

Programmable Timing Control HubTM for Next Gen P4TM Processor

ICS952601

Recommended Application:

CK409 clock, Intel Yellow Cover part

Output Features:

- 3 0.7V current-mode differential CPU pairs
- 1 0.7V current-mode differential SRC pair
- 7 PCI (33MHz)
- 3 PCICLK_F, (33MHz) free-running
- 1 USB, 48MHz
- 1 DOT, 48MHz
- 2 REF, 14.318MHz
- 4 3V66, 66.66MHz
- 1 VCH/3V66, selectable 48MHz or 66MHz

Key Specifications:

- CPU/SRC outputs cycle-cycle jitter < 125ps
- 3V66 outputs cycle-cycle jitter < 250ps
- PCI outputs cycle-cycle jitter < 250ps
- CPU outputs skew: < 100ps
- +/- 300ppm frequency accuracy on CPU & SRC clocks

Functionality

			CPU	SRC	3766	PCI	KEF	USB/DOT
B6b5	FS_A	FS_B	MHz	MHz	MHz	MHz	MHz	MHz
	0	0	100	100/200	66.66	33.33	14.318	48.00
	0	MID	Ref/N ₀	Ref/N ₁	Ref/N ₂	Ref/N ₃	Ref/N ₄	Ref/N ₅
0	0	1	200	100/200	66.66	33.33	14.318	48.00
U	1	0	133	100/200	66.66	33.33	14.318	48.00
	1	1	166	100/200	66.66	33.33	14.318	48.00
	1	MID	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	0	0	200	100/200	66.66	33.33	14.318	48.00
4	0	1	400	100/200	66.66	33.33	14.318	48.00
'	1	0	266	100/200	66.66	33.33	14.318	48.00
	1	1	333	100/200	66.66	33.33	14.318	48.00

Features/Benefits:

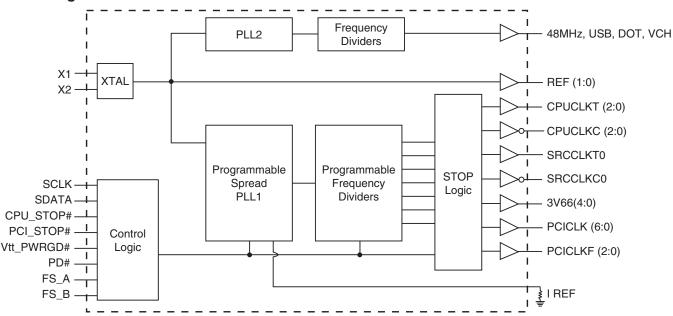
- Supports tight ppm accuracy clocks for Serial-ATA.
- Supports spread spectrum modulation, 0 to -0.5% down spread.
- Supports CPU clks up to 400MHz in test mode.
- Uses external 14.318MHz crystal, external crystal load caps are required for frequency tuning.
- Supports undriven differential CPU, SRC pair in PD# and CPU_STOP# for power management.

Pin Configuration

56-pin SSOP & TSSOP

Pin Description

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	REF0	OUT	14.318 MHz reference clock.
2	REF1	OUT	14.318 MHz reference clock.
3	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V
4	X1	IN	Crystal input, Nominally 14.318MHz.
5	X2	OUT	Crystal output, Nominally 14.318MHz
6	GND	PWR	Ground pin.
7	PCICLK_F0	OUT	Free running PCI clock not affected by PCI_STOP# .
8	PCICLK_F1	OUT	Free running PCI clock not affected by PCI_STOP# .
9	PCICLK_F2	OUT	Free running PCI clock not affected by PCI_STOP# .
10	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
11	GND	PWR	Ground pin.
12	PCICLK0	OUT	PCI clock output.
13	PCICLK1	OUT	PCI clock output.
14	PCICLK2	OUT	PCI clock output.
15	PCICLK3	OUT	PCI clock output.
16	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
17	GND	PWR	Ground pin.
18	PCICLK4	OUT	PCI clock output.
19	PCICLK5	OUT	PCI clock output.
20	PCICLK6	OUT	PCI clock output.
21	PD#	IN	Asynchronous active low input pin used to power down the device into a low power state. The internal clocks are disabled and the VCO and the crystal are stopped. The latency of the power down will not be greater than 1.8ms. Internal pull-up of 150K nomina
22	3V66_0	OUT	3.3V 66.66MHz clock output
23	3V66_1	OUT	3.3V 66.66MHz clock output
24	VDD3V66	PWR	Power pin for the 3V66 clocks.
25	GND	PWR	Ground pin.
26	3V66_2	OUT	3.3V 66.66MHz clock output
27	3V66_3	OUT	3.3V 66.66MHz clock output
28	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.


Pin Description (continued)

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
			66.66MHz clock output for AGP support. AGP-PCI should be
29	3V66_4/VCH	OUT	aligned with a skew window tolerance of 500ps.
			VCH is 48MHz clock output for video controller hub.
30	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
31	48MHz_USB	OUT	48MHz clock output.
32	48MHz_DOT	OUT	48MHz clock output.
33	GND	PWR	Ground pin.
34	VDD48	PWR	Power pin for the 48MHz output.3.3V
			This 3.3V LVTTL input is a level sensitive strobe used to determine
35	Vtt_PWRGD#	IN	when latch inputs are valid and are ready to be sampled. This is an
			active low input.
36	VDD	PWR	Power supply for SRC clocks, nominal 3.3V
37	SRCCLKC	OUT	Complement clock of differential pair for S-ATA support.
-	0.100 =		+/- 300ppm accuracy required.
38	SRCCLKT	OUT	True clock of differential pair for S-ATA support.
			+/- 300ppm accuracy required.
39	GND	PWR	Ground pin.
			Complimentary clock of differential pair CPU outputs. These are
40	CPUCLKC0	OUT	current mode outputs. External resistors are required for voltage
			bias.
41	CPUCLKT0	OUT	True clock of differential pair CPU outputs. These are current mode
			outputs. External resistors are required for voltage bias.
42	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
	0.0011011		Complimentary clock of differential pair CPU outputs. These are
43	CPUCLKC1	OUT	current mode outputs. External resistors are required for voltage
			bias.
44	CPUCLKT1	OUT	True clock of differential pair CPU outputs. These are current mode
45	OND	DWD	outputs. External resistors are required for voltage bias.
45	GND	PWR	Ground pin.
40	ODLIOLIZO	OUT	Complimentary clock of differential pair CPU outputs. These are
46	CPUCLKC2	OUT	current mode outputs. External resistors are required for voltage
			bias. True clock of differential pair CPU outputs. These are current mode
47	CPUCLKT2	OUT	outputs. External resistors are required for voltage bias.
48	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
40	VDDCFU	FVVN	Stops all PCICLKs and SRC pair besides the PCICLK_F clocks at
49	PCI STOP#	IN	logic 0 level, when input low. PCI and SRC clocks can be set to
49	FGI_310F#	lii v	Free_Running through I2C. Internal pull-up of 150K nominal.
			Stops all CPUCLK besides the free running clocks. Internal pull-up
50	CPU_STOP#	IN	of 150K nominal
51	FS_A	IN	Frequency select pin, see Frequency table for functionality
31	ro_A	IIN	This pin establishes the reference current for the differential current-
			mode output pairs. This pin requires a fixed precision resistor tied
52	IREF	OUT	to ground in order to establish the appropriate current. 475 ohms is
			the standard value.
53	GND	PWR	Ground pin.
53 54	GNDA	PWR	Ground pin for core.
55	VDDA	PWR	3.3V power for the PLL core.
56	FS_B	IN	Frequency select pin, see Frequency table for functionality

General Description

ICS952601 follows Intel CK409 Yellow Cover specification. This clock synthesizer provides a single chip solution for next generation P4 Intel processors and Intel chipsets. ICS952601 is driven with a 14.318MHz crystal. It generates CPU outputs up to 200MHz. It also provides a tight ppm accuracy output for Serial ATA support.

Block Diagram

Power Groups

Pin N	lumber	Description
VDD	GND	Description
3	6	Xtal, Ref
24	25	3V66 [0:3]
10,16	11,17	PCICLK outputs
36	39	SRCCLK outputs
55	54	Master clock, CPU Analog
34	33	48MHz, PLL, SCLK, SDATA
N/A	53	IREF
48, 42	45	CPUCLK clocks

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units	Notes
VDD_A	3.3V Core Supply Voltage		VDD + 0.5V	V	
VDD_In	3.3V Logic Input Supply Voltage	GND - 0.5	VDD + 0.5V	V	
Ts	Storage Temperature	-65	150	°C	
Tambient	Ambient Operating Temp	0	70	°C	
Tcase1	Case Temperature 1		115	°C	1
Tcase2	Case Temperature 2		94	°C	2
ESD prot	Input ESD protection human body model	2000		V	

- 1. This case temperature limits the junction temperature to <150 °C for package reliability
- 2. This case temperature limits the junction temperature to <125 °C for long term silicon reliability

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V_{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input MID Voltage	V_{MID}	3.3 V +/-5%	1		1.8	V	
Input Low Voltage	V_{IL}	3.3 V +/-5%	V _{SS} - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
	I _{IL1}	V _{IN} = 0 V; Inputs with no pull- up resistors	-5			uA	
Input Low Current	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	
Operating Supply Current	I _{DD3.3OP}	Full Active, C _L = Full load;		258	350	mA	
Powerdown Current	I _{DD3.3PD}	all diff pairs driven		29	35	mA	
		all differential pairs tri-stated		0.3	12	mA	
Input Frequency ³	Fi	$V_{DD} = 3.3 \text{ V}$		14.31818		MHz	3
Pin Inductance ¹	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs			5	pF	1
Input Capacitance ¹	C_{OUT}	Output pin capacitance			6	рF	1
	C _{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up or de- assertion of PD# to 1st clock			1.8	ms	1,2
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_SRC		SRC output enable after PCI_Stop# de-assertion			15	ns	1
Tdrive_PD#		CPU output enable after PD# de-assertion			300	us	1
Tfall_Pd#		PD# fall time of			5	ns	1
Trise_Pd#		PD# rise time of			5	ns	2
Tdrive_CPU_Stop#		CPU output enable after CPU_Stop# de-assertion			10	us	1
Tfall_CPU_Stop#		PD# fall time of			5	ns	1
Trise_CPU_Stop#		PD# rise time of			5	ns	2
SMBus Voltage	V_{DD}		2.7		5.5	V	1
Low-level Output Voltage	V_{OL}	@ I _{PULLUP}			0.4	V	1
Current sinking at V _{OL} = 0.4 V	I _{PULLUP}		4			mA	1
SCLK/SDATA Clock/Data Rise Time ³	T _{RI2C}	(Max VIL - 0.15) to (Min VIH +	0.15)		1000	ns	1
SCLK/SDATA Clock/Data Fall Time ³	T _{FI2C}	(Min VIH + 0.15) to (Max VIL -	0.15)		300	ns	1

¹Guaranteed by design, not 100% tested in production.

²See timing diagrams for timing requirements.

³ Input frequency should be measured at the REF output pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

Electrical Characteristics - CPU & SRC 0.7V Current Mode Differential Pair

 $T_A = 0 - 70^{\circ}C; V_{DD} = 3.3 V + /-5\%; C_L = 2pF$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using	660	770	850	mV	1
Voltage Low	VLow	oscilloscope math function.	-150	5	150	111 v	1
Max Voltage	Vovs	Measurement on single ended		756	1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300	-7		IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250	350	550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges		12	140	mV	1
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
		200MHz nominal	4.9985	5.0000	5.0015	ns	2
		200MHz spread	4.9985		5.0266	ns	2
Average period	e period Tperiod	166.66MHz nominal	5.9982	6.0000	6.0018	ns	2
		166.66MHz spread	5.9982		6.0320	ns	2
		133.33MHz nominal	7.4978	7.5000	7.5023	ns	2
		133.33MHz spread	7.4978		5.4000	ns	2
		100.00MHz nominal	9.9970	10.0000	10.0030	ns	2
		100.00MHz spread	9.9970		10.0533	ns	2
		200MHz nominal	4.8735			ns	1,2
Absolute min period	-	166.66MHz nominal/spread	5.8732			ns	1,2
Absolute IIIII pellou	T _{absmin}	133.33MHz nominal/spread	7.3728			ns	1,2
		100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175	332	700	ps	1
Fall Time	t _f	$V_{OH} = 0.525V \ V_{OL} = 0.175V$	175	344	700	ps	1
Rise Time Variation	d-t _r			30	125	ps	1
Fall Time Variation	d-t _f			30	125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45	49	55	%	1
Skew	t _{sk3}	V _T = 50%		8	100	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	Measurement from differential wavefrom		37	125	ps	1

¹Guaranteed by design, not 100% tested in production.

SRC clock outputs run at only 100MHz or 200MHz, specs for 133.33 and 166.66 do not apply to SRC clock pair.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

Electrical Characteristics - 3V66 Mode: 3V66 [4:0]

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 10-30 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
Clock period	T _{period}	66.66MHz output nominal	14.9955	15	15.0045	ns	2
Сюск репод	l period	66.66MHz output spread	14.9955		15.0799	ns	2
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	
Output High Current		V _{OH} @ MIN = 1.0 V	-33			mA	
Output High Current	I _{OH}	V _{OH} @ MAX = 3.135 V			-33	mA	
Output Low Current	1	V _{OL} @ MIN = 1.95 V	30			mA	
Output Low Current	I _{OL}	V_{OL} @ MAX = 0.4 V			38	mA	
Edge Rate		Rising edge rate	1		4	V/ns	1
Edge Rate		Falling edge rate	1		4	V/ns	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5	1.92	2	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5	1.97	2	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45	53.1	55	%	1
Skew	t _{sk1}	V _T = 1.5 V		38	250	ps	1
Jitter	t _{jcyc-cyc}	$V_T = 1.5 \text{ V} 3V66$		139	250	ps	1

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCICLK/PCICLK_F

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 10-30 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
Clock period	T _{period}	33.33MHz output nominal	29.9910	30	30.0090	ns	2
Clock period	• period	33.33MHz output spread	29.9910		30.1598	ns	2
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	٧	
Output High Current	1.	V _{OH} @MIN = 1.0 V	-33			mA	
Output High Current	I _{OH}	V_{OH} @ MAX = 3.135 V			-33	mA	
Output Low Current	1.	V _{OL} @ MIN = 1.95 V	30			mA	
Output Low Current	I _{OL}	V_{OL} @ MAX = 0.4 V			38	mA	
Edge Rate		Rising edge rate	1		4	V/ns	1
Edge Rate		Falling edge rate	1		4	V/ns	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5	1.92	2	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5	1.9	2	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45	51.4	55	%	1
Skew	t _{sk1}	V _T = 1.5 V		18	500	ps	1
Jitter	t _{jcyc-cyc}	$V_T = 1.5 \text{ V} 3V66$		92	250	ps	1

¹Guaranteed by design, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

Electrical Characteristics - 48MHz DOT Clock

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 5-10 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-200		200	ppm	1,2
Clock period	T_{period}	66.66MHz output nominal	20.8257		20.8340	ns	2
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			٧	
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	
Output High Current	1	V _{OH} @ MIN = 1.0 V	-33			mA	
Output High Current	I _{OH}	V _{OH} @ MAX = 3.135 V			-33	mA	
Output Low Current	ı	V _{OL} @ MIN = 1.95 V	30			mA	
Output Low Current	I _{OL}	V _{OL} @ MAX = 0.4 V			38	ppm ns V V mA mA	
Edge Rate		Rising edge rate	2		4	V/ns	1
Edge Rate		Falling edge rate	2		4	V/ns	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5	0.71	1	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5	0.77	1	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45	49	55	%	1
Long Term Jitter		125us period jitter (8kHz frequency modulation amplitude)		0.7	2	ns	1

Guaranteed by design, not 100% tested in production.

Electrical Characteristics - VCH, 48MHz, USB

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V} + /-5$ %; $C_L = 10-20 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-200		200	ppm	1,2
Clock period	T_{period}	66.66MHz output nominal	20.8257		20.8340	ns	2
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	
Output High Current	1.	V _{OH} @ MIN = 1.0 V	-33			mA	
Output High Current	Іон	V_{OH} @ MAX = 3.135 V			-33	mA	
Output Low Current	I.	V _{OL} @MIN = 1.95 V	30			mA	
Output Low Current	I _{OL}	V_{OL} @ MAX = 0.4 V			38	mA	
Edge Rate		Rising edge rate	1		2	V/ns	1
Edge Rate		Falling edge rate	1		2	V/ns	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.43	2	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.33	2	ns	1
Duty Cycle	d _{t1}	$V_{T} = 1.5 \text{ V}$	45	48	55	%	1
Long Term Jitter		125us period jitter (8kHz frequency modulation amplitude)		0.7	6	ns	1

¹Guaranteed by design, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

Electrical Characteristics - REF-14.318MHz

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 10-20 \text{ pF}$ (unless otherwise specified)

, <u>, , , , , , , , , , , , , , , , , , </u>						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Long Accuracy	ppm ¹	see Tperiod min-max values	-300		300	ppm
Clock period	T_{period}	14.318MHz output nominal	69.8270		69.8550	ns
Output High Voltage	V_{OH}^{1}	I _{OH} = -1 mA	2.4			V
Output Low Voltage	V_{OL}^{1}	I _{OL} = 1 mA			0.4	V
Output High Current	I _{OH} ¹	V _{OH} @MIN = 1.0 V, V _{OH} @MAX = 3.135 V	-29		-23	mA
Output Low Current	I _{OL} ¹	V_{OL} @MIN = 1.95 V, V_{OL} @MAX = 0.4 V	29		27	mA
Rise Time	t _{r1} 1	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.92	2	ns
Fall Time	t _{f1} 1	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.92	2	ns
Skew	t _{sk1} 1	$V_{T} = 1.5 \text{ V}$		26	500	ps
Duty Cycle	d _{t1} ¹	V _T = 1.5 V	45	53.4	55	%
Jitter	t _{icvc-cvc} ¹	V _T = 1.5 V		284	1000	ps

¹Guaranteed by design, not 100% tested in production.

Group to Group Skews at Common Transition Edges

GROUP	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
200MHZ CPU to 3V66 ¹	S _{CPU200-3V66}	3V66 (4:0) leads 200MHZ CPU	-2.1	-1.6	-1.1	ns
3V66 to PCI	S _{3V66-PCI}	3V66 (4:0) leads 33MHz PCI	1.50	2.59	3.50	ns
DOT-USB	S _{DOT_USB}	180 degrees out of phase	0.00		1.00	ns
DOT-VCH	S _{DOT_VCH}	in phase	0.00		1.00	ns

^{1.} 3V66 MHz C_L = 0pf, Rseries = 33 ohm. CPU CL = 2 pf, Rseries = 33 ohm, Rshunt = 49.9 ohms. Measured at the pins of the 952601.

General I²C serial interface information for the ICS952601

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- · Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends **Byte N + X -1**
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

In	dex Block V	/rit	e Operation
Co	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	re Address D2 _(H)		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	nning Byte N		
			ACK
	0	ţ	
	0	X Byte	0
	0	×	0
			0
Byt	e N + X - 1		
			ACK
Р	stoP bit		

In	dex Block Rea	ad (Operation		
Cor	troller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
	e Address D2 _(H)				
WR	WRite				
			ACK		
Begi	nning Byte = N				
			ACK		
RT	Repeat starT				
Slave	e Address D3 _(H)				
RD	ReaD				
			ACK		
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		X Byte	0		
	0	(B)	0		
	0	×	0		
	0				
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

I²C Table: Read-Back Register

1 o Tubic. Head Back Hegiotei										
Ву	te 0 Pin	# Name	Control Function	Type	0	1	PWD			
Bit 7	-	RESERVED	RESERVED	-	RES	SERVED	X			
Bit 6	-	RESERVED	RESERVED	-	RES	SERVED	Χ			
Bit 5	-	RESERVED	RESERVED	-	RES	RESERVED				
Bit 4	-	RESERVED	RESERVED	-	RES	Х				
Bit 3	-	PCI_STOP#	PCI STOP# Read Back	R	READBACK		х			
Bit 2	-	CPU_STOP#	CPU STOP Read Back	R	RE/	ADBACK	Х			
Bit 1	-	FSB	Freq Select 1 Read Back	R	READBACK of CPU(2:0)		Х			
Bit 0	-	FSA	Freq Select 0 Read Back	R	Fre	equency	Х			

I²C Table: Spreading and Device Behavior Control Register

Ву	rte 1	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	3	37,38	SRC/SRC#	SRC Free-Running Control	RW	FREE-RUN	STOPPABLE	0
Bit 6	3	37,38	SRC	Output Control	RW	Disable	Enable	1
Bit 5	4	16,47	CPUT2/CPUC2	CPU FREE-	RW	FREE-RUN	STOPPABLE	1
Bit 4	4	3,44	CPUT1/CPUC1	RUNNING	RW	FREE-RUN	STOPPABLE	1
Bit 3	4	0,41	CPUT0/CPUC0	CONTROL	RW	FREE-RUN	STOPPABLE	1
Bit 2	4	16,47	CPUT2/CPUC2	Output Control	RW	Disable	Enable	1
Bit 1	4	3,44	CPUT1/CPUC1	Output Control	RW	Disable	Enable	1
Bit 0	4	0,41	CPUT0/CPUC0	Output Enable	RW	Disable	Enable	1

I²C Table: Output Control Register

Ву	te 2	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	37	7,38	SRC_PD# Drive Mode	0: Driven in PD#	RW	Driven	Hi-Z	0
Bit 6	37	7,38	SRC_Stop# Drive Mode	0: Driven in PCI_Stop#	RW	Driven	Hi-Z	0
Bit 5	46	6,47	CPUT2_PD# Drive Mode		RW	Driven	Hi-Z	0
Bit 4	43	3,44	CPUT1_PD# Drive Mode	0:driven in PD# 1: Tri-stated	RW	Driven	Hi-Z	0
Bit 3	40),41	CPUT0_PD# Drive Mode		RW	Driven	Hi-Z	0
Bit 2	46	6,47	CPUT2_Stop Drive Mode	0:driven when	RW	Driven	Hi-Z	0
Bit 1	43	3,44	CPUT1_Stop Drive Mode	stopped 1: Tri-stated	RW	Driven	Hi-Z	0
Bit 0	40),41	CPUT0_Stop Drive Mode	1. III-Stated	RW	Driven	Hi-Z	0

I²C Table: Output Control Register

Ву	rte 3	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		13,14,15, 0,37,38,	PCI_Stop#	PCI_Stop# Control 0:all stoppable PCI and SRC are stopped	RW	Enable	Disable	1
Bit 6	2	20	PCICLK6	Output Control	RW	Disable	Enable	1
Bit 5	1	9	PCICLK5	Output Control	RW	Disable	Enable	1
Bit 4	1	8	PCICLK4	Output Control	RW	Disable	Enable	1
Bit 3	1	5	PCICLK3	Output Control	RW	Disable	Enable	1
Bit 2	1	4	PCICLK2	Output Control	RW	Disable	Enable	1
Bit 1	1	3	PCICLK1	Output Control	RW	Disable	Enable	1
Bit 0	1	2	PCICLK0	Output Control	RW	Disable	Enable	1

I²C Table: Output Control Register

Ву	te 4	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	31		48MHz_USB 2x output drive	0=2x drive	RW	2x drive	normal	0
Bit 6	31		48MHz_USB	Output Control	RW	Disable	Enable	1
Bit 5	9		PCIF2	PCI FREE-RUN	RW	FREE-RUN	STOPPABLE	0
Bit 4	8		PCIF1	NING CONTROL	RW	FREE-RUN	STOPPABLE	0
Bit 3	7		PCIF0	NING CONTROL	RW	FREE-RUN	STOPPABLE	0
Bit 2	9		PCICLK_F2	Output Control	RW	Disable	Enable	1
Bit 1	8		PCICLK_F1	Output Control	RW	Disable	Enable	1
Bit 0	7	·	PCICLK_F0	Output Control	RW	Disable	Enable	1

I²C Table: Output Control Register

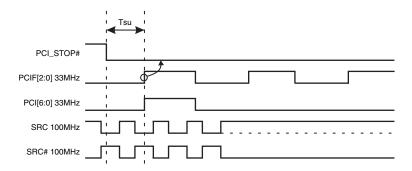
Ву	te 5 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	32	48MHZ_DOT	Output Control	RW	Disable	Enable	1
Bit 6		RESERVED	RESERVED	`	-	-	0
Bit 5	29	3V66_4/VCH Select	Output Select	RW	3V66	VCH	0
Bit 4	29	3V66_4/VCH	Output Control	RW	Disable	Enable	1
Bit 3	27	3V66_3	Output Control	RW	Disable	Enable	1
Bit 2	26	3V66_2	Output Control	RW	Disable	Enable	1
Bit 1	23	3V66_1	Output Control	RW	Disable	Enable	1
Bit 0	22	3V66_0	Output Control	RW	Disable	Enable	1

I²C Table: Output Control and Fix Frequency Register

By	yte 6 Pin	Name	Control Function	Type	0	1	PWD
Bit 7	1,2,7,8,9,12,13,1 5,18,19,20,22,23 27,29,31,32,37,3 0,41,43,44,46,4	26, 3,4 Test Clock Mode	Test Clock Mode	-	Disable	Enable	0
Bit 6	-	RESERVED	-	-	-	•	0
Bit 5	40,41,43,44,46,	RESERVED	FS_A and FS_B Operation	-	Normal	Test Mode	0
Bit 4	37,38	RESERVED	SRC Frequency Select	-	100MHz	200MHz	0
Bit 3		RESERVED	-	-	-	-	0
Bit 2	7,8,9,12,13,14,15 ,19,20,22,23,26,2 9,31,32,37,38,40 43,44,46,47	7,2 Spread Spectrum Mode			Spread OFF	Spread ON	0
Bit 1	2	REF1	Output Control	RW	Disable	Enable	1
Bit 0	1	REF0	Output Control	RW	Disable	Enable	1

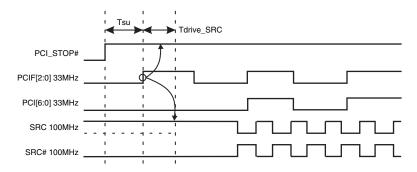
I²C Table: Vendor & Revision ID Register

Byt	e 7 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	RID3		R	1	-	Χ
Bit 6	-	RID2	REVISION ID	R	1	-	Χ
Bit 5	-	RID1		R	•	-	Χ
Bit 4	-	RID0		R	•	-	Χ
Bit 3	-	VID3		R	1	-	0
Bit 2	-	VID2	VENDOR ID	R	1	-	0
Bit 1	-	VID1	VENDORID	R	1	-	0
Bit 0	-	VID0		R	-	-	1


PCI Stop Functionality

The PCI_STOP# signal is on an active low input controlling PCI and SRC outputs. If PCIF (2:0) and SRC clocks can be set to be free-running through I2C programming. Outputs set to be free-running will ignore both the PCI_STOP pin and the PCI_STOP register bit.

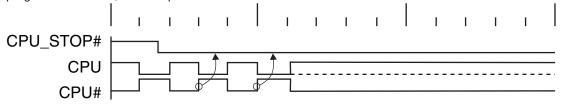
PCI_STOP#	CPU	CPU #	SRC	SRC#	3V66	PCIF/PCI	USB/DOT	REF	Note
1	Normal	Normal	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	
0	Normal	Normal	Iref * 6 or Float	Low	66MHz	Low	48MHz	14.318MHz	


PCI_STOP# Assertion (transition from '1' to '0')

The clock samples the PCI_STOP# signal on a rising edge of PCIF clock. After detecting the PCI_STOP# assertion low, all PCI[6:0] and stoppable PCIF[2:0] clocks will latch low on their next high to low transition. After the PCI clocks are latched low, the SRC clock, (if set to stoppable) will latch high at Iref * 6 (or tristate if Byte 2 Bit 6 = 1) upon its next low to high transition and the SRC# will latch low as shown below.

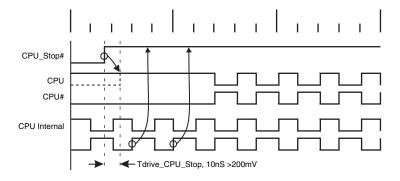
PCI_STOP# - De-assertion

The de-assertion of the PCI_Stop# signal is to be sampled on the rising edge of the PCIF free running clock domain. After detecting PCI_Stop# de-assertion, all PCI[6:0], stoppable PCIF[2:0] and stoppable SRC clocks will resume in a glitch free manner.


CPU STOP# Functionality

The CPU_STOP# signal is an active low input controlling the CPU outputs. This signal can be asserted asynchronously.

CPU_STOP#	CPU	CPU#	SRC	SRC#	3V66	PCIF/PCI	USB/DOT	REF	Note
1	Normal	Normal	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	
0	Iref * 6 or Float	Low	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	


CPU_STOP# - Assertion (transition from '1' to '0')

Asserting CPU_STOP# pin stops all CPU outputs that are set to be stoppable after their next transition. When the I2C CPU_STOP tri-state bit corresponding to the CPU output of interest is programmed to a '0', CPU output will stop CPU_True = HIGH and CPU_Complement = LOW. When the I2C CPU_Stop tri-state bit corresponding to the CPU output of interest is programmed to a '1', CPU outputs will be tri-stated.

CPU_STOP# - De-assertion (transition from '0' to '1')

With the de-assertion of CPU_Stop# all stopped CPU outputs will resume without a glitch. The maximum latency from the de-assertion to active outputs is 2 - 6 CPU clock periods. If the control register tristate bit corresponding to the output of interest is programmed to '1', then the stopped CPU outputs will be driven High within 10nS of CPU_Stop# de-assertion to a voltage greater than 200mV.

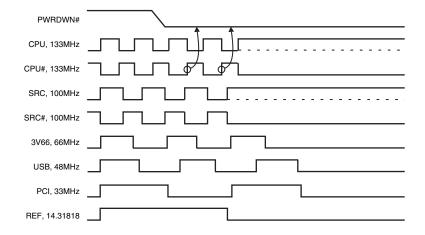
PD#, Power Down

PD# is an asynchronous active low input used to shut off all clocks cleanly prior to clock power. When PD# is asserted low all clocks will be driven low before turning off the VCO. In PD# de-assertion all clocks will start without glitches.

PWRDWN#	CPU	CPU#	SRC	SRC#	3V66	PCIF/PCI	USB/DOT	REF	Note
1	Normal	Normal	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	
0	Iref * 2 or Float	Float	Iref * 2 or Float	Float	Low	Low	Low	Low	

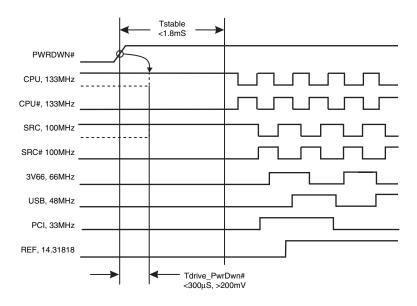
Notes:

- Refer to tristate control of CPU and SRC clocks in section 7.7 for tristate timing and operation.
 Refer to Control Registers in section 16 for CPU_Stop, SRC_Stop and PwrDwn SMBus tristate control addresses.

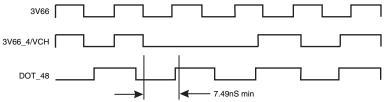

PD# Assertion

PD# should be sampled low by 2 consecutive CPU# rising edges before stopping clocks. All single ended clocks will be held low on their next high to low transition.

All differential clocks will be held high on the next high to low transition of the complimentary clock. If the control register


determining to drive mode is set to 'tri-state', the differential pair will be stopped in tri-state mode, undriven.

When the drive mode but corresponding to the CPU or SRC clock of interest is set to '0' the true clock will be driven high at 2 x Iref and the complementary clock will be tristated. If the control register is programmed to '1' both clocks will be tristated.


PD# De-assertion

The time from the de-assertion of PD# or until power supply ramps to get stable clocks will be less than 1.8ms. If the drive mode control bit for PD# tristate is programmed to '1' the stopped differential pair must first be driven high to a minimum of 200 mV in less than $300 \mu \text{s}$ of PD# deassertion.

3V66_4/VCH Pin Functionality

The 3V66_4/VCH pin can be configured to be a 66.66MHz modulated output or a non-spread 48MHz output. The default is 3V66 clock. The switching is controlled by Byte 5 Bit 5. If it is set to '1' this pin will output the 48MHz VCH clock. The output will go low on the falling edge of 3V66 for a minimum of 7.49ns. Then the output will transition to 48MHz on the next rising edge of DOT_48 clock.

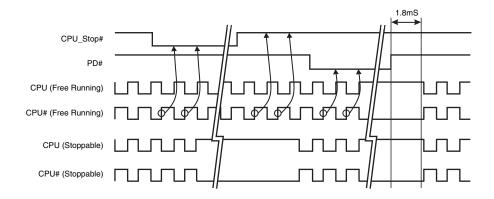
Differential Clock Tristate

To minimize power consumption, CPU[2:0] clock outputs are individually configurable through SMBus to be driven or tristated during PwrDwn# and CPU_Stop# mode and the SRC clock is configurable to be driven or tristated during PCI_Stop# and PwrDwn# mode. Each differential clock (SRC, CPU[2:0]) output can be disabled by setting the corresponding output's register OE bit to "0" (disable). Disabled outputs are to be tristated regardless of "CPU_Stop", "SRC_Stop" and "PwrDwn" register bit settings.

Signal	Pin PD#	Pin CPU_Stop#	CPU_Stop Tristate Bit	Pwrdwn Tristate Bit	Non-Stoppable Outputs	Stoppable Outputs
CPU[2:0}	1	1	Х	Х	Running	Running
CPU[2:0}	1	0	0	Х	Running	Driven @ Iref x 6
CPU[2:0}	1	0	1	Х	Running	Tristate
CPU[2:0}	0	Х	Х	0	Driven @ Iref x 2	Driven @ Iref x 2
CPU[2:0}	0	Х	Х	1	Tristate	Tristate

Notes

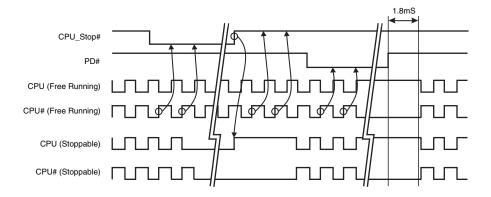
- 1. Each output has four corresponding control register bits, OE, PwrDwn, CPU_Stop and "Free Running"
- 2. Iref x 6 and Iref x 2 is the output current in the corresponding mode
- 3. See Control Registers section for bit address


Signal	Pin PD#	Pin PCI_Stop#	PCI_Stop Tristate Bit	Pwrdwn Tristate Bit	Non-Stoppable Output	Stoppable Output
SRC	1	1	Х	Х	Running	Running
SRC	1	0	0	Х	Running	Driven @ Iref x 6
SRC	1	0	1	Х	Running	Tristate
SRC	0	Х	Х	0	Driven @ Iref x 2	Driven @ Iref x 2
SRC	0	Х	Х	1	Tristate	Tristate

- 1. SRC output has four corresponding control register bits, OE, PwrDwn, SRC_Stop and "Free Running"
- 2. Iref x 6 and Iref x 2 is the output current in the corresponding mode
- 3. See Control Registers section for bit address

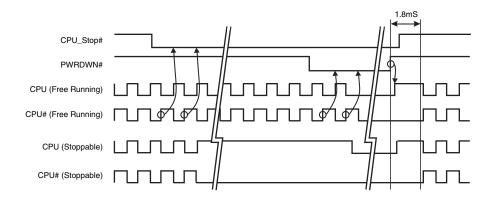
CPU Clock Tristate Timing

The following diagrams illustrate CPU clock timing during CPU_Stop# and PwrDwn# modes with CPU_PwrDwn and CPU_Stop tristate control bits set to driven or tristate in byte 2 of the control register.


CPU_Stop = Driven, CPU_Pwrdwn = Driven

Notes:

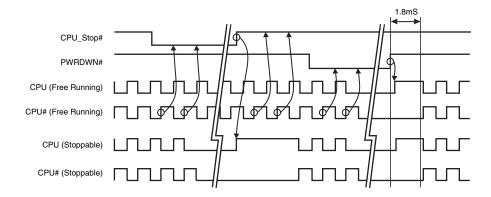
1. When both bits (CPU_Stop & CPU_Pwrdown tristate bits) are low, the clock chip will never tristate CPU output clocks (assuming clock's OE bit is set to "1")


CPU_Stop = Tristate, CPU_Pwrdwn = Driven

Notes:

1. Tristate outputs are pulled low by output termination resistors as shown here.

CPU_Stop = Driven, CPU_Pwrdwn = Tristate

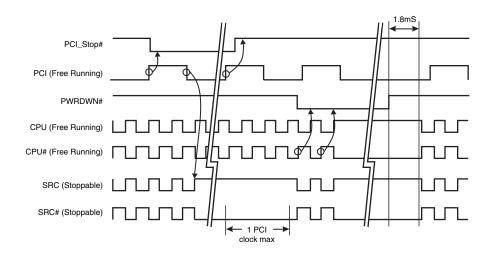


Notes:

- 1. When CPU_Pwrdwn is set to tristate and CPU_Stop is set to driven, the clock chip will tristate outputs only during the assertion of PWRDWN#. Differential clock behavior during the assertion/de-assertion of CPU_Stop# will be unaffected.

 2. In the case that CPU_Stop# is de-asserted during the 1.8mS PWRDWN# de-assertion resume delay, the clock chip can sample the CPU_Stop# high with the internal rising edges of clock#. This will result in CPU clocks resuming immediately after the 1.8mS windows expires. This applies to all control register bit changes as well.
- 3. Tristate outputs are pulled low by output termination resistors as shown here.

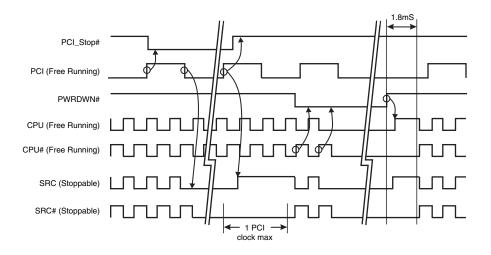
CPU_Stop = Tristate, CPU_Pwrdwn = Tristate



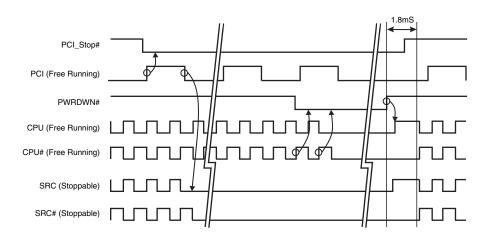
- 1. When CPU_Stop and CPU_Pwrdwn bits are set to tristate, the clock chip will tristate the outputs during the assertion of CPU_Stop# and PWRDWN#.
- 2. Tristate outputs are pulled low by output termination resistors as shown here.

SRC Clock Tristate Timing

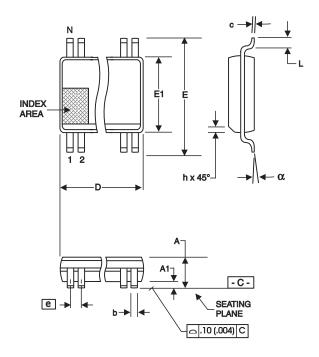
The following diagrams illustrate SRC clock timing during PCI_Stop# and PwrDwn# modes with SRC_Pwrdwn and SRC_Stop tristate control bits set to driven or tristate in byte 2 of the control register.


SRC_Stop = Driven, SRC_Pwrdwn = Driven

Notes:


1. When both bits (SRC_Stop & SRC_Pwrdown tristate bits) are set to driven, the clock chip will never tristate the SRC output clock (assuming clock's OE bit is set to "1")

SRC_Stop = Tristate, Pwrdwn = Tristate



- 1. When SRC_Stop and SRC_Pwrdwn bits are set to tristate, the clock chip will tristate outputs during the assertion of PCI_Stop# and PWRDWN#.
- 2. Tristate outputs are pulled low by output termination resistors as shown here.

PCI_STOP Asserted SRC_Stop = Tristate, SRC_Pwrdwn = Tristate

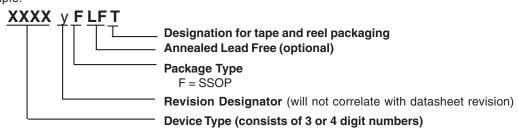
- 1. When SRC_Pwrdwn and SRC_Stop are set to tristate, the clock chip will tristate outputs during the assertion of PCI_Stop# and PWRDWN#.
- 2. In the case that PCI_Stop# is de-asserted during the 1.8mS PWRDWN# de-assertion resume delay, the clock chip can sample the PCI_Stop# high with the internal rising edges of CPU clock#. This will result in SRC clocks resuming immediately after the 1.8mS window expires. This applies to all control register bit changes as well.
- 3. Tristate outputs are pulled low by output termination resistors as shown here.

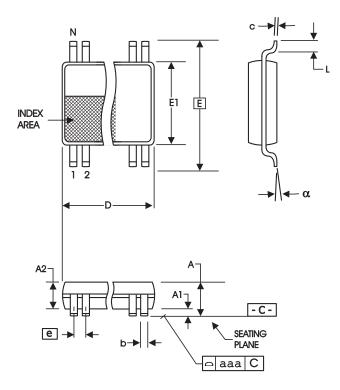
56-Lead, 300 mil Body, 25 mil, SSOP

SYMBOL		meters IMENSIONS	In Inches COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VAF	RIATIONS	SEE VARIATIONS		
E	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635	BASIC	0.025 BASIC		
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VAF	RIATIONS	SEE VARIATIONS		
а	0°	8°	0°	8°	

VARIATIONS

N	Dn	nm.	D (inch)		
	MIN	MAX	MIN	MAX	
56	18.31	18.55	.720	.730	


Reference Doc.: JEDEC Publication 95, MO-118


10-0034

Ordering Information

952601yFLFT

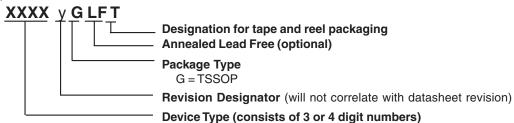
Example:

56-Lead 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

	(240	mii <i>)</i>	(20 11111)		
	In Millir	neters	In Inches		
SYMBOL	COMMON DI	MENSIONS	COMMON DI	MENSIONS	
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	8.10 B	ASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 B	ASIC	0.020 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VAR	IATIONS	SEE VAR	IATIONS	
а	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	D m	m.	D (inch)		
N	MIN	MAX	MIN	MAX	
56	13.90	14.10	.547	.555	


Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

952601yGLFT

Example:

ICS952601 Programmable Timing Control Hub™ for Next Gen P4™ Processor

Revision History

Rev.	Issue Date	Description	Page #
Ī	5/4/2005	Updated Ordering Information from "Lead Free" to "Annealed Lead Free"	23-24
J	1/25/2010	Update document template	

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/