

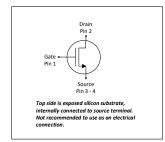
CoolGaN[™] Transistor 100 V G3

Features

- Enhancement mode power transistor normally OFF switch
- No reverse recovery charge
- Reverse conduction capability
- · Low gate charge, low output charge
- Qualified according to JEDEC for target applications

Potential applications

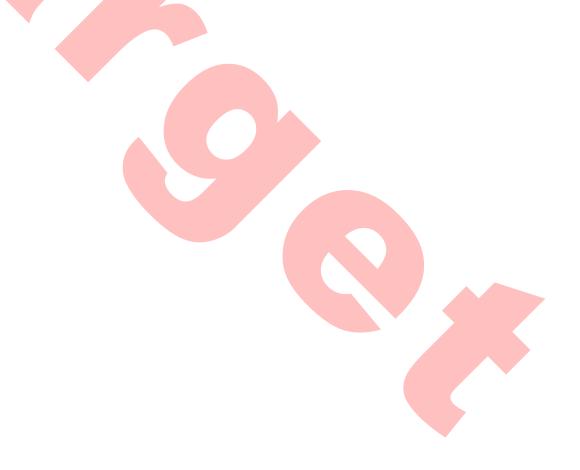
- ClassD Audio
- Telecom AC/DC Synchronous Rectifiers
 Telecom DC/DC Synchronous Rectifiers
- Battery powered tool
- · e-Mobility, UAVs
- Robotics


Product validation

Fully qualified according to JEDEC for Industrial Applications

Table 1 **Key Performance Parameters**

Parameter	Value	Unit
V _{DS}	100	V
$R_{DS(on),max}$	7	mΩ
I_{D}	33	Α
Qoss	19	nC
Q_{G}	4.7	nC
Q _{rr}	0	nC


Type / Ordering Code	Package	Marking	Related Links
IGB070S10S1	PG-TSON-4	AA1	-

CoolGaNTM Transistor 100 V G3

Table of Contents

Description 1
Maximum ratings
Thermal characteristics
Electrical characteristics
Electrical characteristics diagrams
Package Outlines
Revision History
Trademarks 8
Disclaimer

Maximum ratings 1

Table 2 **Maximum** ratings

name 2 maximum ratings		Values					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain-source voltage	V _{DS}	-	-	100	V	V _{GS} =0 V	
Pulsed drain-source voltage ¹⁾	V _{DS, pulse}	-	-	120	V	V _{GS} =0 V, 1 h total time	
Continuous drain current	ID	-	-	33 13	A	V_{GS} =5 V, T_{C} =25 °C V_{GS} =5 V, T_{A} =25 °C, R_{THJA} =46 °C/W ²⁾	
Pulsed drain current ³⁾	$I_{ m D,pulse}$	-	-	t.b.d. t.b.d.	А	Tj=25 °C Tj=150 °C	
Gate-source voltage	V _{GS}	-4 -6.5	5 -	5.5 6.5	V	Continuous Pulsed	
Power dissipation	P _{tot}	-	-	18 2.7	W	T _C =25 °C T _A =25 °C, R _{THJA} =46 °C/W	
Storage temperature	T _{stg}	-55	-	150	°C	-	
Operating temperature	T _j	-40	-	150	°C	-	

Thermal characteristics 2

Table 3 **Thermal characteristics**

Davamatav	Crombal	Values			11	Note / Total Condition		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition		
Thermal resistance, junction - case, top	R _{thJC(top)}	_	1.1	1.4	°C/W	-		
Thermal resistance, junction - case, bottom	R _{thJC(bottom)}	-	3.7	5.6	°C/W	-		
Device on 1 layer PCB	R _{thJA}	-	68	77	°C/W	1s0p		
Device on 4 layer PCB	R _{thJA}	-	46	-	°C/W	2s2p with vias		

Provided as measure of robustness under abnormal operating conditions and not recommended for normal operation
 Device on 4-layer FR4 PCB, vertical in still air.
 Pulse current limited by transfer characteristic. See diagram 6.

CoolGaN[™] Transistor 100 V G3 IGB070S10S1

Electrical characteristics

at T_j =25 °C, unless otherwise specified

Table 4 Static characteristics

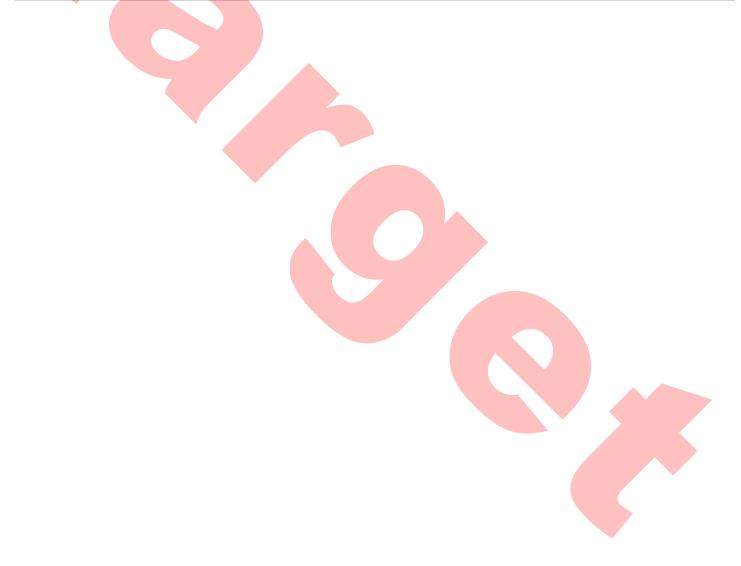
Developer	Cumbal	Values			11!4	Nata (Tant Oan dition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Gate threshold voltage ¹⁾	V _{GS(th)}	1.2	2.0	2.9	V	$V_{\rm DS}$ = $V_{\rm GS}$, $I_{\rm D}$ =4.5 mA, measured within 10 ms after a pre-bias at $V_{\rm GS}$ =5 V, $V_{\rm DS}$ =0 V for at least 5 ms	
Drain-source leakage current	I _{DSS}	-	0.15 30	15 380	μΑ	V _{DS} =100 V, V _{GS} =0 V, T _j =25 °C V _{DS} =100 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I _{GSS}	- - -	11 0.01 82 15	- - -	μΑ	V _{GS} =5 V, T _j =25 °C V _{GS} =-4 V, T _j =25 °C V _{GS} =5 V, T _j =125 °C V _{GS} =-4 V, T _j =125 °C	
Drain-source on-state resistance ²⁾	R _{DS(on)}	-	5.3	7	mΩ	V _{GS} =5 V, I _D =13 A	
Gate resistance ³⁾	R _G	_	1.0	-	Ω	-	

Dynamic characteristics³⁾ Table 5

Dovomotor	Cymbal	Values			Unit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition	
Input capacitance	Ciss	-	430	-	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz	
Output capacitance	Coss	-	240	-	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz	
Reverse transfer capacitance	C _{rss}	-	3.1	-	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz	

Table 6 Gate charge characteristics⁴⁾

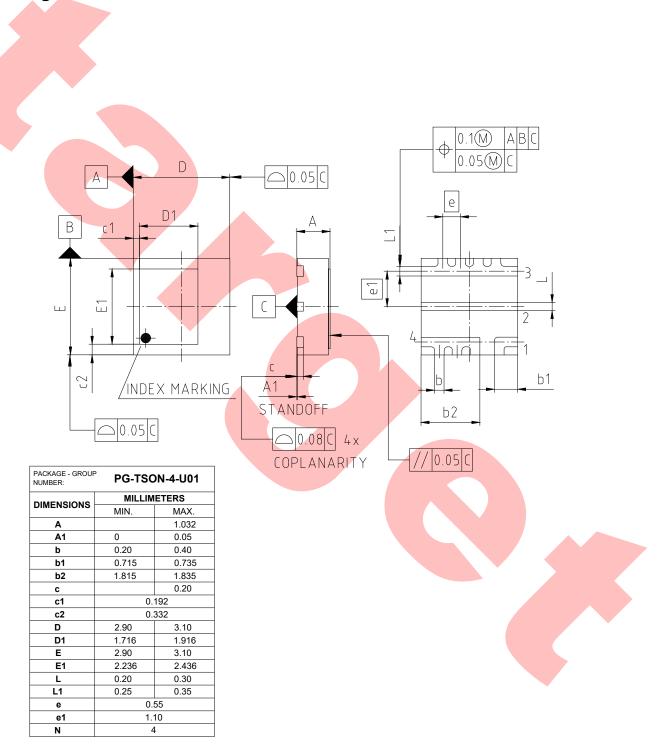
Davamatar	C. mah al		Values			Note / Test Condition
Parameter	Symbol Min. Typ. Max.	Unit	Note / Test Condition			
Gate to source charge	Q _{gs}	-	t.b.d.	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =13 A, $V_{\rm GS}$ =0 to 5 V
Gate charge at threshold	$Q_{g(th)}$	-	t.b.d.	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =13 A, $V_{\rm GS}$ =0 to 5 V
Gate to drain charge ³⁾	Q_{gd}	-	1.3	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =13 A, $V_{\rm GS}$ =0 to 5 V
Switching charge	Q _{sw}	-	t.b.d.	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =13 A, $V_{\rm GS}$ =0 to 5 V
Gate charge total ³⁾	Qg	-	4.7	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =13 A, $V_{\rm GS}$ =0 to 5 V
Gate plateau voltage	V _{plateau}	-	2.7	-	V	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =13 A, $V_{\rm GS}$ =0 to 5 V
Output charge ³⁾	Q _{oss}	-	19	-	nC	V _{DD} =50 V, V _{GS} =0 V
	'					1


 $^{^{1)}}$ When tested without the specified V_{GS} pre-bias, V_{GS(th)} will typically be 0.7 V lower than the threshold voltage measured under the specified conditions. $^{2)}$ R_{DS(ON)} is measured without prior drain bias or switching stress. An upcoming application note will provide detailed information about dynamic R_{DS(ON)} and recommendations for *in situ* measurement in target application conditions. $^{3)}$ Defined by design. Not subject to production test. $^{4)}$ See "Gate charge waveforms" for parameter definition

CoolGaNTM Transistor 100 V G3

Table 7 Reverse operation

Doromotor	Cumbal	Values			Linit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Reverse continuous current	Is	-	-	5	Α	T _C =25 °C	
Pulsed current, reverse	I _{S,pulse}	-	-	50	Α	T _C =25 °C	
Source-Drain reverse voltage	$V_{ m SD}$	-	2.5	3.4	V	V _{GS} =0 V, I _{S,pulse} = 13 A, T _j =25 °C	
Reverse recovery charge ¹⁾	Q _{rr}	-	0	-	nC	V _R =50 V, I _{S,pulse} = 13 A, di _{S,pulse} /d <i>t</i> =100 A/μs	



4 Electrical characteristics diagrams

5 Package Outlines

NOTE:

DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS

Figure 1 Outline PG-TSON-4, dimensions in mm Exposed die shown for IGB110S10S1, for IGB070S10S1 D1 changes to 2.65 mm typ.

CoolGaNTM Transistor 100 V G3

Revision History

IGB070S10S1

Revision: 2024-05-20, Rev. 0.1

Previous Revision

Rev	ision	Date	Subjects (major changes since last revision)
0.1		-	Release of target version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2024 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.