min to max, $I_{OH}$ = 1mA       |     | 0.04 | 0.1 | V     |
| Low-level Output Voltage         |                    | $V_{DD} = 2.3V, I_{OH} = 12mA$              |     | 0.35 | 0.6 | V     |
| Input Capacitance <sup>1</sup>   | C <sub>IN</sub>    | $V_I = V_{DD}$ or GND                       |     |      |     | pF    |
| Output Capacitance <sup>1</sup>  | C <sub>OUT</sub>   | $V_I = V_{DD}$ or GND                       |     | 3    |     | pF    |

<sup>&</sup>lt;sup>1</sup> Guaranteed by design, not 100% tested in production.



### **Recommended Operating Condition**

T<sub>A</sub> = 0 - 70°C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

| 7 117                      | 3                                  | <u>′</u>   | 1            |     | ,            |        |
|----------------------------|------------------------------------|------------|--------------|-----|--------------|--------|
| PARAMETER                  | SYMBOL                             | CONDITIONS | MIN          | TYP | MAX          | UNITS  |
| Analog/core supply voltage | V <sub>DD</sub> , A <sub>VDD</sub> |            | 2.3          | 2.5 | 2.7          | \<br>\ |
| loon to valtage lavel      | $V_{IL}$                           |            | -            |     | VDD/2 - 0.5V | V      |
| Input voltage level        | V <sub>IH</sub>                    |            | VDD/2 + 0.5V |     | -            | ٧      |
| Input duty cycle           | I <sub>DC</sub>                    |            | 40           |     | 60           | %      |
| Input max jitter           | I <sub>TCYC</sub>                  |            |              | -   | 500          | ps     |

### **Timing Requirements**

 $T_A = 0 - 70C$ ; Supply Voltage AV<sub>DD</sub>,  $V_{DD} = 2.5 \text{ V} + /-0.2 \text{V}$  (unless otherwise stated)

| PARAMETER                              | SYMBOL             | CONDITIONS                                   | MIN | TYP | MAX | UNITS |
|----------------------------------------|--------------------|----------------------------------------------|-----|-----|-----|-------|
| Operating Clock Frequency <sup>1</sup> | freq <sub>op</sub> |                                              | 66  |     | 170 | MHz   |
| Input Clock Duty Cycle <sup>1</sup>    | $d_{tin}$          |                                              | 40  |     | 60  | %     |
| Clock Stabilization <sup>1</sup>       | t <sub>STAB</sub>  | from $V_{DD} = 2.5 V$ to 1% target frequency |     |     | 100 | μs    |

<sup>1.</sup> Guaranteed by design, not 100% tested in production.

### **Switching Characteristics**

 $T_A = 0 - 70C$ ; Supply Voltage  $V_{DD} = 2.5 \text{ V} + /-0.2 \text{V}$  (unless otherwise stated)

| PARAMETER                                                             | SYMBOL           | CONDITIONS                                                 | MIN  | TYP | MAX | UNITS |
|-----------------------------------------------------------------------|------------------|------------------------------------------------------------|------|-----|-----|-------|
| Absolute Jitter <sup>1</sup>                                          | $t_{ m jabs}$    | 66 MHz                                                     |      |     | 120 | no    |
|                                                                       |                  | 100 / 125 / 133 / 167 MHz                                  |      |     | 75  | ps    |
| Cycle to cycle Jitter <sup>1,2</sup>                                  | t <sub>c-c</sub> | 66 MHz                                                     |      | 50  | 110 | no    |
|                                                                       |                  | 100 / 125 / 133 / 167 MHz                                  |      | 35  | 65  | ps    |
| Phase Error <sup>1</sup>                                              | t <sub>pe</sub>  | with input clock 0-2.5V 0.8ns rise/fall                    | -150 | 50  | 150 | ps    |
| Output to output Skew <sup>1</sup>                                    | $T_{skew}$       | with input clock 0-2.5V 0.8ns rise/fall                    |      | 40  | 100 | ps    |
| Low-to-high level Propagation<br>Delay Time, Bypass Mode <sup>1</sup> | t <sub>PLH</sub> | CLK_IN to any output, Load = 120W / 12 pF                  | 4    | 4.5 | 6   | ns    |
| Pulse Skew <sup>1</sup>                                               | $T_{skewp}$      |                                                            |      |     | 100 | ps    |
| Duty Cycle (differential) <sup>1,3</sup>                              | $D_{C}$          | no loads, 66 MHz to 167 MHz                                | 49   | 50  | 51  | %     |
| Rise Time, Fall Time <sup>1</sup>                                     | $t_R, t_F$       | Single-ended 20 - 80 %; Load = $120\Omega / 12 \text{ pF}$ | 450  | 550 | 950 | ps    |

- 1. Guaranteed by design, not 100% tested in production.
- 2. Refers to transistion on non-inverting period.
- 3. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle =  $t_{wH}/t_C$ , where the cycle time ( $t_C$ ) decreases as the frequency increases.



### General I<sup>2</sup>C serial interface information

The information in this section assumes familiarity with  $I^2C$  programming. For more information, contact ICS for an  $I^2C$  programming application note.

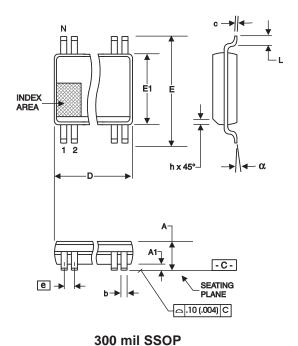
### **How to Write:**

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4 (H)
- ICS clock will *acknowledge*
- Controller (host) sends a dummy command code
- ICS clock will acknowledge
- Controller (host) sends a dummy byte count
- ICS clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 6
- ICS clock will acknowledge each byte one at a time.
- Controller (host) sends a Stop bit

| How to Write:      |                      |  |  |  |
|--------------------|----------------------|--|--|--|
| Controller (Host)  | ICS (Slave/Receiver) |  |  |  |
| Start Bit          |                      |  |  |  |
| Address            |                      |  |  |  |
| D4 <sub>(H)</sub>  |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Dummy Command Code |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Dummy Byte Count   |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Byte 0             |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Byte 1             |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Byte 2             |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Byte 3             |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Byte 4             |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Byte 5             |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Byte 6             |                      |  |  |  |
|                    | ACK                  |  |  |  |
| Stop Bit           |                      |  |  |  |

### How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D5 (H)
- ICS clock will acknowledge
- ICS clock will send the *byte count*
- · Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 6
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit


| How to Read:      |                      |  |  |  |
|-------------------|----------------------|--|--|--|
| Controller (Host) | ICS (Slave/Receiver) |  |  |  |
| Start Bit         |                      |  |  |  |
| Address           |                      |  |  |  |
| D5 <sub>(H)</sub> |                      |  |  |  |
|                   | ACK                  |  |  |  |
|                   | Byte Count           |  |  |  |
| ACK               |                      |  |  |  |
|                   | Byte 0               |  |  |  |
| ACK               |                      |  |  |  |
|                   | Byte 1               |  |  |  |
| ACK               |                      |  |  |  |
|                   | Byte 2               |  |  |  |
| ACK               |                      |  |  |  |
|                   | Byte 3               |  |  |  |
| ACK               |                      |  |  |  |
|                   | Byte 4               |  |  |  |
| ACK               |                      |  |  |  |
|                   | Byte 5               |  |  |  |
| ACK               |                      |  |  |  |
|                   | Byte 6               |  |  |  |
| ACK               |                      |  |  |  |
| Stop Bit          |                      |  |  |  |

Have to Donale

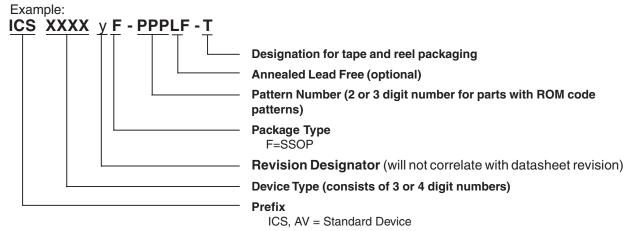
#### **Notes:**

- 1. The ICS clock generator is a slave/receiver, I<sup>2</sup>C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4 "Block-Read" protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- To simplify the clock generator I<sup>2</sup>C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.





| SYMBOL | In Millimeters    |          | In Inches         |         |  |
|--------|-------------------|----------|-------------------|---------|--|
|        | COMMON DIMENSIONS |          | COMMON DIMENSIONS |         |  |
|        | MIN               | MAX      | MIN MAX           |         |  |
|        | 171114            | 100 (7)  | 171114            | 100 (7) |  |
| Α      | 2.413             | 2.794    | .095              | .110    |  |
| A1     | 0.203             | 0.406    | .008              | .016    |  |
| b      | 0.203             | 0.343    | .008              | .0135   |  |
| С      | 0.127             | 0.254    | .005              | .010    |  |
| D      | SEE VARIATIONS    |          | SEE VARIATIONS    |         |  |
| Е      | 10.033            | 10.668   | .395 .420         |         |  |
| E1     | 7.391             | 7.595    | .291              | .299    |  |
| е      | 0.635             | BASIC    | 0.025 BASIC       |         |  |
| h      | 0.381             | 0.635    | .015              | .025    |  |
| L      | 0.508             | 1.016    | .020              | .040    |  |
| N      | SEEVAF            | RIATIONS | SEE VARIATIONS    |         |  |
| α      | 0°                | 8°       | 0°                | 8°      |  |


#### VARIATIONS

| N  | D mm.  |        | D (inch) |      |  |
|----|--------|--------|----------|------|--|
|    | MIN    | MAX    | MIN      | MAX  |  |
| 48 | 15.748 | 16.002 | .620     | .630 |  |

JEDECMO-118 6/1/00 DOC# 10-0034 REVB

## **Ordering Information**

## ICS93705yFLF-T



0418D-04/28/05



**Revision History** 

| Rev. | Issue Date | Description                          | Page # |
|------|------------|--------------------------------------|--------|
| D    | 4/28/2005  | Added Lead Free Ordering Information | 7      |
|      |            |                                      |        |

#### **IMPORTANT NOTICE AND DISCLAIMER**

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <a href="https://www.renesas.com/contact-us/">www.renesas.com/contact-us/</a>.