

CMOS STATIC RAMS 64K (8K x 8-BIT) CACHE-TAG RAM

PRELIMINARY IDT7174S

FEATURES:

- High-speed address/access time — Military: 45/55ns (max.)
 - Commercial: 35/45ns (max.)
- High-speed chip select access time — Military: 25/30ns (max.)
 - Commercial: 20/25ns (max.)
- High-speed comparison time — Military: 45/55ns (max.) — Commercial: 37/45ns (max.)
- Low-power operation
- IDT7174S
 - Active: 300mW (typ.)
- Produced with advanced CEMOS[™] high-performance technology
- Single 5V (±10%) power supply
- Input and output directly TTL-compatible
- Three-state output
- Static operation: no clocks or refresh required
- Standard 28-pin DIP (600 mil), 28-pin THINDIP (400 mil) and 32-pin LCC
- High-speed asynchronous RAM Clear on Pin 1 (Reset Cycle Time = 2 x T_{AA})
- (Note: Some duty cycle limitations may apply)
- Match Output on Pin 26
- Military product 100% screened to MIL-STD-883, Class B

DESCRIPTION:

The IDT7174 is a high-speed cache address comparator subsystem consisting of a 65,536 bit static RAM organized as 8K x 8 and an 8-bit comparator. The IDT7174 can also be used as an 8K x 8 high-speed static RAM. A single IDT7174 can provide address comparison for 8K cache words as 21 bits of address organized as 13 word cache address bits and 8 upper address bits. Two IDT7174s can be combined to provide 29 bits of address comparison, etc. The IDT7174 also provides a single RAM clear control, which clears all words in the internal RAM to zero when activated. This allows the tag bits for all locations to be cleared at power-on or system reset, a requirement for cache comparator systems.

The IDT7174 is fabricated using IDT's high-performance, high-reliability technology — CEMOS. Address access times as fast as 35ns, chip select times of 20ns and comparison times of 37ns are available with maximum power consumption of 825mW.

All inputs and outputs of the IDT7174 are TTL-compatible and the device operates from a single 5V supply. Fully static asynchronous circuitry is used, requiring no clocks or refreshing for operation.

The IDT7174 is packaged in either a 28-pin, 600 mil DIP; a 28-pin, 400 mil THINDIP, or a 32-pin leadless chip carrier, providing high board level packing densities.

The IDT7174 Military grade Cache Comparator is 100% processed in compliance to the test methods of MIL-STD-883, Method 5004, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

FUNCTIONAL BLOCK DIAGRAM

CEMOS is a trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATIONS

DIP

TOP VIEW

SRD7174-002

SRD7174-003

LCC TOP VIEW

LOGIC SYMBOL

A ₀	
- A1	1/O1
- A2	1/O2
- A3	1/O3 -
- A4	1/O4
- A5	ı/o₅ —
- A6	I/O ₆
- A7	I/O7
A ₈	1/O ₈
A9	матсн —
$- A_{10} $ $- A_{11} $	RESET O-
- A ₁₂	cs o-
	WE P-
	SRD7174-004

ABSOLUTE MAXIMUM RATINGS(1)

SYMBOL	RATING	VALUE	UNIT
V _{TERM} Terminal Voltage with Respect to GND		-0.5 to +7.0	v
T _A	Operating Temperature	-55 to +125	°C
T _{BIAS}	Temperature Under Bias	-65 to +135	°C
T _{STG}	T _{STG} Storage Temperature		°C
P _T Power Dissipation		1.0	w
I _{OUT} DC Output Current		50	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN NAMES

A ₀₋₁₂	Address	WE	Write Enable			
1/O ₁₋₈	Data Input/Output	ŌĒ	Output Enable			
ĈŜ	Chip Select	GND	Ground			
RESET	Memory Reset	V _{CC}	Power			
MATCH	IATCH Data/Memory Match (Open Drain)					

RECOMMENDED	DC OPERATING	CONDITIONS
-------------	--------------	------------

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{cc}	Supply Voltage	4.5	5.0	5.5	v
GND	Supply Voltage	0	0	0	V
VIH	Input High Voltage	2.2		6.0	V
V _{IL}	Input Low Voltage	-0.5(1)	—	0.8	۷

NOTE:

1. V_{IL} min = -3.0V for pulse width less than 20ns.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

GRADE	AMBIENT TEMPERATURE	GND	Vcc
Military	-55°C to +125°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	0V	5.0V ± 10%

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 5.0V \pm 10%, V_{LC} = 0.2V, V_{HC} = V_{CC} –0.2V

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	IDT7174S TYP. ⁽¹⁾	MAX.	UNIT
1 ₁₁	Input Leakage Current	V _{CC} = Max.; V _{IN} = GND to V _{CC}	MIL. COM'L.	_	_	10 5	μA
I _{LO}	Output Leakage Current ⁽²⁾	$\label{eq:V_CC} \begin{array}{ll} V_{CC} = Max. & \mbox{MIL}. \\ \hline CS = V_{IH}, V_{OUT} = GND \mbox{ to } V_{CC} & \mbox{COM'L}. \end{array}$				10 5	μA
		I _{OL} = 18mA MATCH	MIL.	-		0.5	v
N.		I _{OL} = 22mA MATCH	COM'L.	—	—	0.5	v
VOL	Output Low Voltage	I _{OL} = 10mA, V _{CC} = Min.		-		0.5	v
		I _{OL} = 8mA, V _{CC} = Min.		-	_	0.4	v
V _{OH}	Output High Voltage	I _{OH} = -4mA, V _{CC} = Min. (Except Match)		2.4		-	v

NOTES:

1. Typical limits are at V_{CC} = 5.0V, +25°C ambient.

2. Data and match.

DC ELECTRICAL CHARACTERISTICS^(1,2)

 V_{CC} = 5.0V ± 10%, V_{LC} = 0.2V, V_{HC} = V_{CC} - 0.2V

SVMPOL	DADAMETED	35ns		45ns		55ns			
STMBUL	FARAMETER	POWER	COM'L.	MIL.	COM'L.	MIL.	COM'L.	MIL.	UNIT
I _{CC1}	Operating Power Supply Current Output Open, V _{CC} = Max., f = 0	S	110		110	125		125	mA
I _{CC2}	Dynamic Operating Current Output Open, V _{CC} = Max., f = f Max.	S	150	_	140	150	_	145	mA

NOTES:

1. All values are maximum guaranteed values.

2. This device has no power down mode.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figs. 1, 2, and 3

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5V \pm 10%, All Temperature Ranges)

SYMBOL	PARAMETER	PARAMETER IDT7174S35 ⁽¹⁾ MIN. MAX.		IDT71 MIN.	74S45 MAX.	IDT7174S55 ⁽⁴⁾ MIN. MAX.		UNITS
READ CYCLE								
t _{RC}	Read Cycle Time	35		45	_	55		ns
t _{AA}	Address Access Time		35	_	45	-	55	ns
t _{ACS}	Chip Select Access Time		20	_	25	_	30	ns
t _{CLZ}	Chip Select to Output in Low Z	0		0	_	0	_	ns
t _{OE}	Output Enable to Output Valid	_	20	-	25		30	ns
t _{OLZ}	Output Enable to Output in Low Z ⁽²⁾	0		0		0	-	ns
t _{CHZ}	Chip Select to Output in High Z ⁽²⁾	_	15	-	20	-	25	ns
t _{OHZ}	Output Disable to Output in High Z ⁽²⁾		15	-	20	-	25	ns
t _{он}	Output Hold from Address Change	5	_	5	_	5		ns
t _{PU}	Chip Select to Power Up Time ⁽²⁾	0	_	0	_	0		ns
t _{PD}	Chip Deselect to Power Down Time ⁽²⁾	_	35	_	45	-	55	ns
WRITE CYCLE								L
t _{wc}	Write Cycle Time	35		45	-	55		ns
t _{cw}	Chip Select to End of Write	20		25	-	30		ns
t _{AW}	Address Valid to End of Write	30		40		50		ns
t _{AS}	Address Setup Time	0		0		0		ns
t _{WP}	Write Pulse Width	30		40	_	50		ns
t _{WR}	Write Recovery Time (CS, WE)	0		0		0		ns
t _{wHZ}	Write Enable to Output in High Z ⁽²⁾		15	-	20		25	ns
t _{DW}	Data to Write Time Overlap	15		20		25		ns
t _{DH}	Data Hold From Write Time	2	_	2		2		ns
tow	Output Active from End of Write ⁽²⁾	5		5		5	—	ns
MATCH								
t _{ADM}	Addresss to Match Valid		37		45		55	ns
t _{CSM}	Chip Select to Match Valid	_	20	-	25		30	ns
t _{CSMHI}	Chip Deselect to Match High	_	20	-	25		30	ns
t _{DAM}	Data Input to Match Valid		28		35		45	ns
t _{ОЕМНІ}	OE Low to Match High		25		35	-	45	ns
t _{OEM}	OE High to Match Valid		25		35		45	ns
t _{wemhi}	WE Low to Match High		25	-	35		45	ns
twem	WE High to Match Valid	_	25	_	35		45	ns
t _{RSMHI}	RESET Low to Match High		25	_	35	-	45	-
t _{MHA}	Match Valid Hold From Address	5	_	5		5		ns
t _{MHD}	Match Valid Hold From Data	5		5		5	_	ns
RESET						L		
t _{RSPW}	RESET Pulse Width ⁽³⁾	65		80	-	100		ns
t _{RSRC}	RESET High to WE Low	5	_	10	variase	10		ns

NOTES:

1. 0°C to +70°C temperature range only.

2. This parameter guaranteed but not tested.

3. Recommended duty cycle 10% maximum.

4. -55°C to +125°C temperature range only.

2

TIMING WAVEFORM OF READ CYCLE NO. 1(1)

TIMING WAVEFORM OF READ CYCLE NO. 2^(1,2,4)

TIMING WAVEFORM OF READ CYCLE NO. 3(1,3,4)

NOTES:

- 1. WE is High for Read Cycle.
- 2. Device is continuously selected, $\overline{CS} = V_{IL}$.
- 3. Address valid prior to or coincident with CS transition low.
- 4. 0E = V_{IL}

5. Transition is measured ±200mV from steady state. This parameter is sampled and not 100% tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 1(1)

TIMING WAVEFORM OF WRITE CYCLE NO. 2^(1,6)

RESET TIMING

MATCH TIMING

NOTES:

- 1. WE must be high during all address transitions.
- 2. A write occurs during the overlap (t_WP) or a low $\overline{\text{CS}}.$
- 3. t_{WB} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, outputs remain in a high impedance state.
- 6. \overline{OE} is continuously low ($\overline{OE} = V_{IL}$).
- 7. D_{OUT} is the same phase of write data of this write cycle.
- 8. If CS is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- 9. Transition is measured $\pm 200 \text{mV}$ from steady state. This parameter is sampled and not 100% tested.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

CAPACITANCE (T_A = +25°C, f = 1.0MHz)

PARAMETER ⁽¹⁾	CONDITIONS	TYP.	UNIT
Input Capacitance	V _{IN} = 0V	5	pF
Output Capacitance	V _{OUT} = 0V	7	pF
	PARAMETER ⁽¹⁾ Input Capacitance Output Capacitance	PARAMETER(1) CONDITIONS Input Capacitance V _{IN} = 0V Output Capacitance V _{OUT} = 0V	PARAMETER ⁽¹⁾ CONDITIONS TYP. Input Capacitance V _{IN} = 0V 5 Output Capacitance V _{OUT} = 0V 7

NOTE:

1. This parameter is sampled and not 100% tested.

TRUTH TABLE

WE	CS	OE	RESET	MATCH	1/0	FUNCTION
х	х	х	L	н		Reset all bits to low
х	н	х	н	н	High Z	Deselect chip
н	L	н	н	L	D _{IN}	No Match
н	L	н	н	н	D _{IN}	Match
н	L	L	н	н	D _{OUT}	Read
L	L	x	н	н	D _{IN}	Write