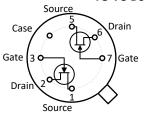


IFN424, IFN425, IFN426 Dual Matched N-Channel JFET

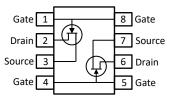
Features

- InterFET N0001H Geometry
- Low Leakage: 0.25 pA Typical
- · Low Input Capacitance: 2.0 pF Typical
- · High Input Impedance
- Replacement for U424, U425, U426
- RoHS Compliant
- SMT, TH, and Bare Die Package options.


Applications

- Low Leakage Input Buffer
- · High Frequency Amplifier/Buffer
- Ultrahigh Impedance Pre-Amplifier
- Impedance Converters

Description


The -40V InterFET IFNU424, IFNU425, and IFNU426 JFET's are targeted for ultra high input impedance applications for differential amplification and impedance matching. Gate leakages are less than 1pA at room temperatures. The TO-78 package is hermetically sealed and suitable for military applications. Custom specifications, matching, and packaging options are available.

TO-78 Bottom View

SOIC8 Top View

Product Summary

	Parameters	IFN424 Min	IFN425 Min	IFN426 Min	Unit
BV_GSS	Gate to Source Breakdown Voltage	-40	-40	-40	V
I _{DSS}	Drain to Source Saturation Current	60	60	60	μΑ
V _{GS(off)}	Gate to Source Cutoff Voltage	-0.4	-0.4	-0.4	V
G _{FS}	Forward Transconductance	300	300	300	μS

Ordering Information Custom Part and Binning Options Available

Custom Fait and Binning Options Available						
Part Number	Description	Case	Packaging			
IFNU424; IFNU425; IFNU426	Through-Hole	TO-78	Bulk			
SMP424; SMP425; SMP426;	Through-Hole	SOIC8	Bulk			
SMP424TR; SMP425TR;	7" Tape and Reel: Max 500 Pieces		Minimum 500 Pieces			
SMP426TR	13" Tape and Reel: Max 2,500 Pieces	SOIC8	Tape and Reel			
IFNU424COT; IFNU425COT;						
IFNU426COT *	Chip Orientated Tray (COT Waffle Pack)	СОТ	70/Waffle Pack			
IFNU424CFT; IFNU425CFT;						
IFNU426CFT *	Chip Face-up Tray (CFT Waffle Pack)	CFT	70/Waffle Pack			

^{*} Bare die packaged options are designed for matched specifications but not 100% tested

Disclaimer: It is the Buyers responsibility for designing, validating and testing the end application under all field use cases and extreme use conditions. Guaranteeing the application meets required standards, regulatory compliance, and all safety and security requirements is the responsibility of the Buyer. These resources are subject to change without notice.

Electrical Characteristics

Maximum Ratings (@ T_A = 25°C, Unless otherwise specified)

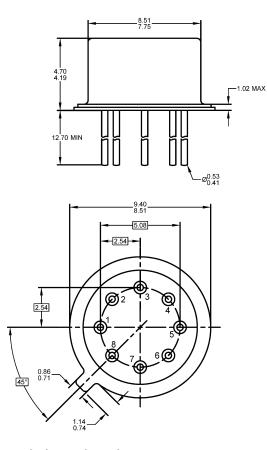
	Parameters	Value	Unit
V_{RGS}	Reverse Gate Source and Gate Drain Voltage	-40	V
I _{FG}	Continuous Forward Gate Current	50	mA
PD	Continuous Device Power Dissipation	400	mW
Р	Power Derating	3.2	mW/°C
TJ	Operating Junction Temperature	-55 to 150	°C
T _{STG}	Storage Temperature	-60 to 200	°C

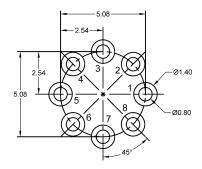
Static Characteristics (@ TA = 25°C, Unless otherwise specified)

			IFN424, IFN425, IFN426			
	Parameters	Conditions	Min	Тур	Max	Unit
V _{(BR)GSS}	Gate to Source Breakdown Voltage	$I_G = -1\mu A, V_{DS} = 0V$	-40	-60		٧
BV _{G1G2}	Gate to Gate Breakdown Voltage	$I_G = -1\mu A$, $I_D = 0A$, $I_S = 0A$	<u>±</u> 40			V
1	Gate to Source	$V_{GS} = -20V, V_{DS} = 0V, T_A = 25^{\circ}C$			-3	рА
I _{GSS}	Reverse Current	$V_{GS} = -20V$, $V_{DS} = 0V$, $T_A = 125$ °C			-3	nA
IG	Gate Operating Current	$V_{DS} = 10V$, $I_D = 30\mu A$, $T_A = 25^{\circ}C$ $V_{DS} = 10V$, $I_D = 30\mu A$, $T_A = 125^{\circ}C$			-0.5 -500	pA pA
V _{GS(OFF)}	Gate to Source Cutoff Voltage	V _{DS} = 10V, I _D = 1nA	-0.4		-3	V
V _{GS}	Gate Source Voltage	$V_{DS} = 10V$, $I_D = 30\mu A$			-2.9	V
I _{DSS}	Drain to Source Saturation Current	$V_{DS} = 10V$, $V_{GS} = 0V$ (Pulsed)	60	1800		μΑ

Dynamic Characteristics (@ TA = 25°C, Unless otherwise specified)

			·	IFN42	424, IFN425, IFN426		
P	arameters	Conditions		Min	Тур	Max	Unit
GFS	Forward Transconductance	$V_{DS} = 10V$, $V_{GS} = 0V$, $f = 1kHz$		300		1500	μS
Gos	Output Conductance	$V_{DS} = 10V$, $I_D = 30\mu A$, $f =$	1kHz			3	μS
Ciss	Input Capacitance	V _{DS} = 10V, V _{GS} = 0V, f = 1	MHz			3	pF
Crss	Reverse Capacitance	V _{DS} = 10V, V _{GS} = 0V, f = 1	MHz			1.5	pF
e _n	Equivalent Circuit Input Noise Voltage	$V_{DS} = 10V, I_D = 30\mu A_0$ f = 10Hz	,		20	70	nV/√Hz
NF	Noise Figure	$V_{DS} = 10V, I_{D} = 30\mu A$ $f = 10Hz, R_{G} = 1M\Omega$				1	dB
V _{GS1} – V _{GS2}	Differential Gate Source Voltage	V _{DS} = 10V, I _D = 30μA	IFN424 IFN425 IFN426			10 15 25	mV
V _{GS1} - V _{GS2} ΔT	Differential Gate Source Voltage with Temperature	$V_{DS} = 10V$, $I_D = 30\mu A$ $T_A = -55^{\circ}C$, $T_B = 25^{\circ}C$, $T_C = 125^{\circ}C$	IFN424 IFN425 IFN426			1 2.5 5	mV/°C
CMRR	Common Mode Rejection Ratio	V _{DD} = 10V to 20V, I _D = 30μA	IFN424 IFN425 IFN426	90 80 80			dB



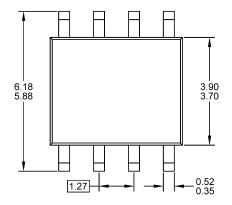

TO-78 Mechanical and Layout Data

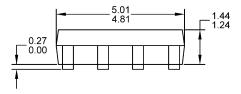
Package Outline Data

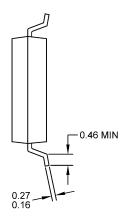
- 1. All linear dimensions are in millimeters.
- 2. Eight leaded device. Not all leads are shown in drawing views.
- 3. Some package configurations will not populate pin 8 and/or pin 4.
- 4. Package weight approximately 0.44 grams
- Bulk product is shipped in standard ESD shipping material
- 6. Refer to JEDEC standards for additional information.

Suggested Through-Hole Layout

- 1. All linear dimensions are in millimeters.
- Pads 8 and/or pad 4 can be eliminated for devices with less pins.
- The suggested land pattern dimensions have been provided as an eight pin bent lead reference only. A more robust pattern may be desired for wave soldering or reduced pin count.

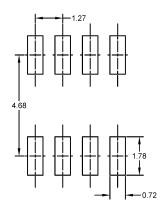






SOIC8 Mechanical and Layout Data

Package Outline Data



- 1. All linear dimensions are in millimeters.
- 2. Package weight approximately 0.21 grams
- 3. Molded plastic case UL 94V-0 rated
- For Tape and Reel specifications refer to InterFET CTC-021 Tape and Reel Specification, Document number: IF39002
- Bulk product is shipped in standard ESD shipping material
- 6. Refer to JEDEC standards for additional information.

Suggested Pad Layout

- 1. All linear dimensions are in millimeters.
- 2. The suggested land pattern dimensions have been provided for reference only. A more robust pattern may be desired for wave soldering.