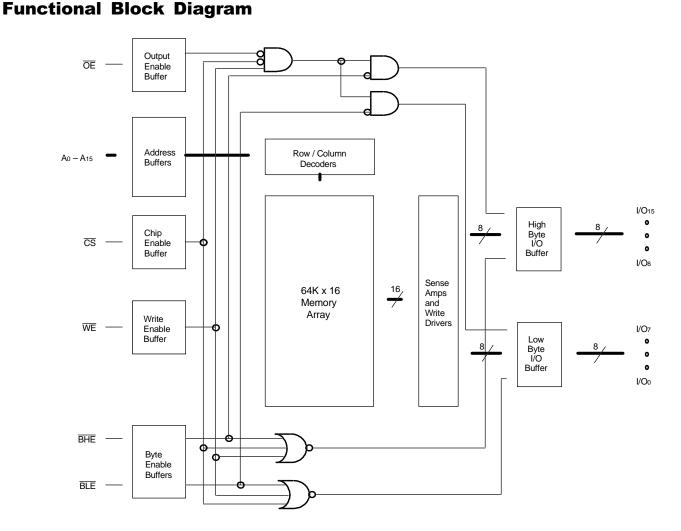


2.5V CMOS Static RAM 1 Meg (64K x 16-Bit)

IDT71T016SA

Features

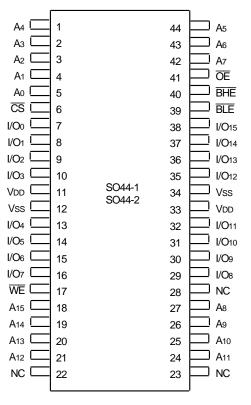
- 64K x 16 advanced high-speed CMOS Static RAM
- Equal access and cycle times


 Commercial: 10/12/15/20ns
 Industrial: 12/15/20ns
 - Industriai: 12/15/2005
- One Chip Select plus one Output Enable pin
 Bidirectional data inputs and outputs directly LVTTL-compatible
- Low power consumption via chip deselect
- Upper and Lower Byte Enable Pins
- Single 2.5V power supply
- Available in 44-pin Plastic SOJ, 44-pin TSOP, and 48-Ball Plastic FBGA packages

Description

The IDT71T016 is a 1,048,576-bit high-speed Static RAM organized as 64K x 16. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for highspeed memory needs.

The IDT71T016 has an output enable pin which operates as fast as 5ns, with address access times as fast as 10ns. All bidirectional inputs and outputs of the IDT71T016 are LVTTL-compatible and operation is from a single 2.5V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.


The IDT71T016 is packaged in a JEDEC standard a 44-pin Plastic SOJ, 44-pin TSOP Type II, and a 48-ball plastic 7 x 7 mm FBGA.

5326 drw 01

APRIL 2004

Pin Configurations

5326 drw 02

TSOP **Top View**

www.DataSheet4U.com 2 3 4 1 5 6 BLE ŌĒ A0 **A**1 A2 NC I/O8 BHE **A**3 **A**4 CS **I/O**0

Commercial and Industrial Temperature Ranges

С	I /O9	I/O 10	A 5	A6	I /O1	I/O2
D	Vss	I/O 11	NC	A7	I/O3	Vdd
E	Vdd	I/O 12	NC	NC	I/O 4	Vss
F	I/O 14	I/O 13	A 14	A 15	I/O5	I/O6
G	I/O 15	NC	A 12	A 13	WE	I/O7
Η	NC	A8	A۹	A 10	A11	NC
						500/ 11 1 00

FBGA (BF48-1) Top View

5326 tbl 02a

Pin Description

А

В

A0 – A15	Address Inputs	Input
<u>CS</u>	Chip Select	Input
WE	Write Enable	Input
ŌĒ	Output Enable	Input
BHE	High Byte Enable	Input
BLE	Low Byte Enable	Input
I/O 0 – I/O 15	Data Input/Output	I/O
Vdd	2.5V Power	Power
Vss	Ground	Gnd

5326 tbl 01

Truth Table⁽¹⁾

CS	ŌĒ	WE	BLE	BHE	I/O0-I/O7	I/O8-I/O15	Function
Н	Х	Х	Х	Х	High-Z	High-Z	Deselected – Standby
L	L	Н	L	Н	DATAOUT	High-Z	Low Byte Read
L	L	Н	Н	L	High-Z	DATAOUT	High Byte Read
L	L	Н	L	L	DATAOUT	DATAOUT	Word Read
L	Х	L	L	L	DATAIN	DATAIN	Word Write
L	Х	L	L	Н	DATAIN	High-Z	Low Byte Write
L	Х	L	Н	L	High-Z	DATAIN	High Byte Write
L	Н	Н	Х	Х	High-Z	High-Z	Outputs Disabled
L	Х	Х	Н	Н	High-Z	High-Z	Outputs Disabled

NOTE:

1. $H = V_{IH}, L = V_{IL}, X = Don't care.$

5326 tbl 02

Absolute Maximum Ratings⁽¹⁾

1100010		i la linge	
Symbol	Rating	Value	Unit
Vdd	Supply Voltage Relative to Vss	-0.3 to +3.6	V
Vin, Vout	Terminal Voltage Relative to Vss	-0.3 to VDD+0.3	V
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	1.25	W
Ιουτ	DC Output Current	50	mA
NOTE:			5326 tbl 03

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance

(TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 3dV$	6	рF
Cvo	I/O Capacitance	Vout = 3dV	7	рF
NOTE				5326 tbl 06

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

			IDT71T016SA		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
Iu	Input Leakage Current	VDD = Max., VIN = VSS to VDD	_	5	μA
LO	Output Leakage Current	VDD = Max., \overline{CS} = VIH, VOUT = VSS to VDD	_	5	μA
Vol	Output Low Voltage	IOL = 2.0 mA, $VDD = Min$.	_	0.7	V
Vон	Output High Voltage	IOH = 2.0mA, $VDD = Min$.	1.7	—	V

DC Electrical Characteristics^(1,2)

(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

	Davameter	Parameter 7		71T01	6SA12	71T01	6SA15	71T01	6SA20	
Symbol	Parameter			Com'l	Ind	Com'l	Ind	Com'l	Ind	Unit
laa	Dynamic Operating Current	Мах.	160	150	160	130	130	120	120	m ^
$\frac{Dynamic C}{CS} \le VLC$,	$\overline{CS} \leq VLC$, Outputs Open, VDD = Max., f = fMAX ⁽³⁾	Typ. ⁽⁴⁾	90	85		80		80		mA
lsв	$ \begin{array}{l} \hline Dynamic Standby Power Supply Current \\ \hline \hline CS \geq VHc, Outputs Open, VDD = Max., f = fMAX^{(3)} \end{array} $		45	40	45	35	35	30	30	mA
ISB1	Full Standby Power Supply Current (static) $\overline{CS} \ge V_{HC}$, Outputs Open, VDD = Max., f = 0 ⁽³⁾		10	15	15	15	15	15	15	mA
NOTES:										5326 tbl 8

1. All values are maximum guaranteed values.

2. All inputs switch between 0.2V (Low) and VDD - 0.2V (High).

3. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing .

4. Typical values are measured at 2.5V, 25°C and with equal read and write cycles. This parameter is guaranteed by device characterization but is not production tested.

Recommended Operating

Temperature and Supply Voltage

Grade	Temperature	Vss	Vdd
Commercial	0°C to +70°C	0V	See Below
Industrial	-40°C to +85°C	0V	See Below

5326 tbl 04

5326 tbl 05

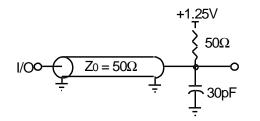
5326 tbl 07

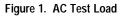
Recommended DC Operating Conditions

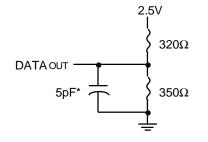
Symbol	Parameter	Min.	Тур.	Мах.	Unit
Vdd	Supply Voltage	2.375	2.5	2.625	۷
Vss	Ground	0	0	0	۷
Vн	Input High Voltage	1.7		VDD+0.3 ⁽¹⁾	۷
VIL	Input Low Voltage	-0.3(2)		0.7	۷

NOTES:

1. VIH (max) = VDD + 1.0V a.c. (pulse width less than tcyc/2) for I \leq 20 mA, once per cycle.


2. VIL (min) = -1.0V a.c. (pulse width less than tcvc/2) for I \leq 20 mA, once per cycle.


Input Pulse Levels	0V to 2.5V		
Input Rise/Fall Times	1.5ns		
Input Timing Reference Levels	(VDD/2)		
Output Reference Levels	(Vdd/2)		
AC Test Load	See Figure 1, 2 and 3		


5326 tbl 09

5326 drw 03

AC Test Loads

5326 drw 04

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

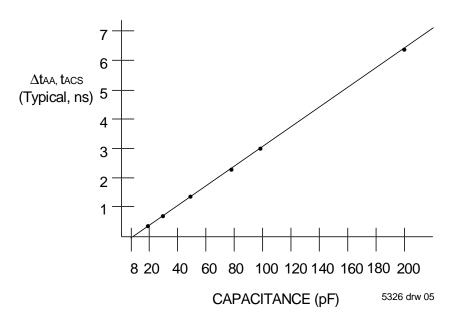


Figure 3. Output Capacitive Derating

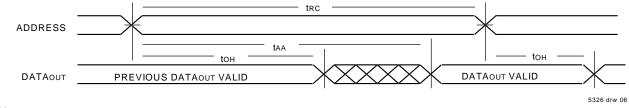
AC Test Conditions

Commercial and Industrial Temperature Ranges

www.DataSheet4U.com

5326 tbl 10

AC Electrical Characteristics (VDD = Min. to Max., Commercial and Industrial Temperature Ranges)


		71T016	5SA10 ⁽²⁾	71T016SA12		71T016SA15		71T016SA20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	.E									
tRC	Read Cycle Time	10	_	12	_	15		20		ns
taa	Address Access Time	_	10		12		15		20	ns
tacs	Chip Select Access Time	_	10		12		15	—	20	ns
tCLZ ⁽¹⁾	Chip Select Low to Output in Low-Z	4		4	_	5		5	_	ns
tснz ⁽¹⁾	Chip Select High to Output in High-Z		5		6		6		8	ns
tOE	Output Enable Low to Output Valid		5		6		7		8	ns
toLz ⁽¹⁾	Output Enable Low to Output in Low-Z	0		0		0		0		ns
tohz ⁽¹⁾	Output Enable High to Output in High-Z		5		6		6		8	ns
tон	Output Hold from Address Change	4	-	4	-	4	_	4	_	ns
tBE	Byte Enable Low to Output Valid	-	5	_	6	_	7		8	ns
tBLZ ⁽¹⁾	Byte Enable Low to Output in Low-Z	0	_	0	_	0		0		ns
tвнz ⁽¹⁾	Byte Enable High to Output in High-Z		5		6		6		8	ns
WRITE CYC	LE									
twc	Write Cycle Time	10		12	—	15		20		ns
taw	Address Valid to End of Write	7		8	_	10		12		ns
tcw	Chip Select Low to End of Write	7		8	_	10		12		ns
tBW	Byte Enable Low to End of Write	7		8	_	10		12		ns
tas	Address Set-up Time	0		0	_	0		0		ns
twr	Address Hold from End of Write	0		0	_	0		0	_	ns
twp	Write Pulse Width	7		8	_	10		12		ns
tDW	Data Valid to End of Write	5		6		7		9		ns
tDH	Data Hold Time	0		0		0		0		ns
tow ⁽¹⁾	Write Enable High to Output in Low-Z	3		3	_	3		3		ns
twнz ⁽¹⁾	Write Enable Low to Output in High-Z		5		6		6		8	ns

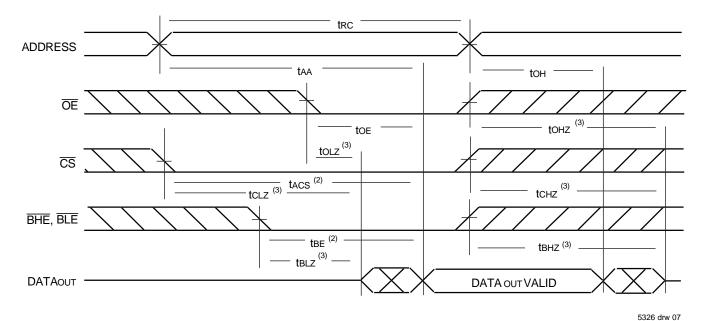
NOTES:

1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

2. 0°C to +70°C temperature range only.

Timing Waveform of Read Cycle No. 1^(1,2,3)

NOTES:

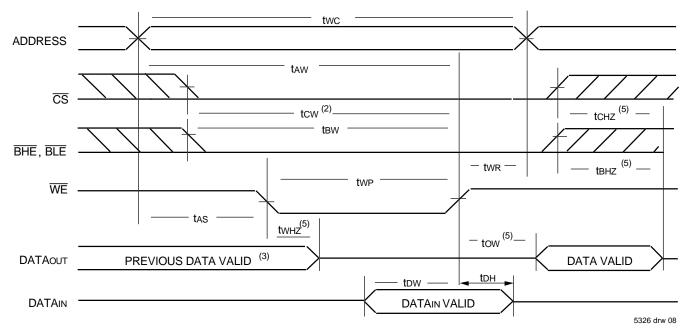

1. $\overline{\text{WE}}$ is HIGH for Read Cycle.

2. Device is continuously selected, \overline{CS} is LOW.

^{3.} OE, BHE, and BLE are LOW.

www.DataSheet4U.com

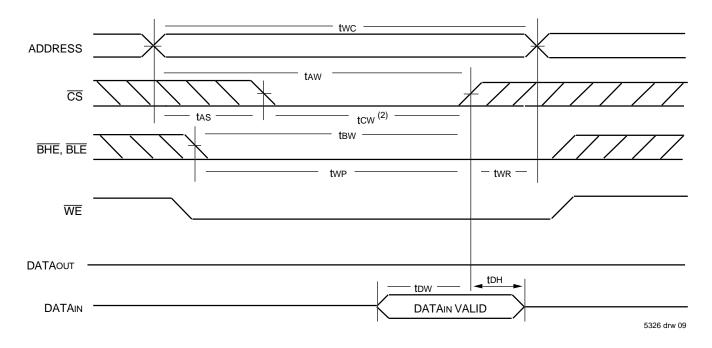
Timing Waveform of Read Cycle No. 2⁽¹⁾

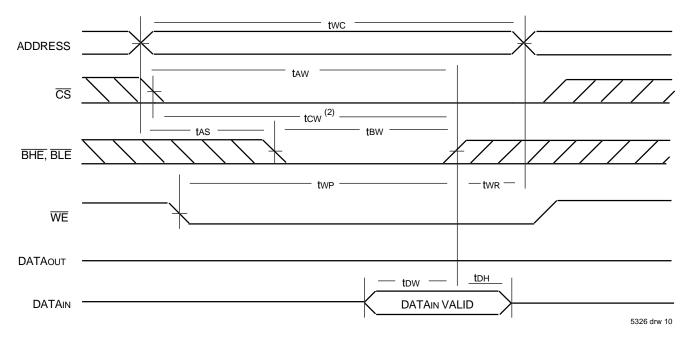

NOTES:

1. WE is HIGH for Read Cycle.

2. Address must be valid prior to or coincident with the later of CS, BHE, or BLE transition LOW; otherwise tak is the limiting parameter.

3. Transition is measured ±200mV from steady state.

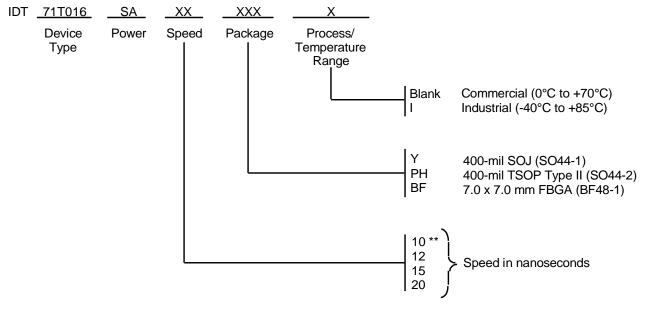

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1,2,4)


NOTES:

- 1. A write occurs during the overlap of a LOW CS, LOW BHE or BLE, and a LOW WE.
- OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
 During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 2 (\overline{CS} Controlled Timing)^(1,4)

Timing Waveform of Write Cycle No. 3 (BHE, BLE Controlled Timing)^(1,4)



NOTES:

- 1. A write occurs during the overlap of a LOW \overline{CS} , LOW \overline{BHE} or \overline{BLE} , and a LOW \overline{WE} .
- 2. OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the \overline{CS} LOW or \overline{BHE} and \overline{BLE} LOW transition occurs simultaneously with or after the \overline{WE} LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.

www.DataSheet4U.com

Ordering Information

** Commercial temperature range only.

5326 drw 11

www.DataSheet4U.com

Datasheet Document History

Rev	Date	Page	Description
0	08/23/01		Created new datasheet
1	04/16/04	р. 1-8	Updated datasheet to full release version.
		p. 3	Updated overshoot and undershoot specifications and typical DC electrical
		-	characteristics.

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054

for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: sramhelp@idt.com 800-544-7726

The IDT logo is a registered trademark of Integrated Device Technology, Inc.