

CMOS OCTAL DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE OUTPUT VOLTAGE, 3-STATE OUTPUTS, 3.3V AND 5V I/O

IDT74LVCC4245A

FEATURES:

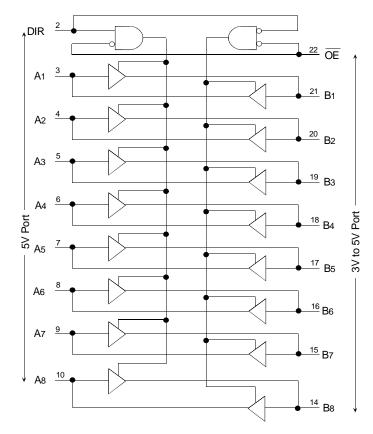
- 0.5 MICRON CMOS Technology
- VCCA = $5V \pm 0.5V$
- VCCB = 2.7V to 5.5V
- CMOS power levels (0.4µ W typ. static)
- Rail-to-rail output swing for increased noise margin
- All inputs, outputs, and I/O are 5V tolerant
- Supports hot insertion
- · Available in SSOP, QSOP, and TSSOP packages

DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

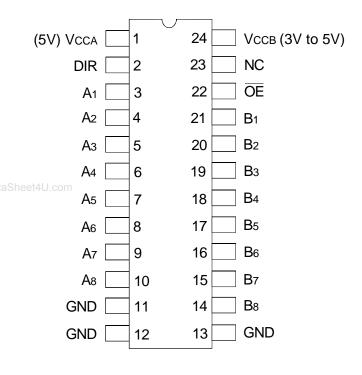
- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems


FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The LVCC4245A is manufactured using advanced dual metal CMOS technology. This 8-bit (octal) noninverting bus transceiver contains two separate power-supply rails. The configurable B port is designed to track Vccb, which accepts voltages from 3V to 5V, and the A port is dedicated to accept a 5V supply level. This allows for translation from a 3.3V to a 5V system environment and vice-versa.

This LVCC4245A is ideal for asynchronous communication between two data buses (A and B). The device transmits data from A to B or from B to A, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.


The LVCC4245A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

© 2004 Integrated Device Technology, Inc.

PINCONFIGURATION

SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS FOR VCCB OR VCCB⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
Іік Іок	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
ICC ISS	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾ Conditions		Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	-	pF
Ci/o	I/O Port Capacitance	VIN = 0V	11	_	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
ŌĒ	Output Enable Input (Active LOW)
DIR	Direction Control Input
Ax	Port A Inputs or 3-State Outputs
Bx	Port B Inputs or 3-State Outputs
NC	No Internal Connection

FUNCTION TABLE⁽¹⁾

Inputs		
DE DIR		Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z state

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C, VccA = 4.5V to 5.5V⁽¹⁾

Symbol	Parameter	Test Conc	Min.	Typ. ⁽²⁾	Max.	Unit	
		VCCA = 4.5V, VCCB = 2.7V	$V_{OB} \leq 0.1 V \text{ or}$	2	_	—	
Vih	Input HIGH Voltage Level	VCCA = 4.5V, VCCB = 3.6V	$V_{OB} \geq V_{CCB} - 0.1V$	2	—	—	V
		VCCA = 5.5V, VCCB = 5.5V		2	—	_	
		VCCA = 4.5V, VCCB = 2.7V		—	—	0.8	
VIL	Input LOW Voltage Level	VCCA = 4.5V, VCCB = 3.6V			_	0.8	[V
		VCCA = 5.5V, VCCB = 5.5V		_	—	0.8	
IIH aSheet4U.con	Input Leakage Current	VCCA = 5.5V	VI = 0 to 5.5V	_	_	±1	μA
	(Control Inputs)	VCCB = 3.6V or 5.5V					
Іоzн	High Impedance Output Current	VCCA = 5.5V	Vo = 0 to 5.5V	_	—	±5	μA
Iozl	(3-State Output pins)	VCCB = 3.6V					
Vн	Input Hysteresis	VCCA = 5.0V		—	100	—	mV
ICCL	Quiescent Power Supply Current	VCCA = 5.5V	VIN = GND or VCCA	—	—	80	μA
Іссн		VCCB = 3.6V or 5.5V	IOB = 0				
Δlcc	Quiescent Power Supply Current Variation	One input at 3.4V, other input	s at Vcca or GND	—	_	1.5	mA

NOTES:

1. VCCB = 2.7V to 5.5V unless otherwise noted.

2. Typical values are at VccA = 5V, +25°C ambient.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40° C to $+85^{\circ}$ C, VccB = 2.7V to $5.5V^{(1)}$

Symbol	Parameter	Test Cond	Test Conditions		Typ. ⁽²⁾	Max.	Unit
		VCCB = 2.7V, VCCA = 4.5V	$V_{OA} \le 0.1V$ or	2	_	_	
Vih	Input HIGH Voltage Level	VCCB = 3.6V, VCCA = 4.5V	$VOA \ge VCCA - 0.1V$	2	—	—	V
		VCCB = 5.5V, VCCA = 5.5V		3.85	_	—	
		VCCB = 2.7V, VCCA = 4.5V		_	—	0.8	
VIL	Input LOW Voltage Level	VCCB = 3.6V, VCCA = 4.5V		_	—	0.8	V
		VCCB = 5.5V, VCCA = 5.5V		—	—	1.65	
Іоzн	High Impedance Output Current	VCCB = 3.6V	Vo = 0 to 5.5V	-	—	±5	μA
Iozl	(3-State Output pins)	Vcca = 5.5V					
Vн	Input Hysteresis	VCCB = 3.3V		—	100	—	mV
ICCL	Quiescent Power Supply Current	VCCB = 3.6V or 5.5V	VIN = GND or VCCB	-	—	80	μA
Іссн		Vcca = 5.5V	IOA = 0				
Δlcc	Quiescent Power Supply Current Variation	One input at VCCB - 0.6V, othe	One input at VCCB - 0.6V, other inputs at VCCB or GND		_	500	μA

NOTES:

1. VCCA = 4.5V to 5.5V unless otherwise noted.

2. Typical values are at VCCB = 3.3V, +25°C ambient.

INDUSTRIAL TEMPERATURE RANGE

OUTPUT DRIVE CHARACTERISTICS (A PORT)

Symbol	Parameter	Test Conditions ⁽¹⁾			Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcca = 4.5V	VCCA = 4.5V VCCB = 3V IOH = -0.1mA				V
	(B port to A port)			Iон = – 24mA	3.76	-	
Vol	Output LOW Voltage	Vcca = 4.5V	VCCB = 3V	Iol = 0.1mA	_	0.1	V
	(B port to A port)			IOL = 24mA	—	0.44	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

/w.DataSheet4U.com

OUTPUT DRIVE CHARACTERISTICS (BPORT)

Symbol	Parameter		Test Conditions	(1)	Min.	Max.	Unit
Vон	Output HIGH Voltage	VCCB = 3V	Vcca = 4.5V	Iон = – 0.1mA	2.9	_	V
	(A port to B port)	VCCB = 2.7V	VCCA = 4.5V	Іон = – 12mA	2.2	_	
		VCCB = 3V	Vcca = 4.5V		2.46	_	1
		VCCB = 2.7V	VCCA = 4.5V	Iон = – 24mA	2.1	_	1
		VCCB = 3V	VCCA = 4.5V		2.25	—	1
		VCCB = 4.5V	VCCA = 4.5V		3.76	_	
Vol	Output LOW Voltage	VCCB = 3V	Vcca = 4.5V	Iol = 0.1mA	_	0.1	V
	(A port to B port)	VCCB = 2.7V	VCCA = 4.5V	Iol = 12mA	_	0.44	
		VCCB = 2.7V	Vcca = 4.5V	Iol = 24mA	_	0.5	
		VCCB = 3V	Vcca = 4.5V		_	0.44	
		VCCB = 4.5V	VCCA = 4.5V		_	0.44	

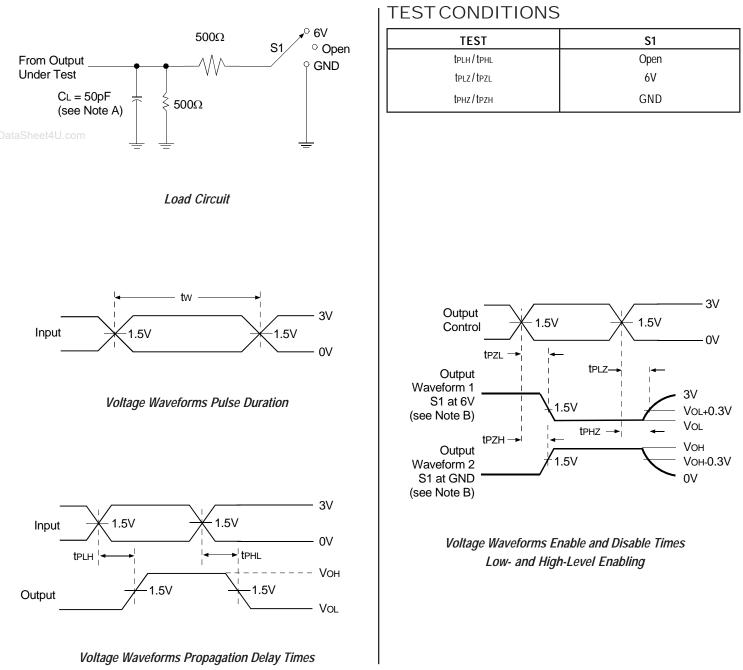
NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40° C to $+85^{\circ}$ C, VccA = 4.5V.

OPERATING CHARACTERISTICS, TA = 25°C

			VCCA = 5V, V CCB = 3.3V	
Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, $f = 10Mhz$	20	pF
Cpd	Power Dissipation Capacitance per Transceiver Outputs disabled		6.5	

SWITCHING CHARACTERISTICS⁽¹⁾

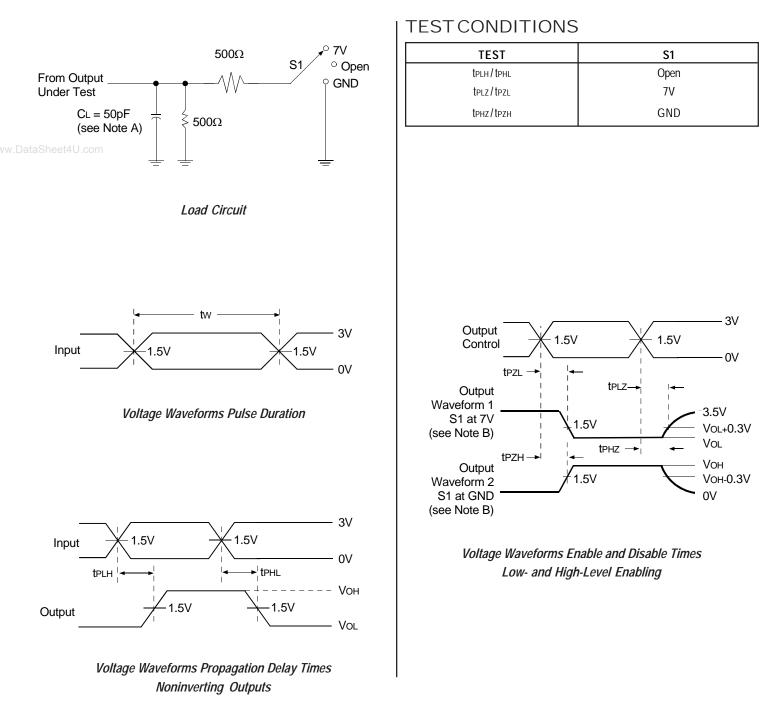

			$VCCA = 5V \pm 0.5V$			
		VCCB =	$VCCB = 5V \pm 0.5V$		VCCB = 2.7V to 3.6V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay	1	7.1	1	7	ns
t PHL	Ax to Bx	1	6	1	7	
tPLH .	Propagation Delay	1	6.8	1	6.2	ns
t PHL	Bx to Ax	1	6.1	1	5.3	
tpzl	Output Enable Time	1	8.2	1	10	ns
tрzн	OE to Bx	1	8.1	1	10.2	
aSheet [‡] PZLcom	Output Enable Time	1	9	1	9	ns
tрzн	OE to Ax	1	8.3	1	8	
tPLZ	Output Disable Time	1	4.7	1	5.2	ns
tPHZ	OE to Ax	1	4.9	1	5.2	
tPLZ	Output Disable Time	1	5.4	1	5.4	ns
tрнz	OE to Bx	1	6.3	1	7.4	

NOTE:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION FOR A TO B

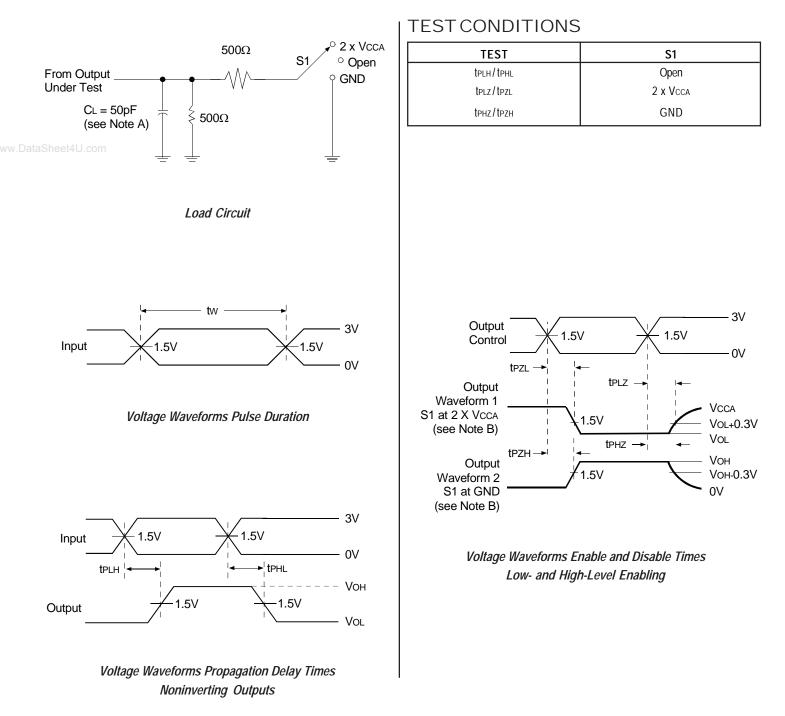
VCCA = 4.5V to 5.5V and VCCB = 2.7V to 3.6V



Noninverting Outputs

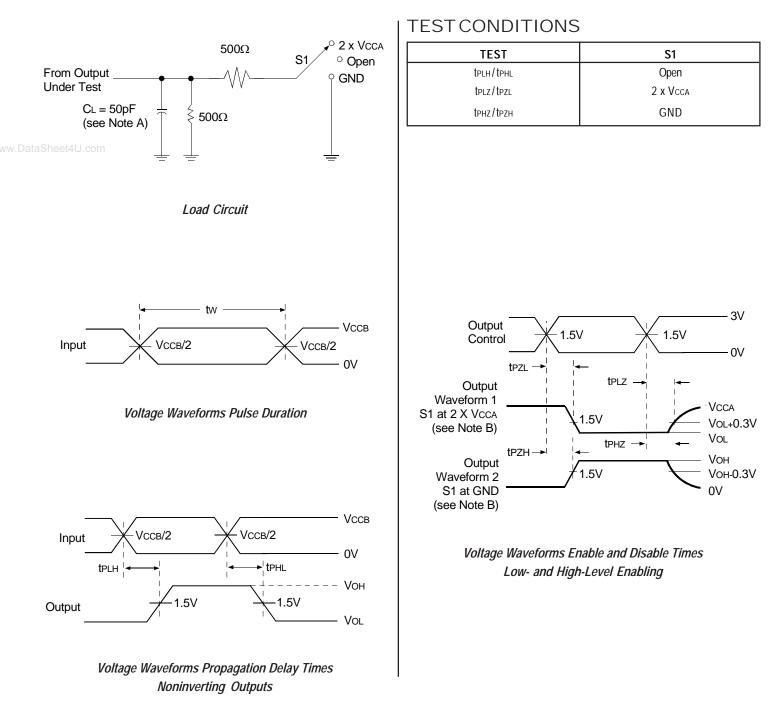
- A. $\ensuremath{\mathsf{CL}}$ includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION FOR A TO B


Vcca = 4.5V to 5.5V and Vccв = 3.6V to 5.5V

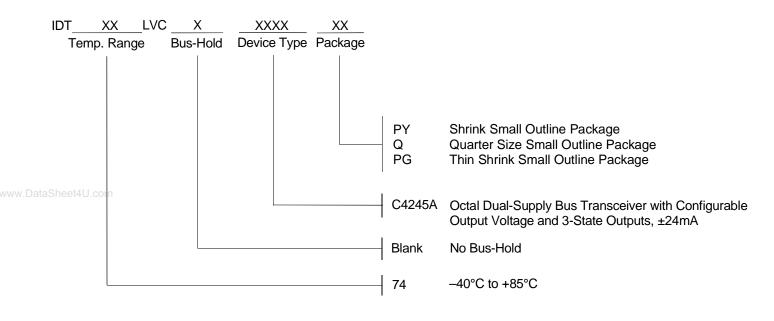
- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns;
- D. The outputs are measured one at a time with one transition per measurement.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION FOR B TO A


VCCA = 4.5V to 5.5V and VCCB = 2.7V to 3.6V

- A. $C{\scriptstyle L}$ includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tF \leq 2.5ns; tR \leq 2.5ns;
- D. The outputs are measured one at a time with one transition per measurement.

LOAD CIRCUIT AND VOLTAGE WAVEFORMS PARAMETER MEASUREMENT INFORMATION FOR B TO A


Vcca = 4.5V to 5.5V and Vccв = 3.6V to 5.5V

- A. $C{\scriptstyle L}$ includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns;
- D. The outputs are measured one at a time with one transition per measurement.

IDT74LVCC4245A CMOSOCTAL DUAL-SUPPLY BUS TRANSCEIVER

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 *for SALES:* 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com *for Tech Support:* logichelp@idt.com (408) 654-6459