

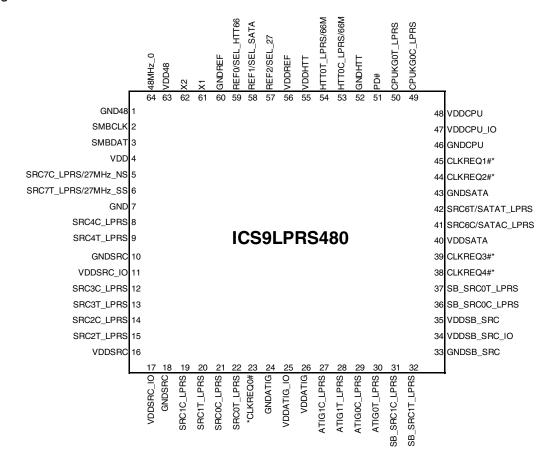
Programmable System Clock Chip for ATI RS780 - K8TM based Systems

Recommended Application:

ATI RS780 systems using AMD K8 processors

Output Features:

- Integrated series resistors on all differential outputs.
- 1 Greyhound compatible K8 CPU pairs
- 5 low-power differential SRC pairs
- 2 low-power differential chipset SouthBridge SRC pairs
- 1 Selectable low-power differential 100MHz non-spread SATA/ SRC output
- 1 Selectable low-power differential SRC / 27MHz Single Ended outputs
- 1 Selectable HT3 100MHz low-power differential hypertransport clock / HT66MHz Single Ended outputs
- 1 48MHz USB clock
- 3 14.318MHz Reference clock
- 2 low-power differential ATIG pairs
- 5- Dedicated CLKREQ# pins


Key Specifications:

- CPU outputs cycle-to-cycle jitter < 150ps
- SRC outputs cycle-to-cycle jitter < 125ps
- SB_SRC outputs cycle-to-cycle jitter < 125ps
- +/- 100ppm frequency accuracy on CPU, SRC, ATIG
- Oppm frequency accuracy on 48MHz

Features/Benefits:

- Power Saving Features:
 - Optional Separate supply rail for SRC low Voltage I/O ~33% power saving when 1.5V is used for this rail
- Spread Spectrum for EMI reduction
- Outputs may be disabled via SMBus
- External crystal load capacitors for maximum frequency accuracy

Pin Configuration

1391D-02/02/09

*Other names and brands may be claimed as the property of others.

MLF Pin Description

	" PILL NAME PILL TYPE PILL TYPE					
PIN #	PIN NAME	PIN TYPE	DESCRIPTION Crowned with fact the ASMALT authorite			
-	GND48	GND	Ground pin for the 48MHz outputs			
	SMBCLK	IN IVO	Clock pin of SMBus circuitry, 5V tolerant.			
	SMBDAT	I/O	Data pin for SMBus circuitry, 5V tolerant.			
4	VDD27	PWR	3.3V Power supply for SRC/27MHz output and 27MHz SS PLL			
5	SRC7C_LPRS/27MHz_NS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)/27MHz 3.3V Single-ended non-spread output for discrete graphics			
6	SRC7T_LPRS/27MHz_SS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)/27MHz 3.3V Single-ended spreading output for discrete graphics			
7	GND27	GND	Ground for the SRC/27MHz outputs			
8	SRC4C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
9	SRC4T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
10	GNDSRC	GND	Ground pin for the SRC outputs			
11	VDDSRC_IO	PWR	Power supply for differential SRC outputs, nominal 1.05V to 3.3V			
12	SRC3C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 ohm series resistor needed)			
13	SRC3T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
14	SRC2C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 ohm series resistor needed)			
15	SRC2T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
16	VDDSRC	PWR	Supply for SRC core, 3.3V nominal			
	VDDSRC_IO	PWR	Power supply for differential SRC outputs, nominal 1.05V to 3.3V			
	GNDSRC	GND	Ground pin for the SRC outputs			
	SRC1C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
20	SRC1T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
21	SRC0C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
22	SRC0T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)			
23	*CLKREQ0#	IN	Clock Request pin for SRC0 outputs. If output is selected for control, then that output is controlled as follows: 0 = enabled, 1 = Low-Low			
24	GNDATIG	GND	Ground pin for the ATIG outputs			
-	VDDATIG_IO	PWR	Power supply for differential ATIG outputs, nominal 1.05V to 3.3V			
	VDDATIG	PWR	Power supply for ATIG core, nominal 3.3V			
27	ATIG1C_LPRS	OUT	Complementary clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no 500hm shunt resistor to GND and no 33 ohm series resistor needed)			
28	ATIG1T_LPRS	OUT	True clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no 500hm shunt resistor to GND and no 33 ohm series resistor needed)			
29	ATIG0C_LPRS	OUT	Complementary clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no 500hm shunt resistor to GND and no 33 ohm series resistor needed)			
30	ATIG0T_LPRS	OUT	True clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no 500hm shunt resistor to GND and no 33 ohm series resistor needed)			
31	SB_SRC1C_LPRS	OUT	Complement clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed			
32	SB_SRC1T_LPRS	OUT	True clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor			
32	SB_SRC1T_LPRS	OUT	True clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shur to GND and no 33 ohm series resistor needed			

MLF Pin Description (Continued)

		Jonanae	
PIN#	PIN NAME	PIN TYPE	DESCRIPTION
33	GNDSB_SRC	GND	Ground pin for the SB_SRC outputs
34	VDDSB_SRC_IO	PWR	Power supply for differential SB_SRC outputs, nominal 1.05V to 3.3V
35	VDDSB_SRC	PWR	Supply for SB SRC PLL core, 3.3V nominal
26	SB_SRC0C_LPRS	OUT	Complement clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt
36	SB_SHCUC_LPHS	001	resistor to GND and no 33 ohm series resistor needed
0.7	00 00007 1000	OUT	True clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor
37	SB_SRC0T_LPRS	OUT	to GND and no 33 ohm series resistor needed
			Clock Request pin for SRC4 outputs. If output is selected for control, then that output is controlled
38	CLKREQ4#*	IN	as follows:
			0 = enabled, 1 = Low-Low
			Clock Request pin for SRC3 outputs. If output is selected for control, then that output is controlled
39	CLKREQ3#*	IN	as follows:
			0 = enabled, 1 = Low-Low
40	VDDSATA	PWR	Power supply for SATA core logic, nominal 3.3V
			Complement clock of low power differential SRC/SATA clock pair. (no 50ohm shunt resistor to
41	SRC6C/SATAC_LPRS	OUT	GND and no 33 ohm series resistor needed)
			True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
42	SRC6T/SATAT_LPRS	OUT	ohm series resistor needed)
43	GNDSATA	GND	Ground pin for the SRC outputs
			Clock Request pin for SRC2 outputs. If output is selected for control, then that output is controlled
44	CLKREQ2#*	IN	as follows:
	02.1.1242		0 = enabled, 1 = Low-Low
			Clock Request pin for SRC1 outputs. If output is selected for control, then that output is controlled
45	CLKREQ1#*	IN	as follows:
70	OLIVIEGI"	" "	0 = enabled, 1 = Low-Low
46	GNDCPU	GND	Ground pin for the CPU outputs
47	VDDCPU_IO	PWR	Power supply for differential CPU outputs, nominal 1.05V to 3.3V
48	VDDCPU	PWR	Supply for CPU core, 3.3V nominal
70	<u> </u>	1 7711	Complementary signal of low-power differential push-pull AMD K8 "Greyhound" clock with
49	CPUKG0C_LPRS	OUT	integrated series resistor. (no 33 ohm series resistor needed)
			True signal of low-power differential push-pull AMD K8 "Greyhound" clock with integrated series
50	CPUKG0T_LPRS	OUT	resistor.(no 33 ohm series resistor needed)
			Enter /Exit Power Down.
51	PD#	IN	0 = Power Down, 1 = normal operation.
52	GNDHTT	PWR	Ground pin for the HTT outputs
- 52	GIVETTT	1 7711	Complementary signal of low-power differential push-pull hypertransport clock with integrated
53	HTT0C_LPRS/66M	OUT	series resistor. (no 500hm shunt resistor to GND and no 33 ohm series resistor needed) / 1.8V
30	THI TOO_EL TIO/OOM	001	single ended 66MHz hyper transport clock
			True signal of low-power differential push-pull hypertransport clock with integrated series
54	HTT0T_LPRS/66M	OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed) /1.8V single
34	111101_E1113/00W	001	ended 66MHz hyper transport clock
55	VDDHTT	PWR	Supply for HTT clocks, nominal 3.3V.
	VDDREF	PWR	
36	VDDREF	FWN	Ref, XTAL power supply, nominal 3.3V
			14.318 MHz reference clock, 3.3V/3.3V Latched input to select 27MHz SS and non SS on SRC7
57	REF2/SEL_27	I/O	0 = 100MHz differential spreading SRC clock, 1 = 27MHz non-spreading singled clock on pin 5
			and 27MHz spread clock on pin 6.
—			
			14.318 MHz 3.3V reference clock./ 3.3V tolerant latched input to select function of SRC6/SATA
58	REF1/SEL_SATA	I/O	output
			0 = 100MHz differential spreading SRC clock, 1 = 100MHz non-spreading differential SATA clock
	DEEO/OFL LITTOR	1/2	14.318 MHz 3.3V reference clock./ 3.3V tolerant latched input to select Hyper Transport Clock
59	REF0/SEL_HTT66	I/O	Frequency.
	ONDREE	01:5	0 = 100MHz differential HTT clock, 1 = 66MHz 3.3V single ended HTT clock
	GNDREF	GND	Ground pin for the REF outputs.
	X1	IN	Crystal input, nominally 14.318MHz
	X2	OUT	Crystal output, nominally 14.318MHz
63	VDD48	PWR	Power pin for the 48MHz outputs and core. 3.3V
64	48MHz_0	OUT	48MHz clock output.

Pin Configuration

REF1/SEL_SATA REF0/SEL_HTT66 GNDREF 3 X1 4 X2 5 VDD48 6 48MHz_0 7 GND48 8 SMBCLK 9 SMBDAT 10 VDD27 11 SRC7C_LPRS/27MHz_NS 12 SRC7T_LPRS/27MHz_SS 13 GND27 4 SRC4C_LPRS SRC4T_LPRS 16 GNDSRC 17 VDDSRC_IO 18 SRC3C_LPRS 19 SRC3T_LPRS 20 SRC3T_LPRS 21 SRC2T_LPRS 22 VDDSRC 17 VDDSRC 10 SRC2T_LPRS 21 SRC2T_LPRS 22 VDDSRC 23 VDDSRC 23 VDDSRC 23 VDDSRC 24 GNDSRC 25 SRC1C_LPRS 26 SRC1T_LPRS 27 SRC0C_LPRS 28 SRC0T_LPRS 29 *CLKREQ0# GNDATIG 31 VDDATIG_IO 32	64 REF2/SEL_27 63 VDDREF 62 VDDHTT 61 HTT0T_LPRS/66M 60 HTT0C_LPRS/66M 59 GNDHTT 58 PD# 57 CPUKG0T_LPRS 56 CPUKG0C_LPRS 55 VDDCPU 54 VDDCPU_IO 53 GNDCPU 54 CLKREQ1#* 50 GNDSATA 49 SRC6T/SATAT_LPRS 48 SRC6C/SATAC_LPRS 47 VDDSATA 46 CLKREQ3#* 45 CLKREQ4#* 44 SB_SRC0T_LPRS 43 SB_SRC0C_LPRS 43 SB_SRC0C_LPRS 44 VDDSB_SRC 41 VDDSB_SRC 41 VDDSB_SRC 39 SB_SRC1T_LPRS 38 SB_SRC1T_LPRS 38 SB_SRC1C_LPRS 37 ATIG0T_LPRS 36 ATIG1C_LPRS 37 ATIG1C_LPRS 34 ATIG1C_LPRS 34 ATIG1C_LPRS
--	---

64-Pin TSSOP

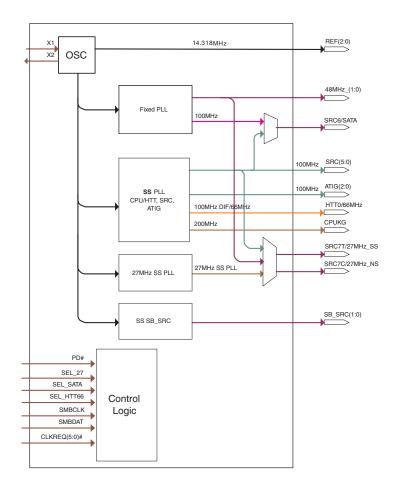
^{*} Internal Pull-Up Resistor

^{**} Internal Pull-Down Resistor

TSSOP Pin Description

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	REF1/SEL_SATA	1/0	14.318 MHz 3.3V reference clock./ 3.3V tolerant latched input to select function of SRC6/SATA output
_ '	HEF1/SEL_SATA	Ŋ	0 = 100MHz differential spreading SRC clock, 1 = 100MHz non-spreading differential SATA clock
			14.318 MHz 3.3V reference clock./ 3.3V tolerant latched input to select Hyper Transport Clock
2	REF0/SEL_HTT66	I/O	Frequency.
			0 = 100MHz differential HTT clock, 1 = 66MHz 3.3V single ended HTT clock
3	GNDREF	GND	Ground pin for the REF outputs.
4	X1	IN	Crystal input, nominally 14.318MHz
5	X2	OUT	Crystal output, nominally 14.318MHz
6	VDD48	PWR	Power pin for the 48MHz outputs and core. 3.3V
7	48MHz_0	OUT	48MHz clock output.
8	GND48	GND	Ground pin for the 48MHz outputs
9	SMBCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
10	SMBDAT	I/O	Data pin for SMBus circuitry, 5V tolerant.
11	VDD27	PWR	3.3V Power supply for SRC/27MHz output and 27MHz SS PLL
12	SRC7C LPRS/27MHz NS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm
- 12	011070_E1110/27WH2_110		series resistor needed)/27MHz 3.3V Single-ended non-spread output for discrete graphics
13	SRC7T_LPRS/27MHz_SS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
			ohm series resistor needed)/27MHz 3.3V Single-ended spreading output for discrete graphics
14	GND27	GND	Ground for the SRC/27MHz outputs
15	SRC4C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
13	011040_E1110	001	ohm series resistor needed)
16	SRC4T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm
			series resistor needed)
17	GNDSRC	GND	Ground pin for the SRC outputs
18	VDDSRC_IO	PWR	Power supply for differential SRC outputs, nominal 1.05V to 3.3V
19	SRC3C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
-10	G1000_E1110	001	ohm series resistor needed)
20	SRC3T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm
	0.1001_2.110		series resistor needed)
21	SRC2C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
	011020_21110	001	ohm series resistor needed)
22	SRC2T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm
			series resistor needed)
23	VDDSRC	PWR	Supply for SRC core, 3.3V nominal
24	VDDSRC_IO	PWR	Power supply for differential SRC outputs, nominal 1.05V to 3.3V
25	GNDSRC	GND	Ground pin for the SRC outputs
26	SRC1C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
	0.10.10_2.110		ohm series resistor needed)
27	SRC1T_LPRS	OUT	True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
			series resistor needed)
28	SRC0C_LPRS	OUT	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
	011000_E1110		ohm series resistor needed)
29	SRC0T LPRS	OUT	True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
	0.1001_2.110		series resistor needed)
			Clock Request pin for SRC0 outputs. If output is selected for control, then that output is controlled as
30	*CLKREQ0#	IN	follows:
			0 = enabled, 1 = Low-Low
31	GNDATIG	GND	Ground pin for the ATIG outputs
32	VDDATIG_IO	PWR	Power supply for differential ATIG outputs, nominal 1.05V to 3.3V

TSSOP Pin Description (Continued)


PIN #	OP Pin Descriptio	PIN TYPE	DESCRIPTION
33	VDDATIG	PWR	Power supply for ATIG core, nominal 3.3V
33	VDDATIG	FVVN	Complementary clock of low-power differential push-pull PCI-Express pair with integrated series
34	ATIG1C_LPRS	OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)
	ATIGIO_ELTIO		True clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no
35	ATIG1T LPRS	OUT	500hm shunt resistor to GND and no 33 ohm series resistor needed)
	7111411_21116		Complementary clock of low-power differential push-pull PCI-Express pair with integrated series
36	ATIG0C_LPRS	OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)
	7111400_21116		True clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no
37	ATIG0T_LPRS	OUT	500hm shunt resistor to GND and no 33 ohm series resistor needed)
	7111601	_	Complement clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor
38	SB SRC1C LPRS	OUT	to GND and no 33 ohm series resistor needed
			True clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor to GND
39	SB SRC1T LPRS	OUT	and no 33 ohm series resistor needed
40	GNDSB SRC	GND	Ground pin for the SB_SRC outputs
41	VDDSB_SRC_IO	PWR	Power supply for differential SB_SRC outputs, nominal 1.05V to 3.3V
42	VDDSB_SRC	PWR	Supply for SB SRC PLL core, 3.3V nominal
10		OUT	Complement clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor
43	SB_SRC0C_LPRS	OUT	to GND and no 33 ohm series resistor needed
4.4		OUT	True clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor to GND
44	SB_SRC0T_LPRS	OUT	and no 33 ohm series resistor needed
			Clock Request pin for SRC4 outputs. If output is selected for control, then that output is controlled as
45		IN	follows:
	CLKREQ4#*		0 = enabled, 1 = Low-Low
			Clock Request pin for SRC3 outputs. If output is selected for control, then that output is controlled as
46		IN	follows:
	CLKREQ3#*		0 = enabled, 1 = Low-Low
47	VDDSATA	PWR	Power supply for SATA core logic, nominal 3.3V
			Complement clock of low power differential SRC/SATA clock pair. (no 50ohm shunt resistor to GND and
48	SRC6C/SATAC_LPRS	OUT	no 33 ohm series resistor needed)
10	_	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm
49	SRC6T/SATAT_LPRS	OUT	series resistor needed)
50	GNDSATA	GND	Ground pin for the SRC outputs
			Clock Request pin for SRC2 outputs. If output is selected for control, then that output is controlled as
51		IN	follows:
	CLKREQ2#*		0 = enabled, 1 = Low-Low
			Clock Request pin for SRC1 outputs. If output is selected for control, then that output is controlled as
52		IN	follows:
	CLKREQ1#*		0 = enabled, 1 = Low-Low
53	GNDCPU	GND	Ground pin for the CPU outputs
54	VDDCPU_IO	PWR	Power supply for differential CPU outputs, nominal 1.05V to 3.3V
55	VDDCPU	PWR	Supply for CPU core, 3.3V nominal
		OUT	Complementary signal of low-power differential push-pull AMD K8 "Greyhound" clock with integrated
56	CPUKG0C_LPRS	OUT	series resistor. (no 33 ohm series resistor needed)
E-7		OUT	True signal of low-power differential push-pull AMD K8 "Greyhound" clock with integrated series
57	CPUKG0T_LPRS	OUT	resistor.(no 33 ohm series resistor needed)
F0		INI	Enter /Exit Power Down.
58	PD#	IN	0 = Power Down, 1 = normal operation.
59	GNDHTT	PWR	Ground pin for the HTT outputs
			Complementary signal of low-power differential push-pull hypertransport clock with integrated series
60		OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed) / 1.8V single ended
	HTT0C_LPRS/66M		66MHz hyper transport clock
			True signal of low-power differential push-pull hypertransport clock with integrated series resistor. (no
61		OUT	50ohm shunt resistor to GND and no 33 ohm series resistor needed) /1.8V single ended 66MHz hyper
	HTT0T_LPRS/66M		transport clock
62	VDDHTT	PWR	Supply for HTT clocks, nominal 3.3V.
63	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V
			14.318 MHz reference clock, 3.3V/3.3V Latched input to select 27MHz SS and non SS on SRC7
64		I/O	0 = 100MHz differential spreading SRC clock, 1 = 27MHz non-spreading singled clock on pin 12 and
	REF2/SEL_27		27MHz spread clock on pin 13.

General Description

The **ICS9LPRS480** is a main clock synthesizer chip that provides all clocks required for ATI RS7xx-based systems.using AMD processors. An SMBus interface allows full control of the device.

Block Diagram

Power Groups

	Pin Num	ber	Bereitetten
VDD	VDDIO	GND	Description
63		1	USB_48 outputs
4		7	SRC/27MHz Outputs
16		10,18	SRC Logic Core
	11,17		SRC differential outputs (IO's)
35		33	SB_SRC Core Logic
	34		SB_SRC differential outputs (IO's)
40		43	SRC/SATA differential output
26		24	ATIG Core Logic
	25		ATIG differential outputs (IO's)
48		43	CPUKG Core Logic
	47		CPUKG differential outputs (IO's)
55		52	HTTCLK output
56		60	REF outputs

Table1: CPU/HTT, SRC and ATIG Frequency Selection Table

Byte 0	0. 0/		te 3	10.7111	<u>a i requen</u>	cy Selection 18				
Bit0	Bit3	Bit2	Bit1	Bit0	CPU (MHz)	HTT Single-ended	Differential HTT	SRC/ATIG	Spread %	CPU OverClock
SS_EN	CPU FS3	CPU FS2	CPU FS1	CPU FS0	(IVITIZ)	SEL_HTT66 = 1	SEL_HTT66 = 0		70	%
0	0	0	0	0	173.63	57.88	86.81	86.81		-13%
0	0	0	0	1	177.17	59.06	88.58	88.58		-11%
0	0	0	1	0	180.78	60.26	90.39	90.39		-10%
0	0	0	1	1	184.47	61.49	92.24	92.24		-8%
0	0	1	0	0	188.24	62.75	94.12	94.12		-6%
0	0	1	0	1	192.08	64.03	96.04	96.04		-4%
0	0	1	1	0	196.00	65.33	98.00	98.00		-2%
0	0	1	1	1	200.00	66.67	100.00	100.00	Off	0%
0	1	0	0	0	204.00	68.00	102.00	102.00	Oii	2%
0	1	0	0	1	208.08	69.36	104.04	104.04		4%
0	1	0	1	0	212.24	70.75	106.12	106.12		6%
0	1	0	1	1	216.49	72.16	108.24	108.24		8%
0	1	1	0	0	220.82	73.61	110.41	110.41		10%
0	1	1	0	1	225.23	75.08	112.62	112.62		13%
0	1	1	1	0	229.74	76.58	114.87	114.87		15%
0	1	1	1	1	234.33	78.11	117.17	117.17		17%
1	0	0	0	0	173.63	57.88	86.81	86.81		-13%
1	0	0	0	1	177.17	59.06	88.58	88.58		-11%
1	0	0	1	0	180.78	60.26	90.39	90.39		-10%
1	0	0	1	1	184.47	61.49	92.24	92.24		-8%
1	0	1	0	0	188.24	62.75	94.12	94.12		-6%
1	0	1	0	1	192.08	64.03	96.04	96.04		-4%
1	0	1	1	0	196.00	65.33	98.00	98.00		-2%
1	0	1	1	1	200.00	66.67	100.00	100.00	-0.5%	0%
1	1	0	0	0	204.00	68.00	102.00	102.00	-0.5%	2%
1	1	0	0	1	208.08	69.36	104.04	104.04		4%
1	1	0	1	0	212.24	70.75	106.12	106.12		6%
1	1	0	1	1	216.49	72.16	108.24	108.24		8%
1	1	1	0	0	220.82	73.61	110.41	110.41		10%
1	1	1	0	1	225.23	75.08	112.62	112.62	Ī	13%
1	1	1	1	0	229.74	76.58	114.87	114.87		15%
1	1	1	1	1	234.33	78.11	117.17	117.17		17%

Table 2: SB_SRC Frequency Selection Table

Byte 0			te 4	,	ction lable		
Bit0	Bit3	Bit2	Bit1	Bit0	SRC	Spread	SB_SRC
	SB	SB	SB	SB	(MHz)	. %	OverClock %
SS_EN	FS3	FS2	FS1	FS0	, ,		
0	0	0	0	0	80.00		-20%
0	0	0	0	1	81.25		-19%
0	0	0	1	0	82.63		-17%
0	0	0	1	1	84.00		-16%
0	0	1	0	0	85.25		-15%
0	0	1	0	1	86.63		-13%
0	0	1	1	0	88.00		-12%
0	0	1	1	1	89.25	Off	-11%
0	1	0	0	0	90.63	0	-9%
0	1	0	0	1	92.00		-8%
0	1	0	1	0	93.25		-7%
0	1	0	1	1	94.63		-5%
0	1	1	0	0	96.00		-4%
0	1	1	0	1	97.25		-3%
0	1	1	1	0	98.63		-1%
0	1	1	1	1	100.00		0%
1	0	0	0	0	80.00		20%
1	0	0	0	1	81.25		-19%
1	0	0	1	0	82.63		-17%
1	0	0	1	1	84.00		-16%
1	0	1	0	0	85.25		-15%
1	0	1	0	1	86.63		-13%
1	0	1	1	0	88.00		-12%
1	0	1	1	1	89.25	-0.50%	-11%
1	1	0	0	0	90.63	0.0070	-9%
1	1	0	0	1	92.00		-8%
1	1	0	1	0	93.25		-7%
1	1	0	1	1	94.63		-5%
1	1	1	0	0	96.00		-4%
1	1	1	0	1	97.25		-3%
1	1	1	1	0	98.63		-1%
1	1	1	1	1	100.00		0%

Table3: 27Mhz_Spread and Frequency Selection Table										
SS Enable	SS3	SS2	SS1	SS0	27MHz_Spread	Spr	ead			
B2b1	Byte 4	Byte 4	Byte 4	Byte 4	(MHz)	% (when	enabled)			
	bit 7	bit 6	bit 5	bit 4		70 (1111011				
0	0	0	0	0	27.00	•				
0	0	0	0	1	27.00	·				
0	0	0	1	0	27.00	į.				
0	0	0	1	1	27.00					
0	0	1	0	0	27.00					
0	0	1	0	1	27.00					
0	0	1	1	0	27.00					
0	0	1	1	1	27.00	No S	pread			
0	1	0	0	0	27.00	140 5	picau			
0	1	0	0	1	27.00					
0	1	0	1	0	27.00					
0	1	0	1	1	27.00					
0	1	1	0	0	27.00					
0	1	1	0	1	27.00					
0	1	1	1	0	27.00					
0	1	1	1	1	27.00					
1	0	0	0	0	27.00	-0.50	Down			
1	0	0	0	1	27.00	-1.00	Down			
1	0	0	1	0	27.00	-1.50	Down			
1	0	0	1	1	27.00	-2.00	Down			
1	0	1	0	0	27.00	-0.75	Down			
1	0	1	0	1	27.00	-1.25	Down			
1	0	1	1	0	27.00	-1.75	Down			
1	0	1	1	1	27.00	-2.25	Down			
1	1	0	0	0	27.00	+/-0.25	Center			
1	1	0	0	1	27.00	+/-0.5	Center			
1	1	0	1	0	27.00	+/-0.75	Center			
1	1	0	1	1	27.00	+/-1.0	Center			
1	1	1	0	0	27.00	+/-0.25	Center			
1	1	1	0	1	27.00	+/-0.5	Center			
1	1	1	1	0	27.00	+/-0.75	Center			
1	1	1	1	1	27.00	+/-1.0	Center			

Differential Output Power Management Table

PD#	CLKREQ#	SMBus	True output	Complement Output	True output	Complement Output	
. 5"	02111120.11	Register OE	Fre	ee-Run	CLKREQ# Selected		
1	0	Enable	Running	Running	Running	Running	
0	Х	Х	Low/20K	Low	Low/20K	Low	
1	1	Enable	Running	Running	Low/20K	Low	
Х	X	Disable	Low/20K	Low	Low/20K	Low	

Note: 20K means 20Kohm Pull Down

Singled-ended Power Management Table

PD#	SMBus Register OE	48MHz	27MHz	HTT66MHz	REF(2:0)	
1	Enable	Running	Running	Running	Running	
0	Enable	Low	Low	Low	Hi-Z	

Absolute Maximum Rating

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Supply Voltage	VDDxxx	-		3.3	GND + 3.9V	٧	1
Storage Temperature	Ts	-	-65		150	Ç	1
Ambient Operating Temp	Tambient	-	0		70	°C	1
Case Temperature	Tcase	-			115	°C	1
Input ESD protection HBM	ESD prot	-	2000			٧	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDxxx	-	3.135	3.3	3.465	V	1
Input High Voltage	V _{IH}	VDD = 3.3 V +/-5%	2		$V_{DD} + 0.3$	V	1
Input Low Voltage	V_{IL}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.8	V	1
Input High Voltage - SEL_27	V _{IH}	VDD = 3.3 V +/-5%	2		$V_{DD} + 0.3$	V	1
Input Low Voltage - SEL_27	V _{IL}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.4	V	1
Input High Voltage - SEL_SATA	V _{IH}	VDD = 3.3 V +/-5%	2		$V_{DD} + 0.3$	V	1
Input Low Voltage - SEL_SATA	V _{IL}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.4	V	1
Input High Voltage - SEL_HTT66	V _{IH}	VDD = 3.3 V +/-5%	2		$V_{DD} + 0.3$	V	1
Input Low Voltage - SEL_HTT66	V _{IL}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.4	V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull- up resistors	-5			uA	1
	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	1
Low Threshold Input- High Voltage	V_{IH_FS}	VDD = 3.3 V +/-5%	0.7		$V_{DD} + 0.3$	٧	1
Low Threshold Input- Low Voltage	V_{IL_FS}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.35	V	1
Operating Current	I _{DD3.3OP}	3.3V VDD current, all outputs driven			225	mA	1
Powerdown Current	I _{DD3.3PD}	all diff pairs low/low			2	mA	1
Input Frequency	Fi	VDD = 3.3 V +/-5%		14.31818		MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs			5	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
	C _{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From VDD Power-Up or de- assertion of PD to 1st clock			1.8	ms	1
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_PD		CPU output enable after PD de-assertion			300	us	1
Tfall_PD		PD fall time of			5	ns	1
Trise_PD		PD rise time of			5	ns	1
SMBus Voltage	V_{DDSMB}		2.7		5.5	V	1
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	1
Current sinking at $V_{OL} = 0.4 \text{ V}$	I _{PULLUPSMB}		4	6		mA	1
SMBCLK/SMBDAT Clock/Data Rise Time	T _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SMBCLK/SMBDAT Clock/Data Fall Time	T _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%

¹Guaranteed by design and characterization, not 100% tested in production.

² Input frequency should be measured at the REF pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

AC Electrical Characteristics - Low-Power DIF Outputs: CPUKG and HTT

AO Electrical Characteristics	ristics Low rower bir Outputs. Or orta una irri						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Crossing Point Variation	ΔV_{CROSS}	Single-ended Measurement			140	mV	1,2,5
Frequency - CPU	f _{CPU}	Spread Specturm On	198.8		200	MHz	1,3
Frequency - HTT	f _{HTT}	Spread Specturm On	99.4		100	MHz	1,3
Long Term Accuracy	ppm	Spread Specturm Off	-300		+300	ppm	1,11
Rising Edge Slew Rate	S _{RISE}	Differential Measurement	0.5		10	V/ns	1,4
Falling Edge Slew Rate	S _{FALL}	Differential Measurement	0.5		10	V/ns	1,4
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement			20	%	1
CPU, DIF HTT Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement			150	ps	1,6
Accumulated Jitter	t _{JACC}	See Notes			1	ns	1,7
Peak to Peak Differential Voltage	$V_{D(PK-PK)}$	Differential Measurement	400		2400	mV	1,8
Differential Voltage	V_D	Differential Measurement	200		1200	mV	1,9
Duty Cycle	D _{CYC}	Differential Measurement	45		55	%	1
Amplitude Variation	ΔV_D	Change in V _D DC cycle to cycle	-75		75	mV	1,10
CPU[1:0] Skew	CPU _{SKEW10}	Differential Measurement			100	ps	1

Notes on Electrical Characteristics:

AC Electrical Characteristics - Low-Power DIF Outputs: SRC, SB_SRC and ATIG

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	2.5		8	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	2.5		8	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement			20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot			1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300			mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	300			mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300		550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement			140	mV	1,3,5
Duty Cycle	D _{CYC}	Differential Measurement	45		55	%	1
SRC, ATIG, Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement			125	ps	1
SRC[5:0] Skew	SRC _{SKEW}	Differential Measurement			250	ps	1
SB_SRC[1:0] Skew	SRC _{SKEW}	Differential Measurement			100	ps	1
ATIG[2:0] Skew	SRC _{SKEW}	Differential Measurement			100	ps	1

Notes on Electrical Characteristics:

¹Guaranteed by design and characterization, not 100% tested in production.

²Single-ended measurement at crossing point. Value is maximum – minimum over all time. DC value of common mode is not important

³Minimum Frequency is a result of 0.5% down spread spectrum

⁴Differential measurement through the range of ±100 mV, differential signal must remain monotonic and within slew rate spec when crossing through this region.

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ Max difference of t_{CYCLE} between any two adjacent cycles.

⁷ Accumulated tjc.over a 10 µs time period, measured with JIT2 TIE at 50ps interval.

⁸ VD(PK-PK) is the overall magnitude of the differential signal.

⁹ VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design, that ring-back will not cross 0V VD. VD(max) is the largest amplitude allowed.

10 The difference in magnitude of two adjacent VD_DC measurements. VD_DC is the stable post overshoot and ring-back part of the

¹¹ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK

⁶ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

Electrical Characteristics - Single-ended HTT 66MHz Clock

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
HTT66 Clock period	_	66.67MHz output nominal	14.9955		15.0045	ns	2
111 100 Clock pellod	T _{period}	66.67MHz output spread	14.9955		15.0799	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	1.6	1.8		V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA		0	0.2	V	1
Rise Time	t _{r1}	$V_{OL} = 0.36 \text{ V}, V_{OH} = 1.44 \text{ V}$			1.5	ns	1
Fall Time	t _{f1}	$V_{OH} = 1.44 \text{ V}, V_{OL} = 0.36 \text{ V}$			1.5	ns	1
Duty Cycle	d _{t1}	$V_{T} = 0.9 V$	45		55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_T = 0.9 V$			300	ps	1
Jitter, Long Term	t _{LTJ}	$V_{T} = 0.9 V$			1	ns	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 33Ω (unless otherwise specified)

Electrical Characteristics - USB - 48MHz

	000 10111112						
PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-100		100	ppm	1,2
Clock period	T_{period}	48.00MHz output nominal	20.8229		20.8344	ns	2
Clock Low Time	T _{low}	Measure from < 0.6V	9.3750		11.4580	ns	2
Clock High Time	T _{high}	Measure from > 2.0V	9.3750		11.4580	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Current		V _{OH} @MIN = 1.0 V	-33			mA	1
Output High Current	I _{OH}	V _{OH} @MAX = 3.135 V			-33	mA	1
Output Low Current	,	V _{OL} @ MIN = 1.95 V	30			mA	1
Output Low Current	I _{OL}	V _{OL} @ MAX = 0.4 V			38	mA	1
Rise Time	t _{r_USB}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		1.5	ns	1
Fall Time	t _{f_USB}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5		1.5	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Group Skew	t _{skew}	V _T = 1.5 V			250	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			130	ps	1,2

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 33Ω (unless otherwise specified)

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz

¹Guaranteed by design and characterization, not 100% tested in production.

²ICS recommended and/or chipset vendor layout guidelines must be followed to meet this specification

Electrical Characteristics - 27MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	nnm	see Tperiod min-max values	-50		50	nnm	1,2
Long Accuracy	ppm	see rpenod min-max values	-15		15	ppm	1,2,3
Clock period	T_{period}	27.000MHz output nominal	37.0365		37.0376	ns	2
Output High Voltage(27SS, 27NSS)	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.1			V	1,10
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Current	1	V _{OH} = 1.0 V	-29			mA	1,10
Output High Current	Гон	V _{OH} = 3.135 V			-23	mA	1,10
Output Low Current		V _{OL} = 1.95 V	29			mA	1,10
Output Low Current	I _{OL}	V _{OL} = 0.4 V			27	mA	1,10
Edge Rate	t _{slewr/f}	Rising/Falling edge rate V _T @ 20%-80%	1	2	4	V/ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45	•	55	%	1
Jitter	t _{ltj}	Long Term (10us)			300	ps	1
Jitter	t _{icyc-cyc}	V _T = 1.5 V			200	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
Clock period	T_{period}	14.318MHz output nominal	69.8270		69.8550	ns	2
Clock Low Time	T_low	Measure from < 0.6V	30.9290		37.9130	ns	2
Clock High Time	T_{high}	Measure from > 2.0V	30.9290		37.9130	ns	2
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.4	٧	1
Output High Current	I _{OH}	V_{OH} @MIN = 1.0 V, V_{OH} @MAX = 3.135 V	-29		-23	mA	1
Output Low Current	I _{OL}	V_{OL} @MIN = 1.95 V, V_{OL} @MAX = 0.4 V	29		27	mA	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1		1.5	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1		1.5	ns	1
Skew	t _{sk1}	V _T = 1.5 V			250	ps	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V			300	ps	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 33Ω (unless otherwise specified)

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

 $^{^{10}} V_{DD} = 3.3 V$

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

General SMBus serial interface information for the ICS9LPRS480

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the beginning byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2_(H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

In	dex Block W	/rit	e Operation
Co	ntroller (Host)		ICS (Slave/Receiver)
T	starT bit		
Slav	ve Address D2 _(H)		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begi	nning Byte N		
			ACK
	0	ţe	
	0	X Byte	0
	0	×	0
			0
Byt	e N + X - 1		
			ACK
Р	stoP hit		

In	dex Block Rea	ad	Operation
Cor	troller (Host)	2	S (Slave/Receiver)
Т	starT bit		
Slave	e Address D2 _(H)		
WR	WRite		
			ACK
Begi	nning Byte = N		
	-		ACK
RT	Repeat starT		
Slave	e Address D3 _(H)		
RD	ReaD		
			ACK
			ata Byte Count = X
	ACK		
			Beginning Byte N
	ACK		
		/te	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Latched Input Readback Output Enable Control Register

Byte	0	Name	Description	Туре	0	1	Default
	Bit 7	SEL_HTT66 readback	Hypertransport Select	R	100MHz Differential HTT clock	66 MHz 3.3V Single- ended HTT clock	Latch
	Bit 6	SEL_SATA readback	SATA Select	R	SRC6/SATA pair is SRC SS capable output	SRC6/SATA pair is SATA non-spread output	Latch
	Bit 5	REF0_OE	Output Enable	RW	Hi-Z	Enabled	1
	Bit 4	REF1_OE	Output Enable	RW	Hi-Z	Enabled	1
	Bit 3	REF2_OE	Output Enable	RW	Hi-Z	Enabled	1
	Bit 2		Reserv	/ed			0
	Bit 1	48MHz_0_OE	Output Enable	RW	Low	Enabled	1
	Bit 0	SS_Enable	Spread Spectrum Enable (CPU, SRC, SB_SRC, ATIG)	RW	Spread Off	Spread On	0

SMBus Table:Output Enable Control Register

Byte	1	Name	Control Function	Туре	0	1	Default
	Bit 7	SRC7/27MHz_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 6	SRC6/SATA_OE Enable	Output Enable	RW	Low/Low	Enabled	1
	Bit 5		Reserved				
	Bit 4	SRC4_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 3	SRC3_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 2	SRC2_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 1	SRC1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 0	SRC0_OE	Output Enable	RW	Low/Low	Enabled	1

SMBus Table: Output Enable and 48MHz Slew Rate Control Register

Byte	2	Name	Control Function	Type	0	1	Default
	Bit 7	SB_SRC1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 6	SB_SRC0_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 5	48MHz 0 Slew Rate	Siew Rate Control	RW	These bits program the ended outputs. The n 1.9V/ns and the minimu	naximum slew rate is m slew rate is 1.1V/ns.	1
	Bit 4	46IVITIZ_U_SIEW NAIE	Siew nate Control	NVV	11 = 1. 10 = 1. 01 = 1. 00 = tri	6V/ns 1V/ns	1
	Bit 3	ATIG1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 2	ATIG0_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 1	27MHz_SS_Enable	Spread Spectrum Enable 27MHz_SS	RW	Spread Off	Spread On	0
	Bit 0	Reserved	Reserved	RW	=	-	Х

SMBus Table: CPU/HTT Frequency Control Register

	Simbus Table. CFO/HTT Frequency Control negister									
Byte	3	Name	Control Function	Type	0	1	Default			
	Bit 7	CPU0_OE	Output enable	RW	Low/Low	Enable	1			
	Bit 6	SEL_27 readback	SRC7/27MHz Select	R	SRC7 Output	27MHz Output	Latch			
	Bit 5		Reserv	ed			1			
	Bit 4	HTT/66MHz_OE	Output Enable	RW	Low/Low	Enabled	1			
	Bit 3	CPU_FS3	CPU Frequency Select	RW	See CPU/HTT/SRC/AT	TIG Frequency Select	0			
	Bit 2	CPU_FS2	CPU Frequency Select	RW		Table value corresponds to 200MHz.				
	Bit 1	CPU_FS1	CPU Frequency Select	RW	Note that the HTT frequ	requency tracks the CPU	1			
	Bit 0	CPU_FS0	CPU Frequency Select LSB	RW	freque	ency.	1			

1391D—02/02/09

SMBus Table: SB SRC Frequency Control Register

		SWIDGS TABLE, SD_SHOT	requericy control riegis	LCI			
Byte	4	Name	Control Function	Туре	0	1	Default
	Bit 7	S3		RW	S[1:0]: 00 = -0	0.5% Default,	0
	Bit 6	S2	27 SSC	RW	01 =1.0%, 10 = -	01 =1.0%, 10 = -1.5%, 11 = -2%. See Table 3: 27Mhz_Spread, LCDCLK Spread	
	Bit 5	S1	Spread Select	RW			
	Bit 4	S0	Opread Gelect	RW and Frequency Selection Table for additional selections.			0
	Bit 3	SB_SRC_FS3	SB_SRC Frequency Select	RW			1
	Bit 2	SB_SRC_FS2	SB_SRC Frequency Select	RW	See SB_SRC Frequ	ency Select Table.	1
	Bit 1	SB_SRC_FS1	SB_SRC Frequency Select	RW			1
ľ	Bit 0	SB SRC FS0	SB SRC Freg. Select LSB	RW			1

SMBus Table: 27MHz Slew Rate Control Register

Byte	5	Name	Control Function	Туре	0	1	Default
	Bit 7 27M_SS_Slew Rate		Slew Rate Control	RW	These bits program the ended outputs. The m	•	1
	Bit 6	27M_00_olew Hate	Slow Flate Control	1144		1.9V/ns and the minimum slew rate is 1.1V/ns. The slew rate selection is as follows:	
	Bit 5	27M NS Slew Rate	Slew Rate Control	RW	11 = 1. 10 = 1.	6V/ns	1
	Bit 4	2/W_NS_SIEW Hate	Siew hate Control	LAAA	01 = 1. 00 = tris		1
l	Bit 3	SB_SRC Source	SB_SRC Source Selection	RW	SB_SRC PLL	SRC PLL	1
	Bit 2	Reserved		0			
	Bit 1		Reserv	/ed			0
	Bit 0		Reserv	Reserved			

SMBus Table: I/O Vout Control Register

Byte	6	Name	Control Function	Туре	0	1	Default
	Bit 7	SRC Diff AMP	SRC Differential output	RW	00 = 700mV	01 = 800mV	0
	Bit 6	SRC Diff AMP	Amplitude Control	RW	10 = 900mV	11 = 1000mV	1
	Bit 5	CPU Diff AMP	CPU Differential output	RW	00 = 700mV	01 = 800mV	0
	Bit 4	CPU Diff AMP	Amplitude Control	RW	10 = 900mV	11 = 1000mV	1
	Bit 3	SB_SRC Diff AMP	SB_SRC Differential output	RW	00 = 700mV	01 = 800mV	0
	Bit 2	SB_SRC Diff AMP	Amplitude Control	RW	10 = 900mV	11 = 1000mV	1
	Bit 1		Reserv	/ed			Х
	Bit 0		Reserv	/ed			Χ

SMBus Table: Vendor & Revision ID Register

Byte	7	Name	Control Function	Туре	0	1	Default
	Bit 7	RID3		R	-	-	0
	Bit 6	RID2	REVISION ID	R	-	-	0
	Bit 5	RID1	TEVISION ID	R	-	-	0
	Bit 4	RID0		R	-	-	1
	Bit 3	VID3		R	-	-	0
	Bit 2	VID2	VENDOR ID	R	-	-	0
	Bit 1 VID1	R	-	-	0		
	Bit 0	VID0		R	-	-	1

SMBus Table: Byte Count Register

Byte	8	Name	Control Function	Type	0	1	Default
	Bit 7		Reserved				
	Bit 6		Reserved				0
	Bit 5	BC5	Byte Count bit 5 (MSB)	RW			0
	Bit 4	BC4	Byte Count bit 4 RW		0		
	Bit 3	BC3	Byte Count bit 3	RW	Determines the number	of bytes that are read	1
	Bit 2	BC2	Byte Count bit 2	RW	back from the device	e. Default is 0F hex.	1
	Bit 1	BC1	Byte Count bit 1	RW			1
	Bit 0	BC0	Byte Count bit 0 (LSB)	RW			1

SMBus Table: WatchDog Timer Control Register

Byte	9	Name	Control Function	Туре	0	1	Default
	Bit 7	HWD_EN	Watchdog Hard Alarm Enable	RW	Disable and Reload Hartd Alarm Timer, Clear WD Hard status bit.	Enable Timer	0
	Bit 6	SWD_EN	Watchdog Soft Alarm Enable	RW	Disable	Enable	0
Ī	Bit 5	WD Hard Status	WD Hard Alarm Status	R	Normal	Alarm	Х
	Bit 4	WD Soft Status	WD Soft Alarm Status	R	Normal	Alarm	Χ
	Bit 3	WDTCtrl	Watch Dog Alarm Time base Control	RW	290ms Base	1160ms Base	0
	Bit 2	HWD2	WD Hard Alarm Timer Bit 2	RW	These bits represent the	number of Watch Dog	1
	Bit 1	HWD1	WD Hard Alarm Timer Bit 1	RW	Time Base Units that p	ass before the Watch	1
Ī	Bit 0	HWD0	WD Hard Alarm Timer Bit 0	RW	Alarm expires. Defau	It is 7 X 290ms = 2s.	1

SMBus Table: WD Timer Safe Frequency Control Register

	Chibac Table. WE Third Calc Freducity Contact Hogistor						
Byte	10	Name	Control Function	Type	0	1	Default
	Bit 7	SWD2	WD Soft Alarm Timer Bit 2	RW	These bits represent the	number of Watch Dog	1
	Bit 6	SWD1	WD Soft Alarm Timer Bit 1	RW	Time Base Units that pass before the Watch		1
	Bit 5	SWD0	WD Soft Alarm Timer Bit 0	RW	Alarm expires. Defau	ılt is 7 X 290ms = 2s.	1
	Bit 4	WD SF4		RW	These bits configure the	safe frequency that the	0
	Bit 3	WD SF3		RW	device returns to if the W	atchdog Timer expires.	0
	Bit 2	WD SF2	Watch Dog Safe Freq	RW	The value show here co	rresponds to the power	1
	Bit 1	WD SF1	Programming bits	RW	l '	It of the device. See the various	
	Bit 0	WD SF0		RW	Frequency Select T freque		1

SMBus Table: CPU PLL Frequency Control Register

Byte	11	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div2	N Divider Prog bit 2	RW			Χ
	Bit 6	N Div1	N Divider Prog bit 1	RW			Χ
	Bit 5	M Div5		RW	The decimal representati	on of M and N Divider in	Χ
	Bit 4	M Div4		RW	Byte 11 and 12 will config	will configure the VCO frequency.	
	Bit 3	M Div3	M Divider Programming bits	RW	Default at power up = B	•	Χ
	Bit 2	M Div2	IN Divider Frogramming bits	RW	Frequency = 14.318 x	318 x Ndiv(10:0)/Mdiv(5:0) .	Χ
	Bit 1	M Div1		RW			Χ
	Bit 0	M Div0		RW			Χ

SMBus Table: CPU PLL Frequency Control Register

Byte	12	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div10		RW			Χ
	Bit 6	N Div9		RW			Х
	Bit 5	N Div8		RW	The decimal representati	on of M and N Divider in	Χ
	Bit 4	N Div7	N Divider Programming	RW	Byte 11 and 12 will config		
	Bit 3	N Div6	b(10:3)	RW	Default at power up = B	•	Х
	Bit 2	N Div5		RW	Frequency = 14.318 x	Ndiv(10:0)/Mdiv(5:0).	Х
	Bit 1	N Div4		RW			X
	Bit 0	N Div3		RW			Х

SMBus Table: CPU PLL Spread Spectrum Control Register

Byte	13	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP7		RW			Х
	Bit 6	SSP6		RW		Х	
	Bit 5	SSP5		RW	Dutos 10 and 14 ant the	CDU/UTT/CDC/ATIC	X
	Bit 4	SSP4	Spread Spectrum	RW	spread pecentage.Plea	CPU/HTT/SRC/ATIG	Х
	Bit 3	SSP3	Programming b(7:0)	RW	appropriat		Х
	Bit 2	SSP2		RW	αρριοριιαι	e values.	X
	Bit 1	SSP1		RW			Х
	Bit 0	SSP0		RW			Χ

SMBus Table: CPU PLL Spread Spectrum Control Register

		O Dao . a.b.o. O. O	oprodu opodu am com		10101		
Byte	14	Name	Control Function	Type	0	1	Default
	Bit 7		Rese	rved			Х
	Bit 6	SSP14		RW			Χ
	Bit 5	SSP13		RW			Х
	Bit 4	SSP12	Carood Capatrum	RW	Bytes 13 and 14 set the	nd 14 set the CPU/HTT/SRC/ATIG	
	Bit 3	SSP11	Spread Spectrum Programming b(14:8)	RW	spread pecentage.Plea	se contact ICS for the	Х
	Bit 2	SSP10	Frogramming b(14.8)	RW	appropriat	e values.	X
	Bit 1	SSP9		RW			Х
	Bit 0	SSP8		RW			Х

SMBUS Table: CPU Output Divider Register

Byte	15	Name	Control Function	Туре	0	1	Default	
	Bit 7	CPU NDiv0	CPU NDiv0 LSB N Divider Programming RW CPU M/N programming.					
	Bit 6		Reserved					
	Bit 5	Reserved						
	Bit 4	Reserved						
	Bit 3	CPUDiv3		RW	0000:/2 ; 0100:/4	1000:/8 ; 1100:/16	Х	
	Bit 2	CPUDiv2	CPU Divider Ratio	RW	0001:/3 ; 0101:/6	1001:/12 ; 1101:/24	Х	
	Bit 1	CPUDiv1	Programming Bits	RW	0010:/5 ; 0110:/10	1010:/20 ; 1110:/40	Х	
	Bit 0	CPUDiv0		RW	0011:/15 ; 0111:/18	1011:/36 ; 1111:/72	Х	

SMBUS Table: SB_SRC Frequency Control Register

	omizee tubici ez_erie i requency comitei riogicie.							
Byte	16	Name	Control Function	Type	0	1	Default	
	Bit 7	N Div2	N Divider Prog bit 2	RW			Х	
	Bit 6	N Div1	N Divider Prog bit 1	RW			Х	
	Bit 5	M Div5		RW	The decimal representati	on of M and N Divider in	Х	
	Bit 4	M Div4		RW	Byte 16 and 17 configu		Х	
	Bit 3	M Div3	M Divider Programming	RW	frequency. See M/N Cad	culation Tables for VCO	Х	
	Bit 2	M Div2	bit (5:0)	RW	frequency	formulas.	Х	
	Bit 1	M Div1		RW			Х	
	Bit 0	M Div0		RW			X	

SMBUS Table: SB_SRC Frequency Control Register

Byte	17	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div10		RW			Χ
	Bit 6	N Div9	N Divider Programming	RW			Х
	Bit 5	N Div8		RW	The decimal representation of M and N Divider in Byte 16 and 17 configure the SB_SRC VCO		Х
	Bit 4	N Div7		RW			Х
	Bit 3	N Div6	Byte16 bit(7:0) and Byte15	RW	frequency. See M/N Cad		Х
	Bit 2	N Div5	bit(7:6)	RW	frequency	formulas.	Х
	Bit 1	N Div4		RW	•		Х
	Bit 0	N Div3		RW	•		Χ

SMBUS Table: SB_SRC Spread Spectrum Control Register

Byte	18	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP7		RW	Bytes 18 and 19 set the the SB_SRC spread pecentages. Please contact ICS for the	X	
	Bit 6	SSP6		RW		Х	
	Bit 5	SSP5		RW		Х	
	Bit 4	SSP4	Spread Spectrum	RW		Х	
	Bit 3	SSP3	Programming bit(7:0)	RW			Х
	Bit 2	SSP2		RW	appropriate values.		Х
	Bit 1	SSP1		RW			Х
	Bit 0	SSP0		RW			Χ

SMBUS Table: SB_SRC Spread Spectrum Control Register

	ompos rabios op_ost oproda opostam control regions.							
Byte	19	Name	Control Function	Туре	0	1	Default	
	Bit 7	SSP15		RW			X	
	Bit 6	SSP14	Г	RW			Χ	
	Bit 5	SSP13		RW	Putos 10 and 10 act th	the CR CRC aproad	Χ	
	Bit 4	SSP12	Spread Spectrum	RW	Bytes 18 and 19 set the the SB_SRC spread pecentages. Please contact ICS for the		Х	
	Bit 3	SSP11	Programming bit(14:8)	RW	1 0	appropriate values.		
	Bit 2	SSP10		RW	арргорна	e values.	Χ	
	Bit 1	SSP9		RW				
	Bit 0	SSP8		RW			X	

SMBUS Table: SB_SRC Output Divider Control Register

Byte	20	Name	Control Function	Туре	0	1	Default
	Bit 7	SB_SRC NDiv0	SB_SRC NDiv0 LSB N Divider Programming RW SB_SRC M/N programming.				Х
	Bit 6		Reserved				Х
	Bit 5		Reserved				
	Bit 4		Reserved				Х
	Bit 3	SB_SRCDiv3		RW	0000:/2 ; 0100:/4	1000:/8 ; 1100:/16	Х
	Bit 2	SB_SRCDiv2	SRC Divider Ratio	RW	0001:/3 ; 0101:/6	1001:/12 ; 1101:/24	Х
	Bit 1	SB_SRCDiv1	Programming Bits	RW	0010:/5 ; 0110:/10	1010:/20 ; 1110:/40	Х
	Bit 0	SB_SRCDiv0		RW	0011:/15 ; 0111:/18	1011:/36 ; 1111:/72	Х

SMBus Table: Device ID register

		<u> </u>	- 3				
Byte	21	Name	Control Function	Туре	0	1	Default
	Bit 7	Device ID7		R			0
	Bit 6	Device ID6		R			1
	Bit 5	Device ID5		R			1
	Bit 4	Device ID4	Davida a ID	R	70 1-		1
	Bit 3	Device ID3	Device ID	R	76 h	ex	0
	Bit 2	Device ID2		R			1
	Bit 1	Device ID1		R			1
	Bit 0	Device ID0		R			0

Χ

Χ

Х

Bit 2

Bit 1

Bit 0

SMBus Table: CLKREQ# Configuration Register

Byte	22	Name	Control Function	Type	0	1	Default
	Bit 7	CPU/HTT/SRC/ATIG M/N En	CPU/HTT/SRC/ATIG PLL M/N Prog. Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0
	Bit 6	SB_SRC M/N En	SB_SRC M/N Prog. Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0
	Bit 5	Reserved	Reserved	RW	-	-	0
	Bit 4	Reserved	Reserved	RW	-	-	0
	Rit 3	Reserved	Reserved	RW	-	_	0

Reserved

Reserved

Reserved

RW

RW

RW

-

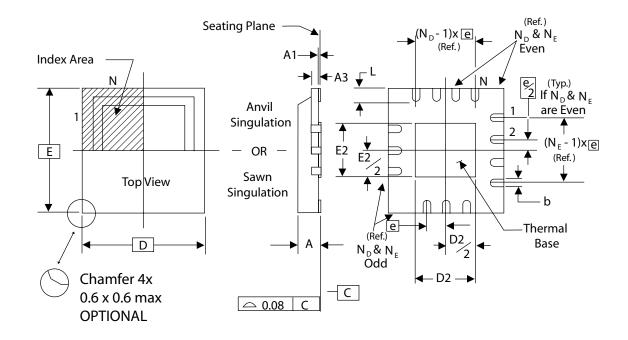
SMBus Table: CLKREQ# Configuration Register

Reserved

Reserved

Reserved

Byte	23	Name	Control Function	Туре	0	1	Default
	Bit 7	Reserved	Reserved	RW	•	•	0
	Bit 6	Reserved	Reserved	RW	-	-	0
	Bit 5	Reserved	Reserved	RW	-	-	0
	Bit 4	CLKREQ4#_Enable	CLKREQ4# controls SRC4	RW	Not Controlled	Controlled	0
	Bit 3	CLKREQ3#_Enable	CLKREQ3# controls SRC3	RW	Not Controlled	Controlled	0
	Bit 2	CLKREQ2#_Enable	CLKREQ2# controls SRC2	RW	Not Controlled	Controlled	0
	Bit 1	CLKREQ1#_Enable	CLKREQ1# controls SRC1	RW	Not Controlled	Controlled	0
	Bit 0	CLKREQ0#_Enable	CLKREQ0# controls SRC0	RW	Not Controlled	Controlled	0


SMBus Table: Test Mode Configuration Register

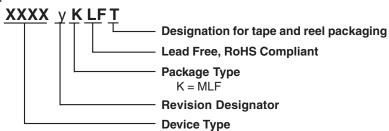
Byte	24	Name	Control Function	Туре	0	1	Default
	Bit 7	Test_Md_Sel	Selects Test Mode	RW	Normal mode	All ouputs are REF/N	0
	Bit 6	DIAG Enable#	DIAG enable CPU and LCD PLL	RW	Reset forces B24[6:4,2,0] to 0	DIAG mode Enabled	0
	Bit 5	CPU PLL_LOCK signal	CPU PLL Lock Detect	R	unlocked	Locked	HW
	Bit 4	27MHz PLL_LOCK signal	27MHz PLL Lock Detect	R	unlocked	Locked	HW
	Bit 3	Fixed PLL_LOCK signal	Fixed PLL Lock Detect	R	unlocked	Locked	HW
	Bit 2	SRC PLL_LOCK signal	Fixed PLL Lock Detect	R	unlocked	Locked	HW
	Bit 1	Frequency Check	Primary PLL or external crystal Frequency Accuracy	R	Not Accurate	Accurate	HW
	Bit 0	PWRGD Status	Power on Reset Status	R	Invalid voltage levels on any of the VDDs. CKPWRGD is not asserted or external XTAL not detected.	Valid voltage levels exist on all the VDD. CKPWRGD is asserted and external XTAL is detected.	HW

SMBus Table:Slew Rate Select Register

Byte	25	Name	Control Function	Туре	0	1	Default
	Bit 7	Reserved	Reserved	RW	-	-	0
	Bit 6	Reserved	Reserved	RW	-	-	0
	Bit 5	REF2 Slew Rate	Slew Rate Control	RW	These bits program the slew rate of the single ended outputs. The maximum slew rate is 1.9V/ns and the minimum slew rate is 1.1V/ns. The slew rate selection is as follows:	1	
	Bit 4	TIEL Z_OIGW TIBLE	Siew Hate Control	1100		1	
	Bit 3	REF1 Slew Rate	Slew Rate Control	RW		1	
	Bit 2	- REFI_SIEW Hate	Siew hate Control	1100	11 = 1.9V/ns 10 = 1.6V/ns		1
	Bit 1	REF0 Slew Rate	Slow Rato Control	Slew Rate Control RW 01 = 1.1V/ns 00 = tristated	1		
	Bit 0	TILLI O_SIEW ITALE	Siew Hate Control		00 = tri	stated	1

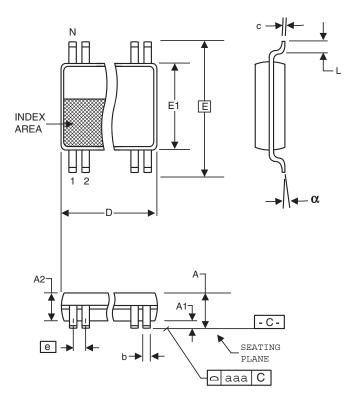
THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

SYMBOL	64L
N	64
N_D	16
N _E	16


Ordering	Information
9LPRS	3480⊻KLFT

DIMENSIONS (mm)

SYMBOL	MIN.	MAX.	
Α	0.8	1.0	
A1	0	0.05	
A3	0.25 Refe	rence	
b	0.18	0.3	
е	0.50 BA	SIC	
D x E BASIC	9.00 x 9	.00	
D2 MIN. / MAX.	7.00	7.25	
E2 MIN. / MAX.	7.00	7.25	
L MIN. / MAX.	0.30	0.50	


*Due to package size constraints actual top side marking may differ from the full orderable part number.

Example:

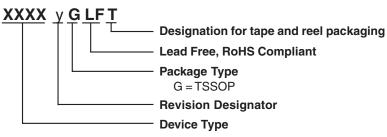
1391D—02/02/09

6.10 mm. Body, 0.50 mm. Pitch TSSOP

	(240 mil)	(20 mil)			
	In Milli	In Millimeters		In Inches	
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20	-	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS SEE VARIATIONS		RIATIONS		
E	8.10 E	BASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 BASIC		0.020	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
α	0°	8°	0°	8°	
aaa		0.10	-	.004	

VARIATIONS

l N	D mm.		D (inch)		
N	MIN	MAX	MIN	MAX	
64	16.90	17.10	.665	.673	


Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

9LPRS480yGLFT

Example:

1391D—02/02/09

Revision History

Rev.	Issue Date	Date Description	
Α	7/8/2008	Going to Release.	-
В	7/29/2008	Removed Table 4 and updated 27MHz electrical characteristics.	10-11
С	9/18/2008	Updated Input/Supply/Common Output Parameters.	12
D	2/2/2009	Changed Rs Value from 22 Ohm to 33 Ohm.	14, 15