

Programmable Timing Control Hub™ for Next Gen P4™ processor

Recommended Application:

CK409 clock, Intel Yellow Cover part

Output Features:

- 3 0.7V current-mode differential CPU pairs
- 1 0.7V current-mode differential SRC pair
- 7 PCI (33MHz)
- 3 PCICLK_F, (33MHz) free-running
- 1 USB, 48MHz
- 1 DOT, 48MHz
- 2 REF, 14.318MHz
- 4 3V66, 66.66MHz
- 1 VCH/3V66, selectable 48MHz or 66MHz

Key Specifications:

- CPU/SRC outputs cycle-cycle jitter < 125ps
- 3V66 outputs cycle-cycle jitter < 250ps
- PCI outputs cycle-cycle jitter < 250ps
- CPU outputs skew: < 100ps
- +/- 300ppm frequency accuracy on CPU & SRC clocks

Functionality

			CPU	SRC	3V66	PCI	REF	USB/DOT
B6b5	FS_A	FS_B	MHz	MHz	MHz	MHz	MHz	MHz
	0	0	100	100/200	66.66	33.33	14.318	48.00
	0	MID	Ref/N ₀	Ref/N ₁	Ref/N ₂	Ref/N ₃	Ref/N ₄	Ref/N ₅
0	0	1	200	100/200	66.66	33.33	14.318	48.00
U	1	0	133	100/200	66.66	33.33	14.318	48.00
	1	1	166	100/200	66.66	33.33	14.318	48.00
	1	MID	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	0	0	200	100/200	66.66	33.33	14.318	48.00
4	0	1	400	100/200	66.66	33.33	14.318	48.00
'	1	0	266	100/200	66.66	33.33	14.318	48.00
	1	1	333	100/200	66.66	33.33	14.318	48.00

Features/Benefits:

- Supports tight ppm accuracy clocks for Serial-ATA
- Supports spread spectrum modulation, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports CPU clks up to 400MHz in test mode
- Uses external 14.318MHz crystal
- Supports undriven differential CPU, SRC pair in PD# and CPU_STOP# for power management.

Pin Configuration

Comingulation	,,,		
REF0	1	56	FS_B
REF1	2	55	VDDA
VDDREF	3	54	GNDA
X1	4	53	GND
X2	5	52	IREF
GND	6	51	FS_A
PCICLK_F0	7	50	CPU_STOP#
PCICLK_F1	8	49	PCI_STOP#
PCICLK_F2	9	48	VDDCPU
VDDPCI	10	47	CPUCLKT2
GND	11		CPUCLKC2
PCICLK0	12	8 45	GND
PCICLK1		6 44	CPUCLKT1
PCICLK2		8 43	CPUCLKC1
PCICLK3	15	6 42	VDDCPU
VDDPCI	16		CPUCLKT0
GND		+0	CPUCLKC0
PCICLK4			GND
PCICLK5			SRCCLKT
PCICLK6			SRCCLKC
PD#			VDD
3V66_0			Vtt_PWRGD#
3V66_1			VDD48
VDD3V66			GND
GND			48MHz_DOT
3V66_2			48MHz_USB
3V66_3			SDATA
SCLK	28	29	3V66_4/VCH

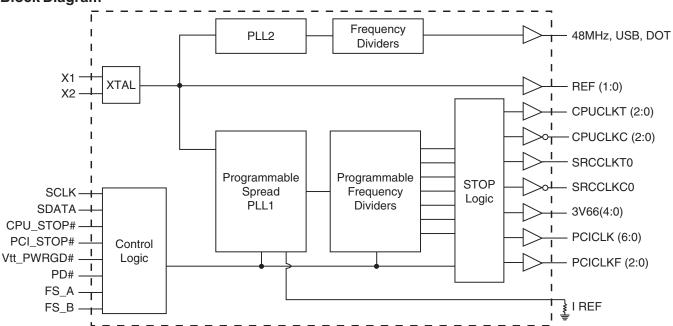
56-pin SSOP & TSSOP

Pin Description

PIN	PIN NAME	PIN TYPE	DESCRIPTION
#			
1	REF0	OUT	14.318 MHz reference clock.
2	REF1	OUT	14.318 MHz reference clock.
3	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V
4	X1	IN	Crystal input, Nominally 14.318MHz.
5	X2	OUT	Crystal output, Nominally 14.318MHz
6	GND	PWR	Ground pin.
7	PCICLK_F0	OUT	Free running PCI clock not affected by PCI_STOP#.
8	PCICLK_F1	OUT	Free running PCI clock not affected by PCI_STOP#.
9	PCICLK_F2	OUT	Free running PCI clock not affected by PCI_STOP# .
10	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
11	GND	PWR	Ground pin.
12	PCICLK0	OUT	PCI clock output.
13	PCICLK1	OUT	PCI clock output.
14	PCICLK2	OUT	PCI clock output.
15	PCICLK3	OUT	PCI clock output.
16	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
17	GND	PWR	Ground pin.
18	PCICLK4	OUT	PCI clock output.
19	PCICLK5	OUT	PCI clock output.
20	PCICLK6	OUT	PCI clock output.
21	PD#	IN	Asynchronous active low input pin used to power down the device into a low power state. The internal clocks are disabled and the VCO and the crystal are stopped. The latency of the power down will not be greater than 1.8ms. Internal pull-up of 150K nominal.
22	3V66_0	OUT	3.3V 66.66MHz clock output
23	3V66_1	OUT	3.3V 66.66MHz clock output
24	VDD3V66	PWR	Power pin for the 3V66 clocks.
25	GND	PWR	Ground pin.
26	3V66_2	OUT	3.3V 66.66MHz clock output
27	3V66_3	OUT	3.3V 66.66MHz clock output
28	SCLK	IN	Clock pin of I2C circuitry 5V tolerant

Pin Description (Continued)

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
29	3V66_4/VCH	OUT	66.66MHz clock output for AGP support. AGP-PCI should be aligned with a skew window tolerance of 500ps.
30	SDATA	I/O	VCH is 48MHz clock output for video controller hub. Data pin for I2C circuitry 5V tolerant
31	48MHz_USB	OUT	48MHz clock output.
32	48MHz_DOT	OUT	48MHz clock output.
33	GND	PWR	Ground pin.
34	VDD48	PWR	Power for 48MHz output buffers and fixed PLL core.
35	Vtt_PWRGD#	IN	This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input.
36	VDD	PWR	Power supply for SRC clocks, nominal 3.3V
37	SRCCLKC	ОИТ	Complement clock of differential pair for S-ATA support. +/- 300ppm accuracy required.
38	SRCCLKT	ОИТ	True clock of differential pair for S-ATA support. +/- 300ppm accuracy required.
39	GND	PWR	Ground pin.
40	CPUCLKC0	ОИТ	"Complementary" clocks of differential pair CPU outputs. These are current mode outputs. External resistors are required for voltage bias.
41	CPUCLKT0	OUT	"True" clocks of differential pair CPU outputs. These are current mode outputs. External resistors are required for voltage bias.
42	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
43	CPUCLKC1	OUT	"Complementary" clocks of differential pair CPU outputs. These are current mode outputs. External resistors are required for voltage bias.
44	CPUCLKT1	OUT	"True" clocks of differential pair CPU outputs. These are current mode outputs. External resistors are required for voltage bias.
45	GND	PWR	Ground pin.
46	CPUCLKC2	ОИТ	"Complementary" clocks of differential pair CPU outputs. These are current mode outputs. External resistors are required for voltage bias.
47	CPUCLKT2	OUT	"True" clocks of differential pair CPU outputs. These are current mode outputs. External resistors are required for voltage bias.
48	VDDCPU	PWR	Supply for CPU clocks, 3.3V nominal
49	PCI_STOP#	IN	Stops all PCICLKs and SRC pair besides the PCICLK_F clocks at logic 0 level, when input low. PCI and SRC clocks can be set to Free_Running through I2C. Internal pull-up of 150K nominal.
50	CPU_STOP#	IN	Stops all CPUCLK besides the free running clocks. Internal pull-up of 150K nominal
51	FS_A	IN	Frequency select pin, see Frequency table for functionality
52	IREF	OUT	IREF establishes the reference current for the CPUCLK pairs. A fixed precision resistor tied to ground is required to establish the appropriate current.
53	GND	PWR	Ground pin.
54	GNDA	PWR	Ground pin for core.
55	VDDA	PWR	3.3V power for the PLL core.
56	FS_B	IN	Frequency select pin, see Frequency table for functionality


0758—02/08/05

General Description

ICS952623 follows Intel CK409 Yellow Cover specification. This clock synthesizer provides a single chip solution for next generation P4 Intel processors and Intel chipsets. ICS952623 is driven with a 14.318MHz crystal. It generates CPU outputs up to 200MHz. It also provides a tight ppm accuracy output for Serial ATA support.

Block Diagram

Power Groups

Pin N	lumber	Description
VDD	GND	Description
3	6	Xtal, Ref
24	25	3V66 [0:3]
10,16	11,17	PCICLK outputs
36	39	SRCCLK outputs
55	54	Master clock, CPU Analog
34	33	48MHz, PLL
N/A	53	IREF
48, 42	45	CPUCLK clocks

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		$V_{DD} + 0.5V$	V
VDD_In	3.3V Logic Input Supply Voltage	GND - 0.5	$V_{DD} + 0.5V$	V
Ts	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	O	70	> °C
Tcase	Case Temperature		115	°C (\
	Input ESD protection			
ESD prot	human body model	2000		X

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

$T_A = 0 - 70 \text{ C}$, Supply Vol	lage von - 3.	3 V +/-3 /0	\ /.\\/				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input MID Voltage	A _{MID}	3.3 V +/-5%	/ 1		1.8	V	
Input Low Voltage	V _{IL}	3.3 V +/-5%	V _{SS} - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	<-5 <		5	uA	
	lili	V _{IN} = 0 V; Inputs with no pull- up resistors	-5		9)//	uA	
Input Low Current	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200		>	uA	
Operating Supply Current	1 _{DD3.3OP}	Full Active, C _L = Full load;			350	mA	
Powerdown Current	Inno enn	all diff pairs driven			35	mA	
1 OWEIGOWIT CUITETIL	I _{DD3.3PD}	all differential pairs tri-stated			12	mA	
Input Frequency ³	Fi	V _{DD} = 3.3 V	<i>Ś</i>) *	14.31818		MHz	3
Pin Inductance ¹	Lpin				7	nH	1
	CIN	Logic Inputs			5	рF	1
Input Capacitance ¹	//C _{OUT}	Output pin capacitance			6	рF	1
	C _{INX}	X1 & X2 pins			5	рF	1
Clk Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up or deassertion of PD# to 1st clock			1.8	ms	1,2
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_SRC		SRC output enable after PCI_Stop# de-assertion			15	ns	1
Tdrive_PD#		CPU output enable after PD# de-assertion			300	us	1
Tfall_Pd#		PD# fall time of			5	ns	1
Trise_Pd#		PD# rise time of			5	ns	2
Tdrive_CPU_Stop#		CPU output enable after CPU_Stop# de-assertion			10	us	1
Tfall_CPU_Stop#		PD# fall time of			5	ns	1
Trise_CPU_Stop#		PD# rise time of			5	ns	2

¹Guaranteed by design, not 100% tested in production.

0758—02/08/05

²See timing diagrams for timing requirements.

³ Input frequency should be measured at the REF output pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

Electrical Characteristics - CPU & SRC 0.7V Current Mode Differential Pair

 $T_A = 0 - 70^{\circ}C; V_{DD} = 3.3 V + /-5\%; C_L = 2pF$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using	660		850	mV	1
Voltage Low	VLow	oscilloscope math function.	-150		150	111 V	1
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	→ mV	1
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
		200MHz nominal	4.9985	, ((5.0015	ns	2
		200MHz spread	4.9985		5.0266	ns	2
Avaraga pariad		166.66MHz nominal	5.9982	1	6.0018	ns	2
	Tperiod	166.66MHz spread	5.9982		6.0320	ns	2
Average period		133.33MHz nominal	7.4978		7.5023	ns	2
		133.33MHz spread	7.4978		5.4000	ns	2
		100.00MHz nominal	9.9970		10.0030	ns	2
		100.00MHz spread	9.9970		10.0533	ns	2
	/	200MHz nominal	4.8735			ns	1,2
Absolute min period	\rightarrow	166.66MHz nominal/spread	5.8732			ns	1,2
Absolute IIIII peliou	T _{absmin}	133.33MHz nominal/spread	7.3728			ns	1,2
		100.00MHz nominal/spread	9.8720		^	ns	1,2
Rise Time	tr	$V_{OL} = 0.175V, V_{OH} = 0.525V$	<u></u>		700	ps	1
Fall Time	(t _f	$V_{OH} = 0.525V V_{OL} = 0.175V$	175	(700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f		()		125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew	t _{sk3}	V _T = 50%			100	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	Measurement from differential wavefrom			125	ps	1

¹Guaranteed by design, not 100% tested in production.

SRC clock outputs run at only 100MHz or 200MHz, specs for 133.33 and 166.66 do not apply to SRC clock pair.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

Electrical Characteristics - 3V66 Mode: 3V66 [4:0]

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 10-30 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
-	т	66.66MHz output nominal	14.9955		15.0045	ns	2
Clock period	T _{period}	66.66MHz output spread	14.9955		15.0799	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	
Output Low Voltage	V _{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	
Output High Current		V _{OH} @ MIN = 1.0 V	-33	>/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		mA	
Output High Current	Гон	V _{OH} @ MAX = 3.135 V	>//		-33	mA	
Output Low Current		V _{OL} @ MIN = 1.95 V	30			mA	
Output Low Current	lor	V _{OL} @ MAX = 0.4 V			38	mA	
Edge Rate		Rising edge rate) 1		4	V/ns	1
Edge Rate		Falling edge rate	1		4	V/ns	1
Rise Time	$\downarrow \downarrow t_{r1} \downarrow \downarrow$	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		2 <	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0,5		2	ns	1
Duty Cycle	d _{f1}	V _T = 1.5 V	45		(55)	%	1
Skew	/ t _{sk1}	V _T = 1.5 V		>	250	ps	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V 3V66			250	ps	1

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCICLK/PCICLK F

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 10-30 \text{ pF (unless otherwise specified)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
Clock period	_	33.33MHz output nominal	29.9910		30.0090	ns	2
Clock pellod	T _{period}	33.33MHz output spread	29.9910		30.1598	ns	2
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	
Output High Current		V _{OH} @MIN = 1.0 V	-33			mA	
Output High Current	I _{OH}	V_{OH} @ MAX = 3.135 V			-33	mA	
Output Low Current		V_{OL} @ MIN = 1.95 V	30			mA	
Output Low Current	I _{OL}	V_{OL} @ MAX = 0.4 V			38	mA	
Edge Rate		Rising edge rate	1		4	V/ns	1
Edge Rate		Falling edge rate	1		4	V/ns	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		2	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5		2	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Skew	t _{sk1}	$V_T = 1.5 V$			500	ps	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V 3V66			250	ps	1

¹Guaranteed by design, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz 0758-02/08/05

Electrical Characteristics - 48MHz DOT Clock

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 5-10 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-200	_	200	ppm	1,2
Clock period	T _{period}	48MHz output nominal	20.8257		20.8340	ns	2
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V _{OL} ((<	I _{OL} = 1 mA			0.55	V	
Output High Current		V _{OH} @ MIN = 1.0 V	-33			mA	
Output High Culterit	ГОН	V_{OH} @ MAX = 3.135 V			-33	mA	
Output Low Current		V _{OL} @ MIN = 1.95 V	30			mA	
Output Low Current	JOL	V _{OL} @ MAX = 0.4 V			38	mA	
Edge Rate		Rising edge rate	2		4	V/ns	1
Edge Rate		Falling edge rate	2		4 <	V/ns	1
Rise Time	t_{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		1	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5			ns	1
Duty Cycle) \ d _{t1}	V _T = 1.5 V	45		55	%	1
Long Term Jitter		125us period jitter (8kHz frequency modulation amplitude)			2	ns	1

¹Guaranteed by design, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

Electrical Characteristics - VCH, 48MHz, USB

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 10\text{-}20 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-200		200	ppm	1,2
Clock period	T _{period}	48MHz output nominal	20.8257		20.8340	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	
Output Low Voltage	Vol	I _{OL} = 1 mA		>	0.55	V	
Output High Current		V _{OH} @ MIN = 1.0 V	-33			mA	
Output High Current	ЮН	V_{OH} @ MAX = 3.135 V			-33	mA	
Output Low Current		V _{OL} @MIN = 1.95 V	30			mA	
Output Low Current	I _{OL}	V_{OL} @ MAX = 0.4 V			38	mA	
Edge Rate		Rising edge rate	1		2	V/ns	1
Edge Rate		Falling edge rate	1		√2	V/ns	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1		2	ns	1
Fall Time	(t _{f1})	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$) ` 2	ns	1
Duty Cycle	d _{f1}	V _T = 1.5 V	45		55	%	1
Long Term Jitter		125us period jitter (8kHz frequency modulation amplitude)	2/1/2	Š	6	ns	1

¹Guaranteed by design, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that Ref output is at 14.31818MHz

Electrical Characteristics - REF-14.318MHz

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 10\text{-}20 \text{ pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Long Accuracy	ppm ¹	see Tperiod min-max values	-300 <	1//	300	ppm
Clock period	T _{period}	14.318MHz output nominal	69.8270	7/	69.8550	ns
Output High Voltage	V _{OH} ¹	I _{OH} = -1 mA	2.4			٧
Output Low Voltage	V _{OL} 1	I _{OL} = 1 mA		>	0.4	V
Output High Current	loh,	V _{OH} @MIN = 1.0 V, V _{OH} @MAX = 3.135 V	-29		-23	mA
Output Low Current	l _{OL} 1	V_{OL} @MIN = 1.95 V, V_{OL} @MAX = 0.4 V	29		27	mA
Rise Time	t _{r1} 1	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1		2	ns
Fall Time	t _{f1} 1	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	_^ 1		2	ns
Skew	t _{sk1} 1	$V_T = 1.5 V$	/ _		500	ps
Duty Cycle	d_{t1}	$V_{T} = 1.5 \text{ V}$	45		55	%
Jitter /	t _{jcyc-cyc} 1	V _T = 1.5 V	$\mathcal{L}(\mathcal{L}(\mathcal{L}))$		1000	ps

¹Guaranteed by design, not 100% tested in production.

Group to Group Skews at Common Transition Edges

GROUP	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
3V66 to PCI	S _{3V66-PCI}	3V66 (4:0) leads 33MHz PCI	1.50	3.50	ns
DOT-USB	S _{DOT_USB}	180 degrees out of phase	0.00	1.00	ns
DOT-VCH	S _{DOT_VCH}	in phase	0.00	1.00	ns

I²C Table: Read-Back Register

1 0 1001	e. Head-Dack	v riegio						
By	te 0 F	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7			RESERVED	RESERVED	-	RES	SERVED	X
Bit 6	-		RESERVED	RESERVED	-	RESERVED		Χ
Bit 5	-		RESERVED	RESERVED	-	RESERVED		Χ
Bit 4	-		RESERVED	RESERVED	-	RESERVED		Х
Bit 3	-		PCI_STOP#	PCI STOP# Read Back	R	READBACK		х
Bit 2	-		CPU_STOP#	CPU STOP Read Back	R	RE/	ADBACK	х
Bit 1	-		FSB	Freq Select 1 Read Back	R	READBACK of CPU(2:0)		Х
Bit 0	-		FSA	Freq Select 0 Read Back	R	Frequency		Х

I²C Table: Spreading and Device Behavior Control Register

i O i ab	ic. Opica	uning and D	evice Bellavior Control	ricgistor				
Ву	/te 1	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	3	7,38	SRC/SRC#	SRC Free-Running Control	RW	FREE-RUN	STOPPABLE	0
Bit 6	3	7,38	SRC	Output Control	RW	Disable	Enable	1
Bit 5	4	6,47	CPUT2/CPUC2	CPU FREE-RUNNING	RW	FREE-RUN	STOPPABLE	1
Bit 4	4:	3,44	CPUT1/CPUC1	CONTROL	RW	FREE-RUN	STOPPABLE	1
Bit 3	4	0,41	CPUT0/CPUC0	CONTROL	RW	FREE-RUN	STOPPABLE	1
Bit 2	4	6,47	CPUT2/CPUC2	Output Control	RW	Disable	Enable	1
Bit 1	4	3,44	CPUT1/CPUC1	Output Control	RW	Disable	Enable	1
Bit 0	4	0,41	CPUT0/CPUC0	Output Enable	RW	Disable	Enable	1

I²C Table: Output Control Register

Ву	rte 2	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	37	7,38	SRC_PD# Drive Mode	0: Driven in PD#	RW	Driven	Hi-Z	0
Bit 6	37	7,38	SRC_Stop# Drive Mode	0: Driven in PCI_Stop#	RW	Driven	Hi-Z	0
Bit 5	46	6,47	CPUT2_PD# Drive Mode		RW	Driven	Hi-Z	0
Bit 4	43	3,44	CPUT1_PD# Drive Mode	0:driven in PD# 1: Tri-stated	RW	Driven	Hi-Z	0
Bit 3	40),41	CPUT0_PD# Drive Mode		RW	Driven	Hi-Z	0
Bit 2	46	6,47	CPUT2_Stop Drive Mode		RW	Driven	Hi-Z	0
Bit 1	43	3,44	CPUT1_Stop Drive Mode	0:driven when stopped 1: Tri-stated	RW	Driven	Hi-Z	0
Bit 0	40),41	CPUT0_Stop Drive Mode		RW	Driven	Hi-Z	0

I²C Table: Output Control Register

	ie. Output		-gc			1	1	
Ву	/te 3	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7		,13,14,15, 20,37,38,	PCI_Stop#	PCI_Stop# Control 0:all stoppable PCI are stopped	RW	Enable	Disable	1
Bit 6	2	20	PCICLK6	Output Control	RW	Disable	Enable	1
Bit 5	1	19	PCICLK5	Output Control	RW	Disable	Enable	1
Bit 4	1	18	PCICLK4	Output Control	RW	Disable	Enable	1
Bit 3	1	15	PCICLK3	Output Control	RW	Disable	Enable	1
Bit 2	1	14	PCICLK2	Output Control	RW	Disable	Enable	1
Bit 1	1	13	PCICLK1	Output Control	RW	Disable	Enable	1
Bit 0	1	12	PCICLK0	Output Control	RW	Disable	Enable	1

I²C Table: Output Control Register

	rte 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	3	31	48MHz_USB 2x output drive	0=2x drive	RW	2x drive	normal	0
Bit 6	3	31	48MHz_USB	Output Control	RW	Disable	Enable	1
Bit 5		9	PCIF2	PCI FREE-RUN NING	RW	FREE-RUN	STOPPABLE	0
Bit 4		8	PCIF1	CONTROL	RW	FREE-RUN	STOPPABLE	0
Bit 3		7	PCIF0	CONTROL	RW	FREE-RUN	STOPPABLE	0
Bit 2		9	PCICLK_F2	Output Control	RW	Disable	Enable	1
Bit 1		8	PCICLK_F1	Output Control	RW	Disable	Enable	1
Bit 0		7	PCICLK_F0	Output Control	RW	Disable	Enable	1

I²C Table: Output Control Register

Ву	te 5	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	3	32	48MHZ_DOT	Output Control	RW	Disable	Enable	1
Bit 6		-	RESERVED	RESERVED	`	-	-	0
Bit 5	2	29	3V66_4/VCH Select	Output Select	RW	3V66	VCH	0
Bit 4	2	29	3V66_4/VCH	Output Control	RW	Disable	Enable	1
Bit 3	2	27	3V66_3	Output Control	RW	Disable	Enable	1
Bit 2	2	26	3V66_2	Output Control	RW	Disable	Enable	1
Bit 1	2	23	3V66_1	Output Control	RW	Disable	Enable	1
Bit 0	2	22	3V66_0	Output Control	RW	Disable	Enable	1

I²C Table: Output Control and Fix Frequency Register

	te 6 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	1,2,7,8,9,12,13,14 15,18,19,20,22,23 6,27,29,31,32,37,3 ,40,41,43,44,46,4	Test Clock Mode	Test Clock Mode	-	Disable	Enable	0
Bit 6	-	RESERVED	-	-	-	-	0
Bit 5	40,41,43,44,46,4	RESERVED	FS_A and FS_B Operation	-	Normal	Test Mode	0
Bit 4	37,38	RESERVED	SRC Frequency Select	-	100MHz	200MHz	0
Bit 3		Spread Type	Down/Center	-	Down	Center	0
Bit 2	7,8,9,12,13,14,15 8,19,20,22,23,26,2 ,29,31,32,37,38,4 41,43,44,46,47	7 Spread Spectrum Mode			Spread OFF	Spread ON	0
Bit 1	2	REF1	Output Control	RW	Disable	Enable	1
Bit 0	1	REF0	Output Control	RW	Disable	Enable	1

I²C Table: Vendor & Revision ID Register

Ву	rte 7 Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1	HEVIOION ID	R	-	-	0
Bit 4	-	RID0		R	-	-	0
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1	VENDORID	R	-	-	0
Bit 0	-	VID0		R	-	=	1

I²C Table: Byte Count Register

Byt	e 8 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	BC7		RW	-	-	0
Bit 6	-	BC6	Writing to this register	RW	-	-	0
Bit 5	-	BC5	will configure how	RW	-	-	0
Bit 4	-	BC4	many bytes will be	RW	-	-	0
Bit 3	-	BC3	read back, default is	RW	-	-	1
Bit 2	-	BC2	08 = 8 bytes.	RW	-	-	0
Bit 1	-	BC1	00 = 0 bytes.	RW	-	-	0
Bit 0	-	BC0		RW	-	-	0

I²C Table: Overclocking Output Control Register

Byte 9	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-	Reserved	Reserved	RW	-	-	0
Bit 6	-	Reserved	Reserved	RW	-	-	0
Bit 5	-	Reserved	Reserved	RW	-	-	0
Bit 4	-	Reserved	Reserved	RW	-	-	0
Bit 3	-	Over Clocking	1: over-clk 0: normal mode	R		locking per bit 1 and 2	0
Bit 2	-	Over Clocking	Over Clocking	R	00= +15%	%, 01 = +20%	0
Bit 1	-	Over Clocking	Over Clocking	R	10= +5%	s, 11= +10%	0
Bit 0	-	Reserved	Reserved	RW	-	-	0

I²C Table: VCO Control Select Bit Control Register

1 O Tubi	C. 100 O	ontion och	ect bit Control Register					
Byt	Byte 10 Pin #		Name	Control Function Type		0	1	PWD
Bit 7	,		Programming ENABLE	Enables prograaming bytes 11-14	RW	DISABLED	ENABLED	0
Bit 6		-	RESERVED	RESERVED	RW	-	-	0
Bit 5		-	RESERVED	RESERVED	RW	-	-	0
Bit 4		-	RESERVED	RESERVED	RW	-	-	0
Bit 3		-	RESERVED	RESERVED	RW	-	-	0
Bit 2		-	RESERVED	RESERVED	RW	-	-	0
Bit 1		-	RESERVED	RESERVED	RW	-	-	0
Bit 0		-	RESERVED	RESERVED	RW	-	-	0

I²C Table: VCO Frequency Control Register

			o o mar o r mognotor					
Byt	te 11	Pin#	Name	Control Function	Type	0	1	PWD
Bit 7	-	•	N Div8	N Divider Bit 8	RW	•	-	Х
Bit 6	-		M Div6	The decimal	RW	-	-	Х
Bit 5	-		M Div5	representation of M	RW	-	-	Х
Bit 4	-	•	M Div4	Div (6:0) is equal to	RW	-	-	Х
Bit 3	-		M Div3	reference divider	RW	-	-	Х
Bit 2	-		M Div2	value. Default at	RW	-	-	Х
Bit 1	-		M Div1	power up = latch-in or	RW	-	-	Х
Bit 0	-	•	M Div0	Byte 0 Rom table.	RW	•	-	Х

I²C Table: VCO Frequency Control Register

Byt	Byte 12 Pin # Name		Name	Control Function	Type	0	1	PWD
Bit 7	Bit 7 - N Div7		N Div7	The decimal	RW	ı	-	Х
Bit 6	-		N Div6		RW	-	-	Х
Bit 5	-		N Div5	representation of N	RW	-	-	Х
Bit 4	-		N Div4	Div (8:0) is equal to VCO divider value.	RW	-	-	Х
Bit 3	-		N Div3	Default at power up =	RW	-	-	Х
Bit 2	-		N Div2	latch-in or Byte 0 Rom	RW	ı	-	Χ
Bit 1	-		N Div1	table.	RW	-	-	Χ
Bit 0	-		N Div0	table.	RW	-	-	Х

I²C Table: Spread Spectrum Control Register

By	te 13 Pi	in #	Name	Control Function	Type	0	1	PWD
Bit 7	-		SSP7	These Spread	These Spread RW		-	Χ
Bit 6	-		SSP6	Spectrum bits will	RW	-	-	Χ
Bit 5	-		SSP5	program the spread	RW	-	-	Χ
Bit 4	-		SSP4	pecentage. It is	s RW		-	Χ
Bit 3	-		SSP3	recommended to use	ended to use RW -		-	Χ
Bit 2	-		SSP2	ICS Spread % table	RW	-	-	Χ
Bit 1	-		SSP1	for spread	RW	-	-	Χ
Bit 0	-		SSP0	programming.	RW	-	-	Χ

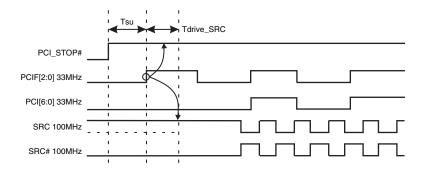
I²C Table: Spread Spectrum Control Register

· · · · ·	c. opreda opectran	T GOTTE OF TROUBLES					
Byt	te 14 Pin #	Name	ame Control Function		0	1	PWD
Bit 7	Bit 7 - Reserved		Reserved	RW	-	-	0
Bit 6	-	Reserved	Reserved	RW	-	-	0
Bit 5	-	SSP13		RW	-	-	Х
Bit 4	-	SSP12	It is recommended to	RW	-	-	Х
Bit 3	-	SSP11	use ICS Spread %	RW	-	-	Х
Bit 2	-	SSP10	table for spread	RW	-	-	Х
Bit 1	-	SSP9	programming.	RW	-	-	Х
Bit 0	-	SSP8		RW	-	-	Х

PCI Stop Functionality

The PCI_STOP# signal is on an active low input controlling PCI and SRC outputs. If PCIF (2:0) and SRC clocks can be set to be free-running through I2C programming. Outputs set to be free-running will ignore both the PCI_STOP pin and the PCI_STOP register bit.

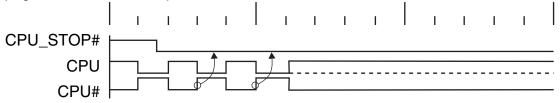
PCI_STOP#	CPU	CPU#	SRC	SRC#	3V66	PCIF/PCI	USB/DOT	REF	Note
1	Normal	Normal	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	
0	Normal	Normal	Iref * 6 or Float	Low	66MHz	Low	48MHz	14.318MHz	


PCI_STOP# Assertion (transition from '1' to '0')

The clock samples the PCI_STOP# signal on a rising edge of PCIF clock. After detecting the PCI_STOP# assertion low, all PCI[6:0] and stoppable PCIF[2:0] clocks will latch low on their next high to low transition. After the PCI clocks are latched low, the SRC clock, (if set to stoppable) will latch high at Iref * 6 (or tristate if Byte 2 Bit 6 = 1) upon its next low to high transition and the SRC# will latch low as shown below.

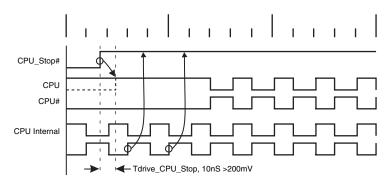
PCI STOP# - De-assertion

The de-assertion of the PCI_Stop# signal is to be sampled on the rising edge of the PCIF free running clock domain. After detecting PCI_Stop# de-assertion, all PCI[6:0], stoppable PCIF[2:0] and stoppable SRC clocks will resume in a glitch free manner.


CPU_STOP# Functionality

The CPU_STOP# signal is an active low input controlling the CPU outputs. This signal can be asserted asynchronously.

CPU_STOP#	CPU	CPU#	SRC	SRC#	3V66	PCIF/PCI	USB/DOT	REF	Note
1	Normal	Normal	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	
0	Iref * 6 or Float	Low	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	


CPU_STOP# - Assertion (transition from '1' to '0')

Asserting CPU_STOP# pin stops all CPU outputs that are set to be stoppable after their next transition. When the I2C CPU_STOP tri-state bit corresponding to the CPU output of interest is programmed to a '0', CPU output will stop CPU_True = HIGH and CPU_Complement = LOW. When the I2C CPU_Stop tri-state bit corresponding to the CPU output of interest is programmed to a '1', CPU outputs will be tri-stated.

CPU_STOP# - De-assertion (transition from '0' to '1')

With the de-assertion of CPU_Stop# all stopped CPU outputs will resume without a glitch. The maximum latency from the de-assertion to active outputs is 2 - 6 CPU clock periods. If the control register tristate bit corresponding to the output of interest is programmed to '1', then the stopped CPU outputs will be driven High within 10nS of CPU_Stop# de-assertion to a voltage greater than 200mV.

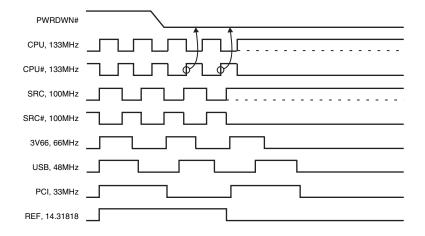
PD#. Power Down

PD# is an asynchronous active low input used to shut off all clocks cleanly prior to clock power. When PD# is asserted low all clocks will be driven low before turning off the VCO. In PD# de-assertion all clocks will start without glitches.

PWRDWN#	CPU	CPU#	SRC	SRC#	3V66	PCIF/PCI	USB/DOT	REF	Note
1	Normal	Normal	Normal	Normal	66MHz	33MHz	48MHz	14.318MHz	
0	Iref * 2 or Float	Float	Iref * 2 or Float	Float	Low	Low	Low	Low	

Notes:

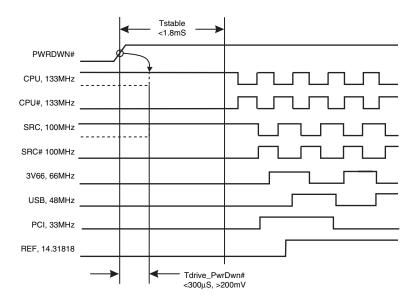
- 1. Refer to tristate control of CPU and SRC clocks in section 7.7 for tristate timing and operation.
- 2. Refer to Control Registers in section 16 for CPU_Stop, SRC_Stop and PwrDwn SMBus tristate control addresses.

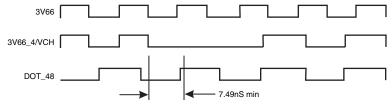

PD# Assertion

PD# should be sampled low by 2 consecutive CPU# rising edges before stopping clocks. All single ended clocks will be held low on their next high to low transition.

All differential clocks will be held high on the next high to low transition of the complimentary clock. If the control register determining to drive mode is set to 'tri-state', the differential pair will be stopped in tri-state mode, undriven.

When the drive mode but corresponding to the CPU or SRC clock of interest is set to '0' the true clock will be driven high at


2 x Iref and the complementary clock will be tristated. If the control register is programmed to '1' both clocks will be tristated.


PD# De-assertion

The time from the de-assertion of PD# or until power supply ramps to get stable clocks will be less than 1.8ms. If the drive mode control bit for PD# tristate is programmed to '1' the stopped differential pair must first be driven high to a minimum of 200 mV in less than $300 \mu \text{s}$ of PD# deassertion.

3V66_4/VCH Pin Functionality

The 3V66_4/VCH pin can be configured to be a 66.66MHz modulated output or a non-spread 48MHz output. The default is 3V66 clock. The switching is controlled by Byte 5 Bit 5. If it is set to '1' this pin will output the 48MHz VCH clock. The output will go low on the falling edge of 3V66 for a minimum of 7.49ns. Then the output will transition to 48MHz on the next rising edge of DOT_48 clock.

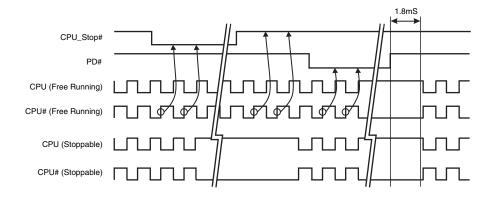
Differential Clock Tristate

To minimize power consumption, CPU[2:0] clock outputs are individually configurable through SMBus to be driven or tristated during PwrDwn# and CPU_Stop# mode and the SRC clock is configurable to be driven or tristated during PCI_Stop# and PwrDwn# mode. Each differential clock (SRC, CPU[2:0]) output can be disabled by setting the corresponding output's register OE bit to "0" (disable). Disabled outputs are to be tristated regardless of "CPU_Stop", "SRC_Stop" and "PwrDwn" register bit settings.

Signal	Pin PD#	Pin CPU_Stop#	CPU_Stop Tristate Bit	Pwrdwn Tristate Bit	Non-Stoppable Outputs	Stoppable Outputs
CPU[2:0}	1	1	Х	Х	Running	Running
CPU[2:0}	1	0	0	Х	Running	Driven @ Iref x 6
CPU[2:0}	1	0	1	Х	Running	Tristate
CPU[2:0}	0	Х	Х	0	Driven @ Iref x 2	Driven @ Iref x 2
CPU[2:0}	0	Х	Х	1	Tristate	Tristate

Notes

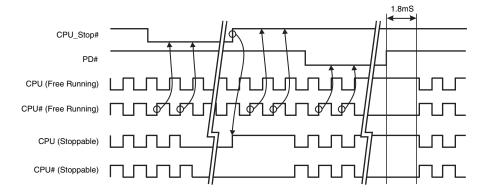
- 1. Each output has four corresponding control register bits, OE, PwrDwn, CPU_Stop and "Free Running"
- 2. Iref x 6 and Iref x 2 is the output current in the corresponding mode
- 3. See Control Registers section for bit address


Signal	Pin PD#	Pin PCI_Stop#	PCI_Stop Tristate Bit	Pwrdwn Tristate Bit	Non-Stoppable Output	Stoppable Output
SRC	1	1	Х	Х	Running	Running
SRC	1	0	0	Х	Running	Driven @ Iref x 6
SRC	1	0	1	Х	Running	Tristate
SRC	0	Х	Х	0	Driven @ Iref x 2	Driven @ Iref x 2
SRC	0	Х	Х	1	Tristate	Tristate

- 1. SRC output has four corresponding control register bits, OE, PwrDwn, SRC_Stop and "Free Running"
- 2. Iref x 6 and Iref x 2 is the output current in the corresponding mode
- 3. See Control Registers section for bit address

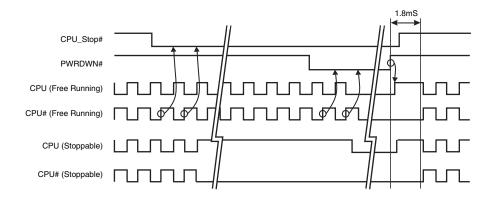
CPU Clock Tristate Timing

The following diagrams illustrate CPU clock timing during CPU_Stop# and PwrDwn# modes with CPU_PwrDwn and CPU_Stop tristate control bits set to driven or tristate in byte 2 of the control register.


CPU_Stop = Driven, CPU_Pwrdwn = Driven

Notes:

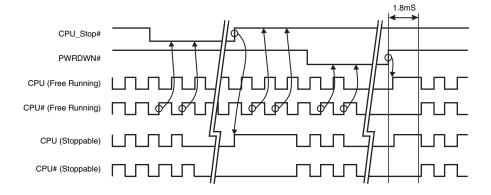
1. When both bits (CPU_Stop & CPU_Pwrdown tristate bits) are low, the clock chip will never tristate CPU output clocks (assuming clock's OE bit is set to "1")


CPU_Stop = Tristate, CPU_Pwrdwn = Driven

Notes

1. Tristate outputs are pulled low by output termination resistors as shown here.

CPU_Stop = Driven, CPU_Pwrdwn = Tristate

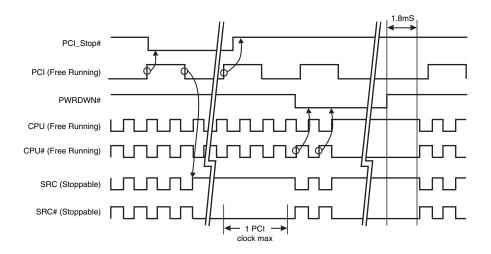


Notes:

- 1. When CPU_Pwrdwn is set to tristate and CPU_Stop is set to driven, the clock chip will tristate outputs only during the assertion of PWRDWN#. Differential clock behavior during the assertion/de-assertion of CPU_Stop# will be unaffected.

 2. In the case that CPU_Stop# is de-asserted during the 1.8mS PWRDWN# de-assertion resume delay, the clock chip can sample the CPU_Stop# high with the internal rising edges of clock#. This will result in CPU clocks resuming immediately after the 1.8mS windows expires. This applies to all control register bit changes as well.
- 3. Tristate outputs are pulled low by output termination resistors as shown here.

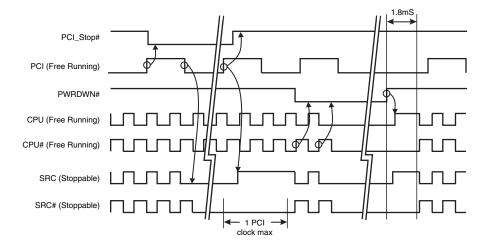
CPU_Stop = Tristate, CPU_Pwrdwn = Tristate



- 1. When CPU_Stop and CPU_Pwrdwn bits are set to tristate, the clock chip will tristate the outputs during the assertion of CPU_Stop# and PWRDWN#.
- 2. Tristate outputs are pulled low by output termination resistors as shown here.

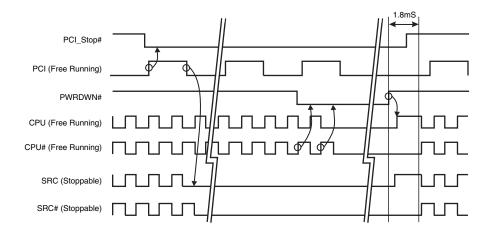
SRC Clock Tristate Timing

The following diagrams illustrate SRC clock timing during PCI_Stop# and PwrDwn# modes with SRC_Pwrdwn and SRC_Stop tristate control bits set to driven or tristate in byte 2 of the control register.


SRC_Stop = Driven, SRC_Pwrdwn = Driven

Notes:

1. When both bits (SRC_Stop & SRC_Pwrdown tristate bits) are set to driven, the clock chip will never tristate the SRC output clock (assuming clock's OE bit is set to "1")


SRC_Stop = Tristate, Pwrdwn = Tristate

- 1. When SRC_Stop and SRC_Pwrdwn bits are set to tristate, the clock chip will tristate outputs during the assertion of PCI_Stop# and PWRDWN#.
- 2. Tristate outputs are pulled low by output termination resistors as shown here.

PCI_STOP Asserted SRC_Stop = Tristate, SRC_Pwrdwn = Tristate

- 1. When SRC_Pwrdwn and SRC_Stop are set to tristate, the clock chip will tristate outputs during the assertion of PCI_Stop# and PWRDWN#.
- 2. In the case that PCI_Stop# is de-asserted during the 1.8mS PWRDWN# de-assertion resume delay, the clock chip can sample the PCI_Stop# high with the internal rising edges of CPU clock#. This will result in SRC clocks resuming immediately after the 1.8mS window expires. This applies to all control register bit changes as well.
- 3. Tristate outputs are pulled low by output termination resistors as shown here.

Shared Pin Operation - Input/Output Pins

The I/O pins designated by (input/output) serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period.

Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

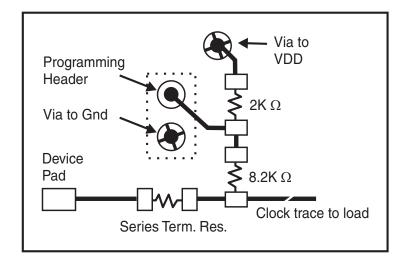
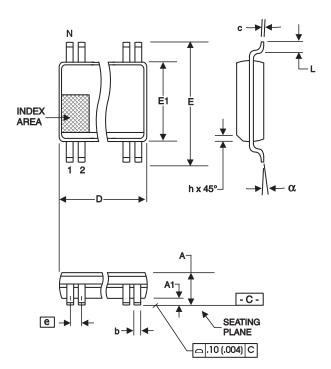
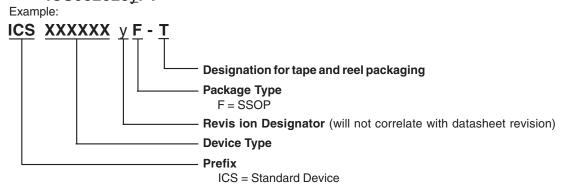



Fig. 1

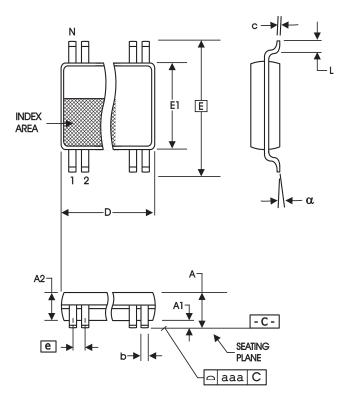
300 mil SSOP

	In Milli	meters	In Ir	ches
SYMBOL	COMMON D	IMENSIONS	COMMON E	IMENSIONS
	MIN	MAX	MIN	MAX
Α	2.41	2.80	.095	.110
A1	0.20	0.40	.008	.016
b	0.20	0.34	.008	.0135
С	0.13	0.25	.005	.010
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS
E	10.03	10.68	.395	.420
E1	7.40	7.60	.291	.299
е	0.635	BASIC	0.025	BASIC
h	0.38	0.64	.015	.025
L	0.50	1.02	.020	.040
N	SEE VAF	RIATIONS	SEE VAF	RIATIONS
а	0°	8°	0°	8°

VARIATIONS


N	Dr	nm.	D (inch)		
N	MIN MAX		MIN	MAX	
56	18.31	18.55	.720	.730	

Reference Doc.: JEDEC Publication 95, MO-118


10-0034

Ordering Information

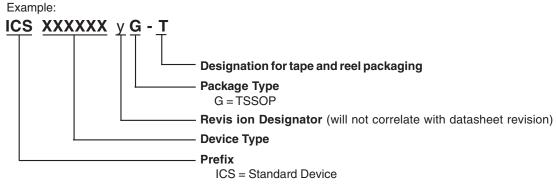
ICS952623yFT

0758-02/08/05

56-Lead 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

(E40 IIIII)			(20 11111)	
SYMBOL	In Millimeters		In Inches	
	COMMON DIMENSIONS		COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
Α		1.20	-	.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.17	0.27	.007	.011
С	0.09	0.20	.0035	.008
D	SEE VARIATIONS		SEE VARIATIONS	
Е	8.10 BASIC		0.319 BASIC	
E1	6.00	6.20	.236	.244
е	0.50 BASIC		0.020 BASIC	
L	0.45	0.75	.018	.030
N	SEE VARIATIONS		SEE VARIATIONS	
а	0°	8°	0°	8°
aaa		0.10		.004

VARIATIONS


N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
56	13.90	14.10	.547	.555

Reference Doc.: JEDEC Publication 95, M O-153

10-0039

Ordering Information

ICS952623yGT

0758-02/08/05