ID9S6015D

600V Half Bridge Gate Drive IC

General Description

The ID9S6015D is a wafer level production, which is a single phase high voltage power MOSFET and IGBT gate driver optimized to drive the gates of both high-side and low-side power transistors. The floating channel driver design can accommodate BUS voltages as high as 600 V. With a wide operation voltage range, high or low side gate drive voltage can be optimized for the best efficiency. Internal non-overlap circuitry further reduces switching losses by preventing simultaneous conduction of both transistors. The Under Voltage Lockout (UVLO) function ensures that both driver outputs are low when the supply voltage is low.

Features

- □ Fully operational to+600 V
- Matched propagation delay for both channels
- Floating channel designed for bootstrap operation
- □ Gate drive supply range from 10 V to 20 V
- UVLO for both channels
- Cross Conduction Protection with 540 ns Internal Fixed Dead Time
- □ Integrated bootstrap diode
- Integrated gate on/off resistor
- Built-in temperature-sensing

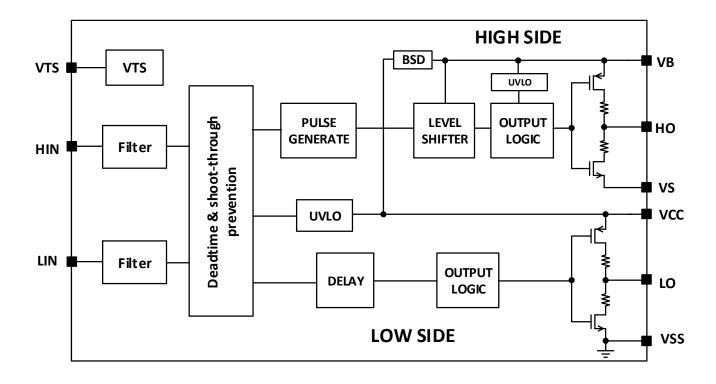
Applications

3A and 5A IPM

Order Information

Part Number	Order Code	Package	Туре
ID9S6015D	ID9S6015D	Wafer-level	

PAD Configuration


HŧN	V€C		₩B
LHN VSS	VŢS	LΩ	₩O V\$S

PAD Definitions

PIN NAME	PIN FUNCTION
VCC	Low side and main power supply
HIN	Logic input for high side gate driver output
LIN	Logic input for low side gate driver output
VSS	Ground
VTS	Temperature-sensing voltage output
LO	Low side gate drive output
VS	High side floating supply return
HO	High side gate drive output
VB	High side floating supply

Functional Block Diagram

Absolute Maximum Ratings

Exceeding these ratings may damage the device. The absolute maximum ratings are stress ratings only at $T_A=25^{\circ}C$, unless otherwise specified.

Symbol	Definition	MIN.	MAX.	Units
V_{CC}	Low side supply voltage	-0.3	25	
VIN	Logic input voltage	V _{SS} -0.3	VCC+0.3	
VB	High-side floating well supply voltage	-0.3	625	
Vs	High-side floating well supply return voltage	V _B - 25	V _B + 0.3	V
V _{HO}	Floating gate drive output voltage	V _S -0.3	V _B + 0.3	
V_{LO}	Low side output voltage	V _{SS} -0.3	V _{CC} + 0.3	
VSS	Power Ground	V _{CC} -25	V _{CC} +0.3	
dV _S /dt	Allowable Vs Offset Supply Transient relative VSS	—	50	V/ns
PD	Package Power Dissipation @ TA ≤25°C	—	0.625	W
Rth _{JA}	Thermal Resistance, Junction to Ambient	_	200	°C /W
TJ	Junction Temperature	_	150	
Ts	Storage Temperature	-55	150	°C
TL	Lead Temperature (Soldering, 10 seconds)	_	300	1

Recommended Operating Conditions

Symbol	Definition	MIN.	MAX.	Units
V _{CC}	Low-side supply voltage	10	20	
V _{IN}	HIN &LIN input voltage	V _{SS}	VCC	
V _B	High side floating well supply voltage	VS +10	VS +20	
Vs	High side floating well supply offset voltage	VSS-6	600	V
Vs(t)	Transient high-side floating supply voltage ^{Note1}	-50	600	
V _{HO}	Floating gate drive output voltage	Vs	V _B	
V _{LO}	Low-side output voltage	VSS	Vcc	
VSS	Power ground	-5	5	
T _A	Ambient temperature	-40	125	°C

Note 1: Operational for transient negative VS of VSS - 50 V with a 50 ns pulse width. Guaranteed by design.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and TA = 25°C unless otherwise specified.

Symbol	Definition	MIN.	TYP.	MAX.	Units
t _{on}	Turn-on propagation delay (without Gate resistor)	400	530	750	
t _{off}	Turn-off propagation delay (without Gate resistor)	400	530	750	
tr	Turn-on rise time (without Gate resistor)	-	120	230	
t _f	Turn-off rise time (without Gate resistor)	-	60	110	
DT	Deadtime is shoot through prevention	400	540	680	ns
MDT	Matching delay, max (ton, toff) – min (ton, toff)	-	-	60	
MT	Matching delay ON and OFF, PWIN - PWOUT.	-	-	50	
PM	Pulse width distortion	-	-	75	

Static Electrical Characteristics

Symbol	Definition	MIN.	TYP.	MAX.	Units
UV _{CCR}	V _{CC} supply under-voltage positive going threshold	8	8.9	9.8	
UV _{CCT}	V _{CC} supply under-voltage negative going threshold	7.4	8.2	9	
UV _{CCHYS}	V _{CC} supply under-voltage hysteresis	0.3	0.7	-	v
	V_{BS} supply under-voltage positive going threshold	8	8.9	9.8	v
UV _{BST}	V _{BS} supply under-voltage negative going threshold	7.4	8.2	9	
UVBSHYS	V _{BS} supply under-voltage hysteresis	0.3	0.7	-	
I _{LK}	High-side floating well offset supply leakage	-	-	50	
I _{QBS}	Quiescent V _{BS} supply current	-	70	120	μA
I _{QCC}	Quiescent V _{CC} supply current	-	360	-	
V _{OH}	High level output voltage drop, V_{BIAS} - V_{O}	-	0.9	1.4	V
V _{OL}	Low level output voltage drop, V_{O}	-	0.4	0.6	v
RP	R connected to PMOS	750	1000	1250	Ω
RN	R connected to NMOS	150	200	250	
VIH	Logic "1" input voltage	2.5	-	-	V
VIL	Logic "0" input voltage	-	-	0.8	v
IIN+	Input bias current (HO/LO = High)	-	6	15	
IIN-	Input bias current (HO/LO = Low)	-	-	1	μA
R _{DS(on)}	Bootstrap emulator on resistance (VCC=15V)	-	420	-	Ω
<u> </u>	High temperature sensing voltage output@25degree C	600	790	980	mV
Vts	High temperature sensing voltage output@100degree C	1.8	2.25	2.7	V

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, TA = 25°C unless otherwise specified.

Function Timing Diagram

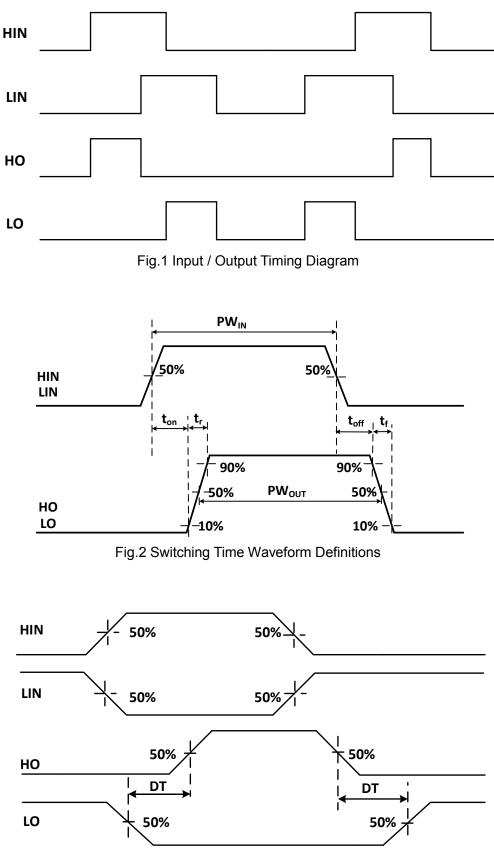


Fig.3 Dead time Waveform Definitions

ID9S6015D

600V Half Bridge Gate Drive

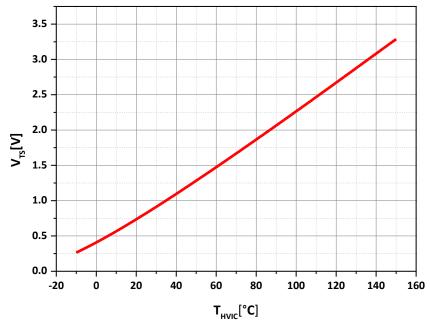


Fig.4 Temperature Profile of V_{TS} (Typical)

Revision Information

Rev 0.0	2019.7.19
	approved by Jing

