

256K CMOS STATIC RAM MODULE

IDT7M656L

FEATURES:

- High-density 256K-bit CMOS static RAM Module
- Customer-configured to 16Kx16, 32Kx8 or 64Kx4
- Fast access times
 Commercial 25ns
 - Military 35ns
- Low-power consumption

 Active: 3.2W (typ.) (in 16K x 16 organization)
 Standby: 0.16mW (typ.)
- Utilizes 16 IDT6167s high-performance 16K x 1 CMOS static RAMs produced with IDT's advanced CEMOS[™] technology
- CEMOS process virtually eliminates alpha particle soft error rates (with no organic die coating)
- Assembled with IDT's high-reliability vapor phase solder reflow process
- Offered in 40-pin, 900 mil center sidebraze DIP, achieving very high memory density
- Single 5V (±10%) power supply
- Dual V_{CC} and GND pins for maximum noise immunity
- Inputs and outputs directly TTL-compatible
- Module available with components 100% screened to MIL-STD-883, Class B

PIN CONFIGURATION

* Both $\rm V_{CC}$ pins need to be connected to the 5V Supply, and both GND pins need to be grounded for proper operation.

PIN NAMES

Axx	ADDRESSES	Dxx	DATA IN/OUT
CSxx	CHIP SELECTS	Vcc	POWER
WExx	WRITE ENABLES	GND	GROUND

CEMOS is a trademark of Integrated Device Technology, Incorporated.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

©1986 Integrated Device Technology, Incorporated.

DESCRIPTION:

The IDT7M656 is a 256K-bit high-speed CMOS static RAM constructed on a multilayered ceramic substrate using 16 IDT6167 (16Kx1) static RAMs in leadless chip carriers. Making 4 chip select lines available (one for each group of 4 RAMs) allows the user to configure the memory into a 16Kx16, 32Kx8 or 64Kx4 organization. In addition, extremely high speeds are achievable by the use of IDT6167s fabricated in IDT's high-performance, high-reliability technology, CEMOS. This state-of-the-art technology, combined with innovative circuit design techniques, provides some of the fastest 16K static RAMs available.

The IDT7M656 is available with access times as fast as 25ns commercial and 35ns military temperature range, with maximum operating power consumption of only 7.0W (significantly less if organized 32K x 8 or 64K x 4). The RAM Module also offers a maximum standby power mode of 2.2W and a maximum full standby mode of 82.5mW.

The IDT7M656 is offered in a high-density 40-pin, 900 mil center sidebraze DIP to take full advantage of the compact IDT6167s in leadless chip carriers.

All inputs and outputs of the IDT7M656 are TTL-compatible and operate from a single 5V supply. (NOTE: Both V_{CC} pins need to be connected to the 5V supply and both GND pins need to be grounded for proper operation.) Full asyncronous circuitry is used requiring no clocks or refreshing for operation, and provides equal access and cycle times for ease of use.

All IDT military module semiconductor components are 100% processed to the test methods of MIL-STD-883, Class B, making them ideally suited to applications demanding the highest level of performance and reliability.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING(1)

SYMBOL	RATING	COMMERCIAL	MILITARY	UNIT
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	v
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-10 to +85	-65 to +135	°C
Т _{STG}	Storage Temperature	-55 to +125	-65 to +150	°C
PT	Power Dissipation	8.0	8.0	w
Ιουτ	DC Output Current	50	50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

RECOMMENDED DC OPERATING CONDITIONS

(T_A = -55°C to +125°C and 0°C to +70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{cc}	V _{CC} Supply Voltage		5.0	5.5	v
GND Supply Voltage		0	0	0	V
VIH	VIH Input High Voltage		_	6.0	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	—	0.8	V

NOTE:

1. VIL min = -1.0V for pulse width less than 20ns.

DC ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0V \pm 10%, T_A = -55°C to +125°C and 0°C to +70°C)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	IDT7M656 TYP	L MAX.	UNIT
₁₁	Input Leakage Current	V_{CC} = 5.5V, V_{IN} = 0V to V_{CC}	—		20	μA
I _{LO}	Output Leakage Current	$\overline{CS} = V_{IH}, V_{OUT} = 0V \text{ to } V_{CC}$	—		20	μA
I _{CCX16}	Operating Current in X16 mode	CS _{XX} = V _{IL} , Output Open, V _{CC} = 5.5V, f = f Max.	-	640	1280	mA
I _{CCX8}	Operating Current in X8 mode	CS _{XX} = V _{IL} , Output Open, V _{CC} = 5.5V, f = f Max.		420	840	mA
I _{CCX4}	Operating Current in X4 mode	CS _{XX} = V _{IL} , Output Open, V _{CC} = 5.5V, f = f Max.		310	620	mA
I _{SB}	Standby Power Supply Current	$\overline{CS}_{xx} \ge V_{IH}$ (TTL Level), V_{CC} = 5.5V, Output Open		200	400	mA
I _{SB1}	Full Standby Power Supply Current		_	0.032	15 ⁽²⁾	mA
V _{OL}	Output Low Voltage	I _{OL} = 8mA			0.4	V
V _{OH}	Output High Voltage	I _{OH} = -4mA	2.4			v

NOTES

1. V_{CC} = 5V, T_A = +25°C

2. I_{SB1} max. at commercial temperature = 5.0mA

TRUTH TABLE

MODE	CS _{XX}	WEXX	OUTPUT	POWER
Standby	н	X	High Z	Standby
Read	L	н	D Out	Active
Write	L	L	High Z	Active

CAPACITANCE (T_A = +25°C, f = 1.0MHz)

SYMBOL	PARAMETER(1)	CONDITIONS	TYP.	UNIT
C _{IN}	Input Capacitance	V _{IN} = OV	200	pF
C _{OUT} ⁽²⁾	Output Capacitance	V _{OUT} = 0V	60	pF

NOTES:

1. This parameter is sampled and not 100% tested.

2. For each output, 16K x 16 mode.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0 V
Input Rise and Fall Times	10ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figures 1 and 2

Figure 1. Output Load

(for t_{HZ}, t_{LZ}, t_{WZ}, and t_{OW})

*Including scope and jig.

SYMBOL	PARAMETER	IDT7M656L25 ⁽¹⁾ COM'L. ONLY		IDT7M656L35		IDT7M656L55		IDT7M656L65		IDT7M656L85		IDT7M656L100 MIL. ONLY		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
READ C	YCLE													
t _{RC}	Read Cycle Time	25		35		55		65		85		100		ns
t _{AA}	Address Access Time		25	-	35	_	55		65	-	85	-	100	ns
t _{ACS}	Chip Select Access Time	_	25	-	35	-	55		65	_	85	-	100	ns
t _{он}	Output Hold from Address Change	5	_	5		5		5		5		5		ns
t _{LZ}	Chip Selection to Output in Low Z	5	_	5	_	5		5		5		5	_	ns
t _{HZ}	Chip Deselect to Output in High Z	-	15	-	20	-	40		40	-	50	-	50	ns
t _{PU}	Chip Select to Power Up Time	0		0		0		0		0		0		ns
t _{PD}	Chip Select to Power Down Time	-	25	-	35	-	55		65	-	85	-	100	ns
WRITE C	YCLE													
t _{wc}	Write Cycle Time	25		35		55	-	65		85		100		ns
t _{cw}	Chip Select to End of Write	20	_	30	_	45	_	55		65	_	80	-	ns
t _{AW}	Address Valid to End of Write	25		35		45		55		65		80		ns
t _{AS}	Address Setup Time	5		5		5	_	5		5		5		ns
t _{WP}	Write Pulse Width	20		30	_	35	-	40	_	45		55		ns
t _{WR}	Write Recovery Time	0	_	0	_	0		0		0	_	0		ns
t _{DW}	Data Valid to End of Write	15	-	20	_	25		30		35		40	_	ns
t _{DH}	Data Hold Time	5		5	-	5	-	5	-	5	—	5	_	ns
t _{wz}	Write Enable to Output in High Z	-	10	-	15	-	40	-	40		50	-	50	ns
t _{ow}	Output Active from End of Write	0		0		0		0		0		0		ns

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5V 10%, All Temperature Ranges)

NOTES:

1. IDT7M656L25 will not have low V_{CC} data retention characteristics.

TIMING WAVEFORM OF READ CYCLE NO. 1(1,2)

TIMING WAVEFORM OF READ CYCLE NO. 2(1,3)

1. $\overline{\text{WE}}_{XX}$ is high for READ cycle. 2. $\overline{\text{CS}}_{XX}$ is low for READ cycle.

NOTES:

3. Address valid prior to or coincident with $\overline{\text{CS}}_{XX}$ transition low. 4. Transition is measured ±500mV from steady state voltage with specified loading in Figure 2. This parameter is sampled, not 100% tested.

5. All READ cycle timings are referenced from the last valid address to the first transitioning address.

6. For any given speed grade, operating voltage, and temperature, tHZ will be less than or equal to tLZ.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED)(1)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED)⁽¹⁾

NOTES:

CS_{XX} or WE_{XX} must be high during address transitions.
 If CS_{XX} goes high simultaneously with WE_{XX} high, the output remains in a high impedance state.
 All write cycle timings are referenced from the last valid address to the first transitioning address.
 Transition is measured ±200mV from steady state voltage with specified loading in Figure 2. This parameter is sampled, not 100% tested.

LOW V_{CC} DATA RETENTION CHARACTERISTICS (T_A = -55°C to +125°C and 0°C to +70°C) (Except IDT7M656L25)

SYMBOL	PARAMETER	TEST CONDITION	MIN.	TYP.(1)	MAX. COM'L.	MAX. MIL.	UNIT
V _{DR}	V _{CC} for Data Retention		2.0	—	—	-	V
ICCDR	Data Retention Current		-	.01 ⁽²⁾	2.0 ⁽²⁾	6.0	m 4
		CS _{xx} ≥V _{CC} −0.2V	-	.02 ⁽³⁾	3.0 ⁽³⁾	9.0	
t _{CDR}	Chip Deselect to Data Retention Time	V _{IN} ≥V _{CC} –0.2V or≤0.2V	0	—	-	-	ns
t _R	Operation Recovery Time		t _{RC} ⁽⁴⁾	-		-	ns

NOTES:

1. T_A = +25°C 3. at V_{CC} = 3V

2. at V_{CC} = 2V 4. t_{RC} = Read Cycle Time

LOW V_{CC} DATA RETENTION WAVEFORM

SRD7M656-009

NORMALIZED TYPICAL PERFORMANCE CHARACTERISTICS

Stand-by-Power Supply Current vs. Ambient Temperature 1.6 v_{cc}=5.5v 1.4 I_{SB} (Normalized) 1.2 1.0 0.8 0.6 -75 -25 25 125 75 T_A (° C) SRD7M656-014

IDT7M656

16K x 16 CONFIGURATION

NOTES:

1. All chip selects tied together since, in a by 16 configuration, all chips are either on or off.

2. The two write enables are tied together allowing control of the write enable for entire memory at one time (necessary) in a by 16 organization since all chips are either writing or reading at any given time.

32K x 8 CONFIGURATION

NOTES:

- 1. The chip selects are tied together in groups of two. The decoder uses the new higher order address pin (A14) to determine which of the two banks of memory are enabled.
- 2. The two write enables are tied together for ease of layout. They could be controlled by the decoder similar to the chip selects but would save only a minimal amount of power and add complexity to the layout.

64K x 4 CONFIGURATION

NOTES:

Each chip select is now controlled by the two higher order address pins A₁₄ (necessary in 64K deep memory).
 Again the two write enables are tied together for ease of layout (the megabit part will only have one write enable pin).

SRD7M656-019

SRD7M656-018