

# **Eight Output Differential Buffer for PCI-Express**

#### **Recommended Application:**

DB800 Intel Yellow Cover part with PCI-Express support.

#### **Output Features:**

- 8 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- Bandwidth programming available

#### **Key Specifications:**

- Outputs cycle-cycle jitter < 50ps
- Outputs skew: 50ps
- +/- 300ppm frequency accuracy on output clocks

#### Features/Benefits:

- Supports tight ppm accuracy clocks for Serial-ATA
- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports undriven differential output pair in PD# and SRC\_STOP# for power management.

### **Pin Configuration**

| Intel Yellow Cover part with PCI-Express support.   | SRC_DIV# 1     | 48 VDDA                                                           |
|-----------------------------------------------------|----------------|-------------------------------------------------------------------|
| Features:                                           | VDD 2          | 47 GNDA                                                           |
| 0.7V current-mode differential output pairs         | GND 3          | 46 IREF                                                           |
| pports zero delay buffer mode and fanout mode       | SRC_IN 4       | 45 LOCK                                                           |
| ndwidth programming available                       | SRC_IN# 5      | 44 OE_7                                                           |
| , , , , , , , , , , , , , , , , , , ,               | OE_0 6         | 43 OE_4                                                           |
| pecifications:                                      | OE_3 7         | 42 DIF_7                                                          |
| tputs cycle-cycle jitter < 50ps                     | DIF_0 8        | 41 DIF_7#                                                         |
| tputs skew: 50ps                                    | DIF_0# 9       | 40 GND                                                            |
| 300ppm frequency accuracy on output clocks          | GND 10         | 39 VDD                                                            |
| ,                                                   | VDD 11         | 39 VDD<br>38 DIF_6<br>37 DIF_6#<br>36 OE_6<br>35 OE_5<br>34 DIF_5 |
| es/Benefits:                                        | DIF_1 12       | 37 DIF_6#                                                         |
| pports tight ppm accuracy clocks for Serial-ATA     | DIF_1# 13      | <b>6</b> 36 OE_6                                                  |
| read spectrum modulation tolerant, 0 to -0.5% down  | OE_1 14        | 95 OE_5                                                           |
| read and +/- 0.25% center spread                    | OE_2 15        |                                                                   |
| pports undriven differential output pair in PD# and | DIF_2 16       | 33 DIF_5#                                                         |
| C_STOP# for power management.                       | DIF_2# 17      | 32 GND                                                            |
|                                                     | GND 18         | 31 VDD                                                            |
|                                                     | VDD 19         | 30 DIF_4                                                          |
|                                                     | DIF_3 20       | 29 DIF_4#                                                         |
|                                                     | DIF_3# 21      | 28 HIGH_BW#                                                       |
|                                                     | BYPASS#/PLL 22 | 27 SRC_STOP#                                                      |
|                                                     | SCLK 23        | 26 PD#                                                            |
|                                                     | SDATA 24       | 25 GND                                                            |
|                                                     | 10 nin C       | SOP & TSSOP                                                       |
|                                                     | 40-piii 3      | 30F & 1330F                                                       |
|                                                     |                |                                                                   |
| 10                                                  |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |
|                                                     |                |                                                                   |



# **Pin Description**

| PIN#     | PIN NAME    | PIN TYPE | DESCRIPTION                                                  |
|----------|-------------|----------|--------------------------------------------------------------|
|          |             |          | Active low Input for determining SRC output frequency SRC or |
| 1        | SRC_DIV#    | IN       | SRC/2.                                                       |
|          |             |          | 0 = SRC/2, 1= SRC                                            |
| 2        | VDD         | PWR      | Power supply, nominal 3.3V                                   |
| 3        | GND         | PWR      | Ground pin.                                                  |
| 4        | SRC_IN      | IN       | 0.7 V Differential SRC TRUE input                            |
| 5        | SRC_IN#     | IN       | 0.7 V Differential SRC COMPLEMENTARY input                   |
| 6        | OE 0        | IN       | Active high input for enabling outputs.                      |
| 0        | OL_0        | 1111     | 0 = tri-state outputs, 1= enable outputs                     |
| 7        | OE_3        | IN       | Active high input for enabling outputs.                      |
| ,        | OL_3        | 1111     | 0 = tri-state outputs, 1= enable outputs                     |
| 8        | DIF_0       | OUT      | 0.7V differential true clock outputs                         |
| 9        | DIF_0#      | OUT      | 0.7V differential complement clock outputs                   |
| 10       | GND         | PWR      | Ground pin.                                                  |
| 11       | VDD         | PWR      | Power supply, nominal 3.3V                                   |
| 12       | DIF_1       | OUT      | 0.7V differential true clock outputs                         |
| 13       | DIF_1#      | OUT      | 0.7V differential complement clock outputs                   |
| 14       | OE_1        | IN       | Active high input for enabling outputs.                      |
| 14       | OL_1        | IIN      | 0 = tri-state outputs, 1= enable outputs                     |
| 15       | OE_2        | IN       | Active high input for enabling outputs.                      |
| 2        | OL_Z        | 1111     | 0 = tri-state outputs, 1= enable outputs                     |
| 16       | DIF_2       | OUT      | 0.7V differential true clock outputs                         |
| 17       | DIF_2#      | OUT      | 0.7V differential complement clock outputs                   |
| 18       | GND         | PWR      | Ground pin.                                                  |
| 19       | VDD         | PWR      | Power supply, nominal 3.3V                                   |
| 20       | DIF_3       | OUT      | 0.7V differential true clock outputs                         |
| 21       | DIF_3#      | OUT      | 0.7V differential complement clock outputs                   |
| 22       | BYPASS#/PLL | IN       | Input to select Bypass(fan-out) or PLL (ZDB) mode            |
| <i>_</i> | DIFASS#/FLL | IIN      | 0 = Bypass mode, 1= PLL mode                                 |
| 23       | SCLK        | IN       | Clock pin of SMBus circuitry, 5V tolerant.                   |
| 24       | SDATA       | I/O      | Data pin for SMBus circuitry, 5V tolerant.                   |



# Pin Description (Continued)

| PIN# | PIN NAME  | PIN TYPE | DESCRIPTION                                                                                                                                                                                                                           |
|------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25   | GND       | PWR      | Ground pin.                                                                                                                                                                                                                           |
| 26   | PD#       | IN       | Asynchronous active low input pin used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.                                                                                            |
| 27   | SRC_STOP# | IN       | Active low input to stop diff outputs.                                                                                                                                                                                                |
| 28   | HIGH_BW#  | PWR      | 3.3V input for selecting PLL Band Width 0 = High, 1= Low                                                                                                                                                                              |
| 29   | DIF_4#    | OUT      | 0.7V differential complement clock outputs                                                                                                                                                                                            |
| 30   | DIF_4     | OUT      | 0.7V differential true clock outputs                                                                                                                                                                                                  |
| 31   | VDD       | PWR      | Power supply, nominal 3.3V                                                                                                                                                                                                            |
| 32   | GND       | PWR      | Ground pin.                                                                                                                                                                                                                           |
| 33   | DIF_5#    | OUT      | 0.7V differential complement clock outputs                                                                                                                                                                                            |
| 34   | DIF_5     | OUT      | 0.7V differential true clock outputs                                                                                                                                                                                                  |
| 35   | OE_5      | IN       | Active high input for enabling outputs.  0 = tri-state outputs, 1= enable outputs                                                                                                                                                     |
| 36   | OE_6      | IN       | Active high input for enabling outputs.  0 = tri-state outputs, 1= enable outputs                                                                                                                                                     |
| 37   | DIF 6#    | OUT      | 0.7V differential complement clock outputs                                                                                                                                                                                            |
| 38   | DIF_6     | OUT      | 0.7V differential true clock outputs                                                                                                                                                                                                  |
| 39   | VDD       | PWR      | Power supply, nominal 3.3V                                                                                                                                                                                                            |
| 40   | GND       | PWR      | Ground pin.                                                                                                                                                                                                                           |
| 41   | DIF_7#    | OUT      | 0.7V differential complement clock outputs                                                                                                                                                                                            |
| 42   | DIF_7     | OUT      | 0.7V differential true clock outputs                                                                                                                                                                                                  |
| 43   | OE_4      | IN       | Active high input for enabling outputs.  0 = tri-state outputs, 1= enable outputs                                                                                                                                                     |
| 44   | OE_7      | IN       | Active high input for enabling outputs.  0 = tri-state outputs, 1= enable outputs                                                                                                                                                     |
| 45   | LOCK      | OUT      | 3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved.                                                                                                                                                     |
| 46   | IREF      | IN       | This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value. |
| 47   | GNDA      | PWR      | Ground pin for the PLL core.                                                                                                                                                                                                          |
| 48   | VDDA      | PWR      | 3.3V power for the PLL core.                                                                                                                                                                                                          |



## **General Description**

ICS9DB108 follows the Intel DB400 Differential Buffer Specification. This buffer provides four SRC clocks for PCI-Express, next generation I/O devices. ICS9DB108 is driven by a differential input pair from a CK409/CK410 main clock generator, such as the ICS952601 or ICS954101. ICS9DB108 can run at speeds up to 200MHz. It provides ouputs meeting tight cycle-to-cycle jitter (50ps) and output-to-output skew (50ps) requirements.

## **Block Diagram**





## **Absolute Max**

| Symbol   | Parameter                 | Min     | Max           | Units |
|----------|---------------------------|---------|---------------|-------|
| VDD_A    | 3.3V Core Supply Voltage  |         | 4.6           | V     |
| VDD_In   | 3.3V Logic Supply Voltage |         | 4.6           | V     |
| $V_{IL}$ | Input Low Voltage         | GND-0.5 |               | V     |
| $V_{IH}$ | Input High Voltage        |         | $V_{DD}+0.5V$ | V     |
| Ts       | Storage Temperature       | -65     | 150           | °C    |
| Tambient | Ambient Operating Temp    | 0       | 70            | °C    |
| Tcase    | Case Temperature          |         | 115           | °C    |
|          | Input ESD protection      |         |               |       |
| ESD prot | human body model          | 2000    |               | V     |

# **Electrical Characteristics - Input/Supply/Common Output Parameters**

 $T_A = 0 - 70^{\circ}\text{C}$ ; Supply Voltage  $V_{DD} = 3.3 \text{ V} + /-5\%$ 

| PARAMETER                        | SYMBOL               | CONDITIONS                                                                                           | MIN       | TYP                | MAX            | UNITS | NOTES |
|----------------------------------|----------------------|------------------------------------------------------------------------------------------------------|-----------|--------------------|----------------|-------|-------|
| Input High Voltage               | V <sub>IH</sub>      | 3.3 V +/-5%                                                                                          | 2         |                    | $V_{DD} + 0.3$ | V     |       |
| Input Low Voltage                | V <sub>IL</sub>      | 3.3 V +/-5%                                                                                          | GND - 0.3 |                    | 0.8            | V     |       |
| Input High Current               | I <sub>IH</sub>      | $V_{IN} = V_{DD}$                                                                                    | -5        |                    | 5              | uA    |       |
| lawathawa Owward                 | I <sub>IL1</sub>     | V <sub>IN</sub> = 0 V; Inputs with no pull-up resistors                                              | -5        |                    |                | uA    |       |
| Input Low Current                | I <sub>IL2</sub>     | V <sub>IN</sub> = 0 V; Inputs with pull-up resistors                                                 | -200      |                    |                | uA    |       |
| Operating Supply Current         | I <sub>DD3.3OP</sub> | Full Active, $C_L = Full load$ ;                                                                     |           |                    | 250            | mA    |       |
| Powerdown Current                | I <sub>DD3.3PD</sub> | all diff pairs driven                                                                                |           |                    | 60             | mA    |       |
| 1 GWGIGGWII GGITGIR              | *DD3.3PD             | all differential pairs tri-stated                                                                    |           |                    | 12             | mA    |       |
| Input Frequency <sup>3</sup>     | $F_{i}$              | $V_{DD} = 3.3 \text{ V}$                                                                             | 80        | 100/133<br>166/200 | 220            | MHz   | 3     |
| Pin Inductance <sup>1</sup>      | $L_{pin}$            |                                                                                                      |           |                    | 7              | nΗ    | 1     |
| Input Capacitance <sup>1</sup>   | $C_{IN}$             | Logic Inputs                                                                                         | 1.5       |                    | 5              | pF    | 1     |
| input Capacitance                | C <sub>OUT</sub>     | Output pin capacitance                                                                               |           |                    | 6              | pF    | 1     |
| PLL Bandwidth                    | BW                   | PLL Bandwidth when<br>PLL_BW=0                                                                       |           | 4                  |                | MHz   | 1     |
| F LL Bandwidth                   | DVV                  | PLL Bandwidth when PLL_BW=1                                                                          |           | 2                  |                | MHz   | 1     |
| Clk Stabilization <sup>1,2</sup> | T <sub>STAB</sub>    | From V <sub>DD</sub> Power-Up and after input clock stabilization or deassertion of PD# to 1st clock |           |                    | 1              | ms    | 1,2   |
| Modulation Frequency             |                      | Triangular Modulation                                                                                | 30        |                    | 33             | kHz   | 1     |
| Tdrive_SRC_STOP#                 |                      | DIF output enable after<br>SRC_Stop# de-assertion                                                    |           |                    | 10             | ns    | 1,3   |
| Tdrive_PD#                       |                      | DIF output enable after<br>PD# de-assertion                                                          |           |                    | 300            | us    | 1,3   |
| Tfall                            |                      | Fall time of PD# and<br>SRC_STOP#                                                                    |           | _                  | 5              | ns    | 1     |
| Trise                            |                      | Rise time of PD# and<br>SRC_STOP#                                                                    |           |                    | 5              | ns    | 2     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

0723G—12/02/08

<sup>&</sup>lt;sup>2</sup>See timing diagrams for timing requirements.

<sup>&</sup>lt;sup>3</sup>Time from deassertion until outputs are >200 mV



#### **Electrical Characteristics - DIF 0.7V Current Mode Differential Pair**

 ${\rm T_A = 0 - 70^{\circ}C; \, V_{DD} = 3.3 \, \, V \, + \!\! / -5\%; \, C_L = \!\! 2pF, \, R_S \!\! = \!\! 33.2\Omega, \, R_P \!\! = \!\! 49.9\Omega, \, I_{REF} = 475\Omega}$ 

| PARAMETER                          | SYMBOL                | CONDITIONS                                                        | MIN    | TYP | MAX     | UNITS | NOTES |
|------------------------------------|-----------------------|-------------------------------------------------------------------|--------|-----|---------|-------|-------|
| Current Source Output<br>Impedance | Zo <sup>1</sup>       | $V_O = V_x$                                                       | 3000   |     |         | Ω     | 1     |
| Voltage High                       | VHigh                 | Statistical measurement on single ended signal using oscilloscope | 660    |     | 850     | mV    | 1,3   |
| Voltage Low                        | VLow                  | math function.                                                    | -150   |     | 150     |       | 1,3   |
| Max Voltage                        | Vovs                  | Measurement on single ended                                       |        |     | 1150    | mV    | 1     |
| Min Voltage                        | Vuds                  | signal using absolute value.                                      | -300   |     |         | IIIV  | 1     |
| Crossing Voltage (abs)             | Vcross(abs)           |                                                                   | 250    |     | 550     | mV    | 1     |
| Crossing Voltage (var)             | d-Vcross              | Variation of crossing over all edges                              |        |     | 140     | mV    | 1     |
| Long Accuracy                      | ppm                   | see Tperiod min-max values                                        |        |     | 0       | ppm   | 1,2   |
|                                    |                       | 200MHz nominal                                                    | 4.9985 |     | 5.0015  | ns    | 2     |
|                                    |                       | 200MHz spread                                                     | 4.9985 |     | 5.0266  | ns    | 2     |
|                                    | Tperiod               | 166.66MHz nominal                                                 | 5.9982 |     | 6.0018  | ns    | 2     |
| Average period                     |                       | 166.66MHz spread                                                  | 5.9982 |     | 6.0320  | ns    | 2     |
| Average period                     |                       | 133.33MHz nominal                                                 | 7.4978 |     | 7.5023  | ns    | 2     |
|                                    |                       | 133.33MHz spread                                                  | 7.4978 |     | 5.4000  | ns    | 2     |
|                                    |                       | 100.00MHz nominal                                                 | 9.9970 |     | 10.0030 | ns    | 2     |
|                                    |                       | 100.00MHz spread                                                  | 9.9970 |     | 10.0533 | ns    | 2     |
|                                    |                       | 200MHz nominal                                                    | 4.8735 |     |         | ns    | 1,2   |
| Absolute min period                | T <sub>absmin</sub>   | 166.66MHz nominal/spread                                          | 5.8732 |     |         | ns    | 1,2   |
| Absolute IIIII period              | ' absmin              | 133.33MHz nominal/spread                                          | 7.3728 |     |         | ns    | 1,2   |
|                                    |                       | 100.00MHz nominal/spread                                          | 9.8720 |     |         | ns    | 1,2   |
| Rise Time                          | t <sub>r</sub>        | $V_{OL} = 0.175V, V_{OH} = 0.525V$                                | 175    |     | 700     | ps    | 1     |
| Fall Time                          | t <sub>f</sub>        | $V_{OH} = 0.525 V V_{OL} = 0.175 V$                               | 175    |     | 700     | ps    | 1     |
| Rise Time Variation                | d-t <sub>r</sub>      |                                                                   |        |     | 125     | ps    | 1     |
| Fall Time Variation                | d-t <sub>f</sub>      |                                                                   |        |     | 125     | ps    | 1     |
| Duty Cycle                         | d <sub>t3</sub>       | Measurement from differential wavefrom                            | 45     |     | 55      | %     | 1     |
| Skew                               | t <sub>sk3</sub>      | V <sub>T</sub> = 50%                                              |        |     | 50      | ps    | 1     |
| Jitter, Cycle to cycle             | t <sub>jcyc-cyc</sub> | PLL mode,<br>Measurement from differential<br>wavefrom            |        |     | 50      | ps    | 1     |
|                                    |                       | BYPASS mode as additive jitter                                    |        |     | 50      | ps    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements

 $<sup>^{3}</sup>I_{REF} = V_{DD}/(3xR_{R})$ . For  $R_{R} = 475\Omega$  (1%),  $I_{REF} = 2.32mA$ .  $I_{OH} = 6~x~I_{REF}$  and  $V_{OH} = 0.7V~@~Z_{O} = 50\Omega$ .



# General SMBus serial interface information for the ICS9DB108

## **How to Write:**

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

| Ind   | ex Block W                  | /rit                 | te Operation |
|-------|-----------------------------|----------------------|--------------|
| Cor   | ntroller (Host)             | ICS (Slave/Receiver) |              |
| Т     | starT bit                   |                      |              |
| Slave | e Address DC <sub>(h)</sub> |                      |              |
| WR    | WRite                       |                      |              |
|       |                             |                      | ACK          |
| Begi  | nning Byte = N              |                      |              |
|       |                             |                      | ACK          |
| Data  | Byte Count = X              |                      |              |
|       |                             |                      | ACK          |
| Begin | ning Byte N                 |                      |              |
|       |                             |                      | ACK          |
|       | $\Diamond$                  | ţe.                  |              |
|       | $\Diamond$                  | X Byte               | $\Diamond$   |
|       | $\Diamond$                  | ×                    | $\Diamond$   |
|       |                             |                      | <b>\Q</b>    |
| Byte  | e N + X - 1                 |                      |              |
|       |                             | ACK                  |              |
| Р     | stoP bit                    |                      |              |

## How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD<sub>(h)</sub>
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X<sub>(h)</sub> was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

| Ind   | ex Block Rea                | ad         | Operation          |  |
|-------|-----------------------------|------------|--------------------|--|
| Con   | troller (Host)              | IC         | S (Slave/Receiver) |  |
| Т     | starT bit                   |            |                    |  |
| Slave | e Address DC <sub>(h)</sub> |            |                    |  |
| WR    | WRite                       |            |                    |  |
|       |                             |            | ACK                |  |
| Begii | nning Byte = N              |            |                    |  |
|       |                             |            | ACK                |  |
| RT    | Repeat starT                |            |                    |  |
| Slave | Address DD <sub>(h)</sub>   |            |                    |  |
| RD    | ReaD                        |            |                    |  |
|       |                             | ACK        |                    |  |
|       |                             |            |                    |  |
|       |                             | D          | ata Byte Count = X |  |
|       | ACK                         |            |                    |  |
|       |                             |            | Beginning Byte N   |  |
|       | ACK                         |            |                    |  |
|       |                             | X Byte     | <b>Q</b>           |  |
|       | <b>Q</b>                    | <u>6</u>   | $\Diamond$         |  |
|       | $\Diamond$                  | $ \times $ | $\Diamond$         |  |
|       | <b>O</b>                    |            |                    |  |
|       |                             |            | Byte N + X - 1     |  |
| N     | Not acknowledge             |            |                    |  |
| Р     | stoP bit                    |            |                    |  |



SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

| Byt   | Byte 0 Pin # |  | Name     | <b>Control Function</b> | Туре | 0        | 1      | PWD |
|-------|--------------|--|----------|-------------------------|------|----------|--------|-----|
| Bit 7 | -            |  | PD#      | # drive mode            | RW   | driven   | Hi-Z   | 0   |
| Bit 6 | -            |  | SRC_S    | top# drive mode         | RW   | driven   | Hi-Z   | 0   |
| Bit 5 | -            |  | Reserved |                         | RW   | Reserved |        | Χ   |
| Bit 4 | -            |  | Reserved |                         | RW   | Res      | erved  | Χ   |
| Bit 3 | -            |  |          | Reserved                | RW   | Res      | erved  | Χ   |
| Bit 2 | -            |  | PLL      | _BW# adjust             | RW   | High BW  | Low BW | 1   |
| Bit 1 | -            |  | BY       | PASS#/PLL               | RW   | fan-out  | ZDB    | 1   |
| Bit 0 | •            |  | S        | SRC_DIV#                | RW   | x/2      | 1x     | 1   |

**SMBus Table: Output Control Register** 

| ONIDGS |              |    |       |                  |      |         |        |     |
|--------|--------------|----|-------|------------------|------|---------|--------|-----|
| Ву     | Byte 1 Pin # |    | Name  | Control Function | Туре | 0       | 1      | PWD |
| Bit 7  | 42,          | 41 | DIF_7 | Output Control   | RW   | Disable | Enable | 1   |
| Bit 6  | 38,          | 37 | DIF_6 | Output Control   | RW   | Disable | Enable | 1   |
| Bit 5  | 34,          | 33 | DIF_5 | Output Control   | RW   | Disable | Enable | 1   |
| Bit 4  | 30,          | 29 | DIF_4 | Output Control   | RW   | Disable | Enable | 1   |
| Bit 3  | 20,          | 21 | DIF_3 | Output Control   | RW   | Disable | Enable | 1   |
| Bit 2  | 16,          | 17 | DIF_2 | Output Control   | RW   | Disable | Enable | 1   |
| Bit 1  | 12,          | 13 | DIF_1 | Output Control   | RW   | Disable | Enable | 1   |
| Bit 0  | 8,           | 9  | DIF_0 | Output Control   | RW   | Disable | Enable | 1   |



**SMBus Table: Output Control Register** 

| Byt   | te 2  | Pin # | Name          | <b>Control Function</b> | Туре  | 0 1            |           | PWD      |           |   |
|-------|-------|-------|---------------|-------------------------|-------|----------------|-----------|----------|-----------|---|
| Bit 7 | 42,   | ,41   | DIF_7         | Output Control          | RW    | Res            | erved     | 0        |           |   |
| Bit 6 | 38,   | ,37   | DIF_6         | Output Control          | RW    | Free-run       | Stoppable | 0        |           |   |
| Bit 5 | 34,33 |       | <b>34</b> ,33 |                         | DIF_5 | Output Control | RW        | Free-run | Stoppable | 0 |
| Bit 4 | 30,   | ,29   | DIF_4         | Output Control          | RW    | Res            | erved     | 0        |           |   |
| Bit 3 | 20,   | ,21   | DIF_3         | Output Control          | RW    | Res            | erved     | 0        |           |   |
| Bit 2 | 16,   | ,17   | DIF_2         | Output Control          | RW    | Free-run       | Stoppable | 0        |           |   |
| Bit 1 | 12,   | ,13   | DIF_1         | Output Control          | RW    | Free-run       | Stoppable | 0        |           |   |
| Bit 0 | 8,    | ,9    | DIF_0         | Output Control          | RW    | Res            | erved     | 0        |           |   |

**SMBus Table: Output Control Register** 

| Byt   | Byte 3 Pin # |          | e 3 Pin # |          | Byte 3 Pin # |          | Name  | <b>Control Function</b> | Туре | 0 | 1 | PWD |
|-------|--------------|----------|-----------|----------|--------------|----------|-------|-------------------------|------|---|---|-----|
| Bit 7 |              |          |           | Reserved | RW           | Res      | erved | Х                       |      |   |   |     |
| Bit 6 |              |          |           | Reserved | RW           | Res      | erved | Х                       |      |   |   |     |
| Bit 5 |              | Reserved |           | Reserved | RW           | Reserved |       | Х                       |      |   |   |     |
| Bit 4 |              |          |           | Reserved | RW           | Res      | erved | Х                       |      |   |   |     |
| Bit 3 |              |          |           | Reserved | RW           | Res      | erved | Х                       |      |   |   |     |
| Bit 2 |              |          |           | Reserved |              | Res      | erved | Х                       |      |   |   |     |
| Bit 1 |              |          |           | Reserved | RW           | Res      | erved | Х                       |      |   |   |     |
| Bit 0 |              |          |           | Reserved | RW           | Res      | erved | Х                       |      |   |   |     |

**SMBus Table: Vendor & Revision ID Register** 

|       | oni Duo Tuoto Tottuo a Troviolo II D Trogioto. |       |      |                  |      |   |   |     |
|-------|------------------------------------------------|-------|------|------------------|------|---|---|-----|
| By    | te 4                                           | Pin # | Name | Control Function | Туре | 0 | 1 | PWD |
| Bit 7 | -                                              |       | RID3 |                  | R    | - | - | 0   |
| Bit 6 | -                                              |       | RID2 | REVISION ID      | R    | • | - | 0   |
| Bit 5 | -                                              |       | RID1 |                  | R    | • | - | 0   |
| Bit 4 | -                                              |       | RID0 |                  | R    | • | - | 1   |
| Bit 3 | -                                              |       | VID3 |                  | R    | • | - | 0   |
| Bit 2 | -                                              |       | VID2 | VENDOR ID        | R    | • | - | 0   |
| Bit 1 | -                                              |       | VID1 |                  | R    | • | - | 0   |
| Bit 0 | -                                              |       | VID0 |                  | R    | - | - | 1   |

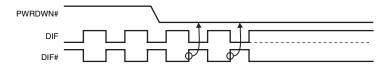


**SMBus Table: DEVICE ID** 

| Ву    | te 5 | Pin # | Name              | <b>Control Function</b> | Туре | 0        | 1     | PWD |
|-------|------|-------|-------------------|-------------------------|------|----------|-------|-----|
| Bit 7 | -    |       | Device ID 7 (MSB) |                         | RW   | Res      | erved | 0   |
| Bit 6 | -    |       | Device ID 6       |                         | RW   | Res      | erved | 0   |
| Bit 5 | -    |       | Device ID 5       |                         | RW   | Reserved |       | 0   |
| Bit 4 | -    |       | Device ID 4       |                         | RW   | Res      | erved | 0   |
| Bit 3 | -    |       | D                 | evice ID 3              | RW   | Res      | erved | 1   |
| Bit 2 | -    |       | D                 | evice ID 2              | RW   | Res      | erved | 0   |
| Bit 1 | -    |       | D                 | evice ID 1              | RW   | Res      | erved | 0   |
| Bit 0 | -    |       | D                 | evice ID 0              | RW   | Res      | erved | 0   |

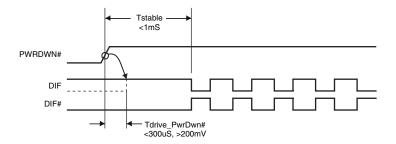
**SMBus Table: Byte Count Register** 

| CINBUO | Simbus Table: Byte Count Hegister |       |      |                     |      |   |   |     |
|--------|-----------------------------------|-------|------|---------------------|------|---|---|-----|
| Byt    | te 6                              | Pin # | Name | Control<br>Function | Туре | 0 | 1 | PWD |
| Bit 7  | -                                 |       | BC7  |                     | RW   | • | - | 0   |
| Bit 6  | -                                 |       | BC6  |                     | RW   | • | - | 0   |
| Bit 5  | -                                 |       | BC5  | Writing to this     | RW   | • | - | 0   |
| Bit 4  | -                                 |       | BC4  | register configures | RW   | - | - | 0   |
| Bit 3  | -                                 |       | BC3  | how many bytes      | RW   | - | - | 0   |
| Bit 2  | -                                 |       | BC2  | will be read back.  | RW   | - | - | 1   |
| Bit 1  | -                                 |       | BC1  |                     | RW   | - | - | 0   |
| Bit 0  | -                                 |       | BC0  |                     | RW   |   | - | 1   |




#### PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


#### PD# Assertion

When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I<sub>REF</sub> and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.



#### PD# De-assertion

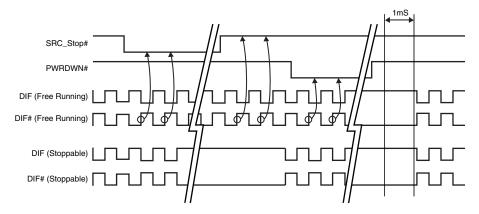
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC\_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 ms of PD# de-assertion.



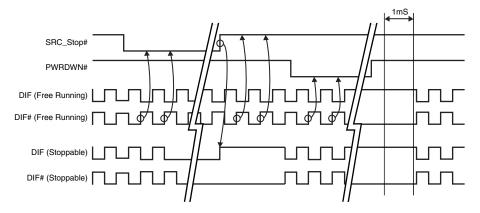


#### SRC\_STOP#

The SRC\_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC\_IN for this input to work properly. The SRC\_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

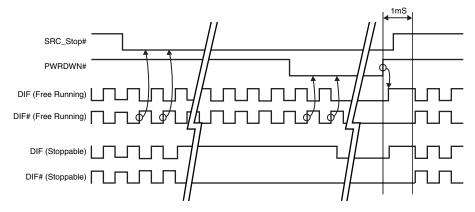

#### SRC STOP# - Assertion

Asserting SRC\_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC\_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI<sub>REF</sub> DIF# is not driven, but pulled low by the termination. When the SRC\_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.

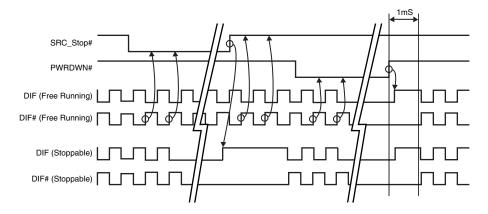

## SRC\_STOP# - De-assertion (transition from '0' to '1')

All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC\_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.

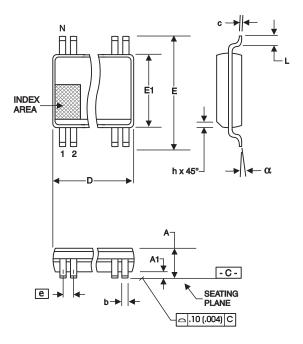
### SRC\_STOP\_1 (SRC\_Stop = Driven, PD = Driven)




#### SRC STOP 2 (SRC Stop =Tristate, PD = Driven)







# SRC\_STOP\_3 (SRC\_Stop = Driven, PD = Tristate)



## SRC\_STOP\_4 (SRC\_Stop = Tristate, PD = Tristate)

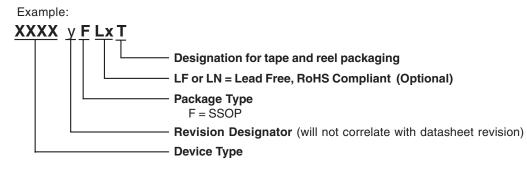




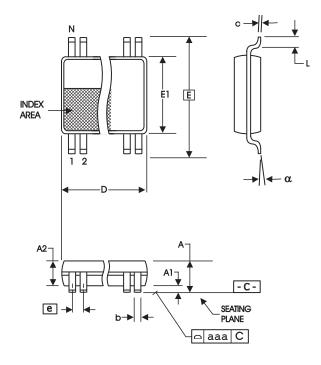


|        | In Millir      | neters    | In Inches         |          |  |
|--------|----------------|-----------|-------------------|----------|--|
| SYMBOL | COMMON D       | IMENSIONS | COMMON DIMENSIONS |          |  |
|        | MIN            | MAX       | MIN               | MAX      |  |
| Α      | 2.41           | 2.80      | .095              | .110     |  |
| A1     | 0.20           | 0.40      | .008              | .016     |  |
| b      | 0.20           | 0.34      | .008              | .0135    |  |
| С      | 0.13           | 0.25      | .005              | .010     |  |
| D      | SEE VARIATIONS |           | SEE VARIATIONS    |          |  |
| E      | 10.03          | 10.68     | .395              | .420     |  |
| E1     | 7.40           | 7.60      | .291              | .299     |  |
| е      | 0.635 E        | BASIC     | 0.025 BASIC       |          |  |
| h      | 0.38           | 0.64      | .015              | .025     |  |
| L      | 0.50           | 1.02      | .020              | .040     |  |
| N      | SEE VARIATIONS |           | SEE VAI           | RIATIONS |  |
| α      | 0°             | 8°        | 0°                | 8°       |  |

#### **VARIATIONS**


| N  |     | D m   | nm.   | D (inch) |      |  |
|----|-----|-------|-------|----------|------|--|
|    | MIN | MAX   | MIN   | MAX      |      |  |
| 48 | 3   | 15.75 | 16.00 | .620     | .630 |  |

Reference Doc.: JEDEC Publication 95, MO-118


10-0034

# **Ordering Information**

# 9DB108yFLxT



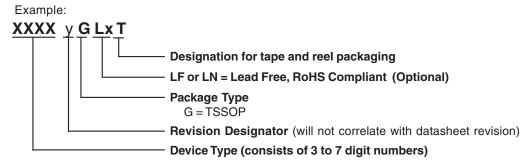
0723G—12/02/08



48-Lead, 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

| SYMBOL  |                           | meters   | In Inches<br>COMMON DIMENSIONS |          |  |
|---------|---------------------------|----------|--------------------------------|----------|--|
| STWIBOL | COMMON DIMENSIONS MIN MAX |          | MIN                            | MAX      |  |
| A       | 1.20                      |          |                                | .047     |  |
| A1      | 0.05                      | 0.15     | .002                           | .006     |  |
| A2      | 0.80                      | 1.05     | .032                           | .041     |  |
| b       | 0.17                      | 0.27     | .007                           | .011     |  |
| С       | 0.09                      | 0.20     | .0035                          | .008     |  |
| D       | SEE VAF                   | RIATIONS | SEE VARIATIONS                 |          |  |
| E       | 8.10 E                    | BASIC    | 0.319 BASIC                    |          |  |
| E1      | 6.00                      | 6.20     | .236                           | .244     |  |
| е       | 0.50 E                    | BASIC    | 0.020 BASIC                    |          |  |
| L       | 0.45                      | 0.75     | .018                           | .030     |  |
| N       | SEE VARIATIONS            |          | SEE VAF                        | RIATIONS |  |
| а       | 0°                        | 8°       | 0°                             | 8°       |  |
| aaa     | -                         | 0.10     |                                | .004     |  |

#### **VARIATIONS**


|  | N  | D n   | nm.   | D (inch) |      |  |
|--|----|-------|-------|----------|------|--|
|  |    | MIN   | MAX   | MIN      | MAX  |  |
|  | 48 | 12.40 | 12.60 | .488     | .496 |  |

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

# **Ordering Information**

9DB108yGLxT



0723G—12/02/08



**Revision History** 

| Rev. | Issue Date | Description                                  | Page # |
|------|------------|----------------------------------------------|--------|
| Е    | 10/26/2005 | Updated LF Ordering Information to LF or LN. | 14, 15 |
| F    | 12/17/2000 | Updated SMBus Serial Interface Information.  | 7      |
| G    | 12/2/2008  | removed Ics prefix from ordering information | 14-15  |
|      |            |                                              |        |

#### **Notice**

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

## **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/