

CMOS DUAL-PORT RAM MODULE 64K (8K x 8-BIT) & 128K (16K x 8-BIT)

PRELIMINARY **IDT7M134S IDT7M135S**

FEATURES:

- High-density 64K/128K-bit CMOS dual-port RAM module
- 16K x 8 organization (IDT7M135) with 8K x 8 option (IDT7M134)
- Low-power consumption
- CEMOS[™] process virtually eliminates alpha particle soft errors rates (with no organic die coating)
- · On-chip port arbitration logic
- BUSY flags
- · Fully asynchronous operation from either port
- Single 5V (±10%) power supply
- Dual V_{CC} and GND pins for maximum noise immunity
- On-chip pull up resistors for open-drain BUSY flag option
- Inputs and output directly TTL-compatible
- Fully static operation
- Modules available with semiconductor components 100% screened to MIL-STD-883, Class B
- · Finished modules tested at Room, Hot and Cold temperatures for all AC and DC parameters as per customer requirement

PIN CONFIGURATION

NOTES

TOP VIEW Both V_{CC} pins need to be connected to the 5V supply, and both GND pins need to be grounded for proper operation

2. On 8Kx8 IDT7M134 option, A13L and A13R need to be externally connected to ground for proper operation.

CEMOS is a trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

Integrated Device Technology, Inc.
I

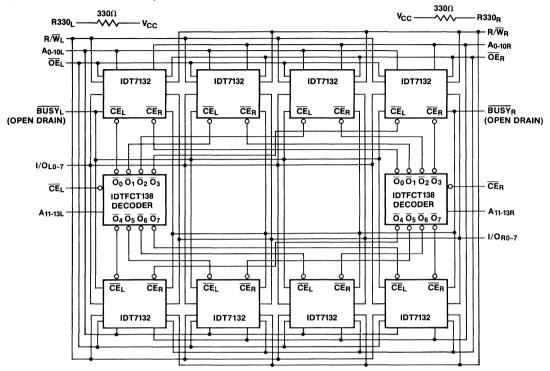
DESCRIPTION:

The IDT7M134/135 are 64K/128K-bit high-speed CMOS dualport static RAM modules constructed on a multi-lavered ceramic substrate using four IDT7132 2K x 8 dual-port RAMs (IDT7M134) or eight IDT7132 dual-port RAMs (IDT7M135) in leadless chip carriers. Dual-port function is achieved by utilization of the two on-board IDT54/74FCT138 decoder circuits that interpret the higher order addresses A_{L11-13} and A_{R11-13} to select one of the eight 2K x 8 dual-port RAMs. (On IDT7M134 8K x 8 option, the AL13 and AR13 need to be externally grounded and the selection becomes one of the four 2K x 8 dual-port RAMs.) Extremely high speeds are achieved in this fashion due to the use of the IDT7132 dual-port RAM, fabricated in IDT's high-performance CEMOS technology.

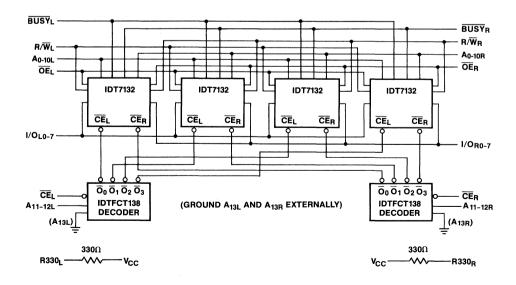
The IDT7M134/IDT7M135 provide two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in the memory. The BUSY flags are provided for the situation when both ports simultaneously access the same memory location. The on-chip arbitration logic will determine which port has access and sets the BUSY flag of the delayed port. BUSY is set at speeds that permit the processor to hold the operation and its respective address and data. The delaved port will have access when BUSY goes high (inactive).

The IDT7M134/135 are available with access times as fast as 70ns commercial and 90ns military temperature range, with operating power consumption of only 2.1W/3.5W (max.). The module also offers a standby power mode of 1.4W/2.8W (max.) and a full standby mode of 660mW/1.3W (max.).

All IDT military module semiconductor components are 100% processed to the test methods of MIL-STD-883, Class B, making them ideally suited to applications demanding the highest level of performance and reliability.


PIN NAMES

LEFT PORT	RIGHT PORT	NAMES
ĈĒ	CER	CHIP ENABLE
R/WL	R/WR	READ/WRITE ENABLE
OEL	OE _R	OUTPUT ENABLE
BUSYL	BUSYR	BUSY FLAG (OPEN DRAIN)
R330 _L	R330 _R	PULL-UP RESISTORS for Open-drain BUSY FLAG option
A _{0L} -A _{13L}	A _{0R} -A _{13R}	ADDRESS
I/O _{0L} -I/O _{7L}	I/O _{0R} -I/O _{7R}	DATA INPUT/OUTPUT
V	cc	POWER
GI	ND	GROUND


JUNE 1986

FUNCTIONAL BLOCK DIAGRAMS

(A) IDT7M135 (16K x 8-BIT)

(B) IDT7M134 (8K x 8-BIT)

ABSOLUTE MAXIMUM RATING⁽¹⁾

SYMBOL	RATING	VALUE	UNIT V	
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to +7.0		
TA	Operating Temperature	-55 to +125	°C	
T _{BIAS}	Temperature Under Bias	-65 to +135	°C	
T _{STG}	Storage Temperature	-65 to +150	°C	
P _T	Power Dissipation	8.0	w	
IOUT	DC Output Current	50	mA	

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

GRADE	AMBIENT TEMPERATURE	GND	V _{cc}	
Military	-55°C to +125°C	0V	$5.0V \pm 10\%$	
Commercial	0°C to +70°C	0V	$5.0V\pm10\%$	

RECOMMENDED DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	ТҮР.	MAX.	UNIT
V _{CC}	Supply Voltage	4.5	5.0	5.5	V
GND Supply Voltage		0	0	0	V
VIH	Input High Voltage	2.2	-	6.0	V
VIL	Input Low Voltage	-0.5(1)	-	0.8	V

NOTE:

1. $V_{IL} = -3.5V$ for pulse width less than 30ns.

DC ELECTRICAL CHARACTERISTICS

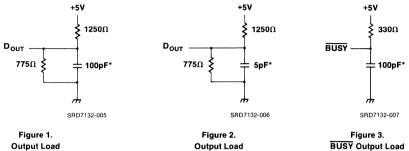
(V_{CC} = 5V \pm 10%, T_A = -55°C to +125°C and 0°C to +70°C)

SYMBOL	PARAMETER	PARAMETER TEST CONDITIONS		IDT7M134S MIN. TYP. ⁽¹⁾ MAX.		MIN.	UNIT		
1 _{L1}	Input Leakage Current	V_{CC} = 5.5V, V_{IN} = 0V to V_{CC}	-		15	-	_	20	μA
I _{LO}	Output Leakage Current	$\overline{CE} = V_{IH}, V_{OUT} = 0V \text{ to } V_{CC}$	_		15			20	μA
VIH	Input High Voltage		2.2		6.0	2.2		6.0	V
VIL	Input Low Voltage		-1.0(2)		0.8	-1.0(2)		0.8	V
I _{cc}	Dynamic Operating Current (Both Ports Active)	CE = V _{IL} , Outputs Open	_	190	380		320	640	mA
I _{SB}	Standby Current (Both Ports Standby)	\overline{CE}_{L} and $\overline{CE}_{R} \ge V_{IH}$	-	130	260	_	260	520	mA
I _{SB1}	Standby Current (One Port Standby)	CE _L or CE _R ≥ V _{IH} Active Port Outputs Open		160	320	-	290	580	mA
I _{SB2}	Full Standby Current (Both Ports Full Standby)	$\label{eq:constraint} \begin{array}{l} Both \mbox{ Ports} \\ \overline{CE}_L \mbox{ and } \overline{CE}_R \geq V_{CC} \mbox{ -0.2V} \\ V_{IN} \geq V_{CC} \mbox{ -0.2V or } V_{IN} \leq 0.2V \end{array}$	_	4	120 ⁽³⁾	_	10	240 ⁽³⁾	mA
		I _{OL} = 3.5mA, V _{CC} = 4.5V	-		0.4	-		0.4	v
VOL	Output Low Voltage (I/O ₀ - I/O ₇)	I _{OL} = 8mA, V _{CC} = 4.5V	_		0.5	_		0.5	v
V _{OL}	Open Drain Output Low Voltage (BUSY)	I _{OL} = 16mA, V _{CC} = 4.5V	-		0.5	-		0.5	v
V _{OH}	Output High Voltage	I _{OL} = -4mA, V _{CC} = 4.5V	2.4	-		2.4	—		v

NOTES:

1. $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

2. V_{IL} min. = -3.5V for pulse width less than 30ns.


3. I_{SB2} max. of IDT7M134/IDT7M135 at commercial temperature = 80mA/150mA.

AC CHARACTERISTICS (V_{CC} = 5V \pm 10%, T_A = -55°C to +125°C and 0°C to +70°C)

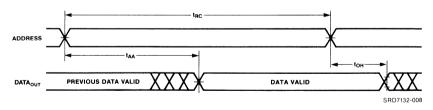
SYMBOL	PARAMETER	IDT7M	134S70 135S70 ONLY MAX.		134S90 135S90 MAX.		134S100 135S100 MAX.		134S120 135S120 MAX.		34S140 35S140 ONLY MAX.	UNIT
READ CYC		MIN.	MAA.	MIN.	MAA.	MIN.	MAA.	WIIN.	MAA.	MIN.	MAA.	
		70		00		100		120		140		
t _{RC}	Read Cycle Time	70		90		100			100			ns
t _{AA}	Address Access Time	-	70		90		100		120		140	ns
t _{ACE}	Chip Enable Access Time		70		90	<u> </u>	100		120	_	140	ns
t _{AOE}	Output Enable Access Time		40	-	45		50		60		70	ns
t _{OH}	Output Hold from Address Change	5	_	10	-	10		10		10	-	ns
t _{CLZ}	Chip Select to Output in Low Z	10		15		15		15		15		ns
t _{CHZ}	Chip Select to Output in High Z	—	35		45		50		50	-	60	ns
t _{OHZ}	Output Enable to Output in High Z	—	30		40		40	_	40		50	ns
t _{OLZ}	Output Enable to Output in Low Z	5		5		5		5		5	-	ns
t _{PU}	Chip Enable to Power Up Time	0		0		0		0	-	0	-	ns
t _{PD}	Chip Disable to Power Down Time		50	—	50	-	50		50	—	50	ns
WRITE CY	CLE											
t _{wc}	Write Cycle Time	70		90		100	-	120		140		ns
t _{CW}	Chip Selection to End of Write	60		80		95		110		120	-	ns
t _{AW}	Address Valid to End of Write	60		80		95		110		120	-	ns
t _{AS}	Address Setup Time	10		10		10		10		10	-	ns
t _{WP}	Write Pulse Width	40	_	50		55		65		75	-	ns
t _{WR}	Write Recovery Time	5		5		5		10		10	-	ns
t _{DW}	Data Valid to End of Write	30		40		40		40		50	-	ns
t _{DH}	Data Hold Time	10		10		10	—	10		10	_	ns
t _{OHZ}	Output Enable to Output in High Z		35	-	40		40	-	40		40	ns
t _{wz}	Write Enabled to Output in High Z	_	35		40		40	—	50		60	ns
t _{ow}	Output Active from End of Write	0		0		0		0		0	-	ns
BUSY TIM	ING			L		L						
t _{RC}	Read Cycle Time	70		90		100		120		140	_	
t _{wc}	Write Cycle Time	70		90		100		120		140		
t _{BAA}	BUSY Access Time to Address		45		45		50	_	60		70	ns
t _{BDA}	BUSY Disable Time to Address		45		45		50	-	60		70	ns
t _{BAC}	BUSY Access Time to Chip Enable		40		40	- 1	50		60		70	ns
t _{BDC}	BUSY Disable Time to Chip Enable		35		35		50		60	_	70	ns
t _{BDD}	BUSY Disable to Valid Data	_	50		50		60		80		90	ns
t _{WDD}	Write Pulse to Data Delay		90		100	-	120		140	-	160	ns
t _{DDD}	Write Data Valid to Read Data Delay		70		80		100	_	120	_	140	ns
t _{APS}	Arbitration Priority Set Up Time	10		10		10		10		10		ns

AC TEST CONDITIONS

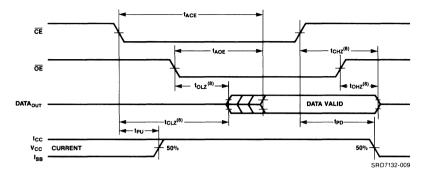
Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	10ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Reference Levels Output Load	See Figs. 1, 2, and 3

Output Load (for t_{HZ}, t_{LZ}, t_{WZ}, and t_{OW})

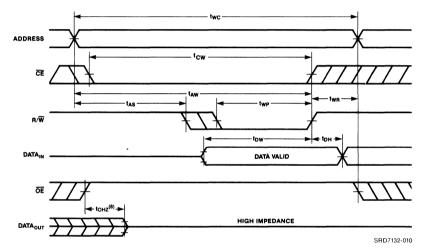
*Including scope and jig.

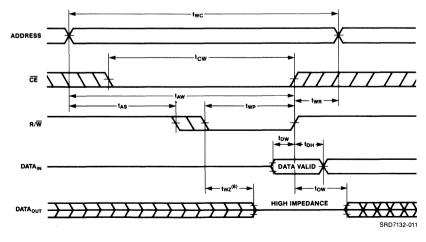

CAPACITANCE $(T_A = +25^{\circ}C, f = 1.0MHz)$

SYMBOL	PARAMETER(1)	CONDITIONS	7M134S	7M135S	UNIT
C _{IN}	Input Capacitance	V _{IN} = 0V	150	180	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	40	70	pF

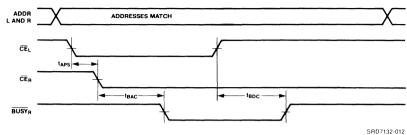

NOTE:

1. This parameter is sampled and not 100% tested.

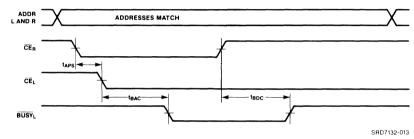

TIMING WAVEFORM OF READ CYCLE NO. 1 EITHER SIDE^(1,2,6)


TIMING WAVEFORM OF READ CYCLE NO. 2 EITHER SIDE^(1,3)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 EITHER SIDE(4,7)

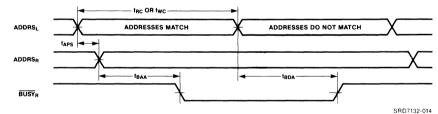


TIMING WAVEFORM OF WRITE CYCLE NO. 1 EITHER SIDE^(4,7)

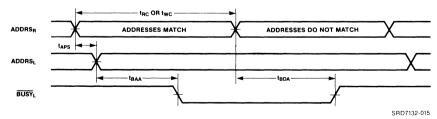


TIMING WAVEFORM OF CONTENTION CYCLE NO. 1 CE ARBITRATION

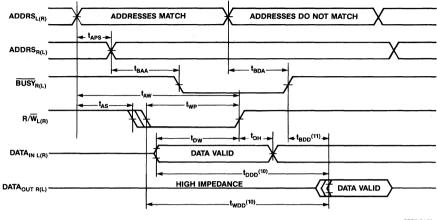
CEL VALID FIRST:



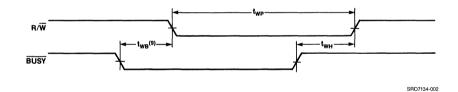
CER VALID FIRST:



TIMING WAVEFORM OF CONTENTION CYCLE NO. 2 ADDRESS VALID ARBITRATION⁽⁵⁾


LEFT ADDRESS VALID FIRST

RIGHT ADDRESS VALID FIRST



TIMING WAVEFORM OF READ WITH BUSY(5)

SRD7134-001

TIMING WAVEFORM OF WRITE WITH BUSY(5)

NOTES:

- 1. R/W is high for Read Cycles.
- 2. Device is continuously enabled, $\overline{CE} = V_{IL}$.
- 3. Addresses valid prior to or coincident with CE transition low.
- 4. If TE goes high simultaneously with R/W high, the outputs remain in the high impedance state.
- 5. $\overline{CE}_{I} = \overline{CE}_{R} = V_{II}$.
- 6. OE = V_{IL}.
- 7. $R/\overline{W} = V_{IH}$ during address transition.
- 8. Transition is measured at ±500mV from low or high impedance voltage with load (Figures 1, 2 & 3). This parameter is guaranteed by design, but not tested.
- 9. For slave port (IDT7M144/IDT7M145) only.
- 10. Port-to-port delay through RAM cells from writing port to reading port.
- 11. This parameter guaranteed by design, but not tested.

FUNCTIONAL DESCRIPTION:

The IDT7M134/IDT7M135 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7M134/IDT7M135 has an automatic power-down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power-down circuitry that permits the respective port to go into a standby mode when not selected (\overline{CE} high). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control (\overline{OE}). In the read mode, the port's \overline{OE} turns on the output drivers when set LOW. Non-contention READ/WRITE conditions are illustrated in Table I.

ARBITRATION LOGIC, FUNCTIONAL DESCRIPTION:

The arbitration logic will resolve an address match or a chip enable match down to 10ns minimum and determine which port has access. In all cases, an active BUSY flag will be set for the delayed port.

The BUSY flags are provided for the situation when both ports simultaneously access the same memory location. When this situation occurs, on-chip arbitration logic will determine which port has access and set the delayed port's BUSY flag. BUSY is set at speeds that permit the processor to hold the operation and its respective address and data. It is important to note that the operation is invalid for the port that has BUSY set LOW. The delayed port will have access when BUSY goes inactive.

Contention occurs when both left and right ports are active and both addresses match. When this situation occurs, the on-chip arbitration logic determines access. Two modes of arbitration are provided: (1) If the addresses match and are valid before \overline{CE}_{L} on-chip control logic arbitrates between \overline{CE}_{L} and \overline{CE}_{R} for access;

or (2) if the \overline{CEs} are low before an address match, on-chip control logic arbitrates between the left and right addresses for access (refer to Table III, Address Arbitration). In either mode of arbitration, the delayed port's \overline{BUSY} flag is set and will reset when the port granted access completes its operation.

DATA BUS WIDTH EXPANSION, MASTER/SLAVE DESCRIPTION:

Expanding the data bus width to sixteen-or-more-bits in a dual-port RAM system implies that several chips will be active at the same time. If each chip includes a hardware arbitrator, and the addresses for each chip arrive at the same time, it is possible that one will activate its L BUSY while another activates its R BUSY signal. Both sides are now busy and the CPUs will wait indefinitely for their port to become free.

To avoid this "Busy Lock-Out" problem, IDT has developed a MASTER/SLAVE approach where only one hardware arbitrator, in the MASTER, is used. The SLAVE has BUSY inputs which allow an interface to the MASTER with no external components and with a speed advantage over other systems.

When expanding dual-port RAMs in width, the writing of the SLAVE RAMs must be delayed until after the BUSY input has settled. Otherwise, the SLAVE chip may begin a write cycle during a contention situation. Conversely, the write pulse must extend a hold time past BUSY to ensure that a write cycle takes place after the contention is resolved. This timing is inherent in all dual-port memory systems where more than one chip is active at the same time.

The write pulse to the SLAVE should be delayed by the maximum arbitration time of the MASTER. If, then, a contention occurs, the write to the SLAVE will be inhibited due to $\overline{\text{BUSY}}$ from the MASTER.

TRUTH TABLES

TABLE I — NON-CONTENTION READ/WRITE CONTROL, LEFT OR RIGHT PORT⁽¹⁾

R/W	CE	OE	I/O ₀₋₇	FUNCTION			
x	н	x	Z	Port Disabled and in Power Down Mode, I _{SB}			
х	н	x	Z	$\overline{CE}_{R} = \overline{CE}_{L} = H$, Power Down Mode, I _{SB} or			
L	L	x	DATAIN	Data on Port Written into Memory ⁽²⁾			
Н	L	L	DATAOUT	Data in Memory Output on Port ⁽³⁾			
н	L	н	Z	High Impedance Outputs			

NOTES:

1. $A_{0L} - A_{13L} \neq A_{0R} - A_{13R}$

2. If BUSY = L, data is not written.

3. If $\overline{\text{BUSY}}$ = L, data may not be valid, see t_{WDD} and t_{DDD} timing.

H = HIGH, L = LOW, X = DON'T CARE, Z = HIGH IMPEDANCE

TABLE II - ARBITRATION

LEF	T PORT	RIGHT PORT		FL/	AGS	FUNCTION
CEL	A _{0L} -A _{13L}	CER	A _{0R} -A _{13R}	BUSYL	BUSYR	FUNCTION
Н	x	н	X	н	н	No Contention
L	Any	н	x	н	н	No Contention
Н	Х.	L	Any	н	н	No Contention
Ŀ	≠ A _{0R} -A _{13R}	L	≠ A _{0L} -A _{13L}	н	н	No Contention
ADDRESS ARB	ITRATION WITH CE	LOW BEFORE ADD	DRESS MATCH			
L	LV10R	L	LV10R	н	L	Left-Port Wins
L	RV10L	L	LV10R	L	н	Right-Port Wins
L	Same	L	Same	Н	L	Arbitration Resolved
L	Same	L	Same	L	н	Arbitration Resolved
CE ARBITRATIO	ON WITH ADDRESS	MATCH BEFORE C	E			
LL10R	= A _{0R} - A _{13R}	LL10R	= A _{0L} - A _{13L}	н	L	Left-Port Wins
RL10L	= A _{0R} - A _{13R}	RL10R	= A _{0L} - A _{13L}	L	н	Right-Port Wins
LW10R	= A _{0R} - A _{13R}	LW10R	= A _{0L} - A _{13L}	н	L	Arbitration Resolved
LW10R	= A _{0B} - A _{13B}	LW10R	= A ₀₁ - A _{13L}	L	н	Arbitration Resolved

NOTE:

X = DON'T CARE, L = LOW, H = HIGH, Same = Left and Right Addresses match within 10ns of each other.

LV10R = Left Address Valid \geq 10ns before Right Address.

RV10L = Right Address Valid ≥ 10ns before Left Address.

LL10R = Left \overline{CE} = LOW \ge 10ns before Right \overline{CE} .

RL10L = Right \overline{CE} = LOW \ge 10ns before Left \overline{CE} .

LW10R = Left and Right \overline{CE} = LOW within 10ns of each other.