

IGBT3 Power Chip

Features:

- 1700V Trench + Field stop technology
- low switching losses and saturation losses
- soft turn off
- positive temperature coefficient
- easy paralleling

This chip is used for:

• power modules

Applications:

drives

Chip Type	V _{CE}	<i>I</i> _C	Die Size	Package
IGC168T170S8RH	1700V	150A	13.38 x 12.58 mm ²	sawn on foil

Mechanical Parameters

Mechanical i aramet	010	-			
Raster size		13.38 x 12.58			
Emitter pad size (incl.	gate pad)	11.159 x 10.353 1.674 x 0.899			
Gate pad size					
Area total		168.3			
Thickness		190	μm		
Wafer size		200	mm		
Max.possible chips pe	er wafer	142			
Passivation frontside		Photoimide			
Pad metal		3200 nm AlSiCu			
Backside metal		Ni Ag –system suitable for epoxy and soft solder die bonding			
Die bond		Electrically conductive glue or solder			
Wire bond		Al, <500μm			
Reject ink dot size		Ø 0.65mm ; max 1.2mm			
Otana and in a second	for original and sealed MBB bags	Ambient atmosphere air, Temperature 17°C – 25°C, < 6 month			
Storage environment	for open MBB bags	Acc. to IEC62258-3: Atmosphere >99% Nitrogen or inert gas, Humidity <25%RH, Temperature 17°C – 25°C, < 6 month			

Maximum Ratings

Parameter	Symbol	Value	Unit	
Collector-Emitter voltage, T_{vj} =25 °C	V _{CE}	1700	V	
DC collector current, limited by $T_{\rm vj\;max}$	I _C	1)	А	
Pulsed collector current, t_p limited by $T_{vj max}$	$I_{c,puls}$	450	Α	
Gate emitter voltage	V _{GE}	±20	V	
Junction temperature range	T _{vj}	-40 +175	°C	
Operating junction temperature	$T_{\rm vj}$	-40+150	°C	
Short circuit data ²⁾ $V_{GE} = 15V$, $V_{CC} = 1000V$, $T_{vj} = 150$ °C	t_{SC}	10	μs	
Reverse bias safe operating area ²⁾ (RBSOA)	$I_{C,max} = 300A, V_{CE,max} = 1700V$ $T_{vj} \le 150 ^{\circ}C$			

¹⁾ depending on thermal properties of assembly

Static Characteristics (tested on wafer), T_{vj} =25 °C

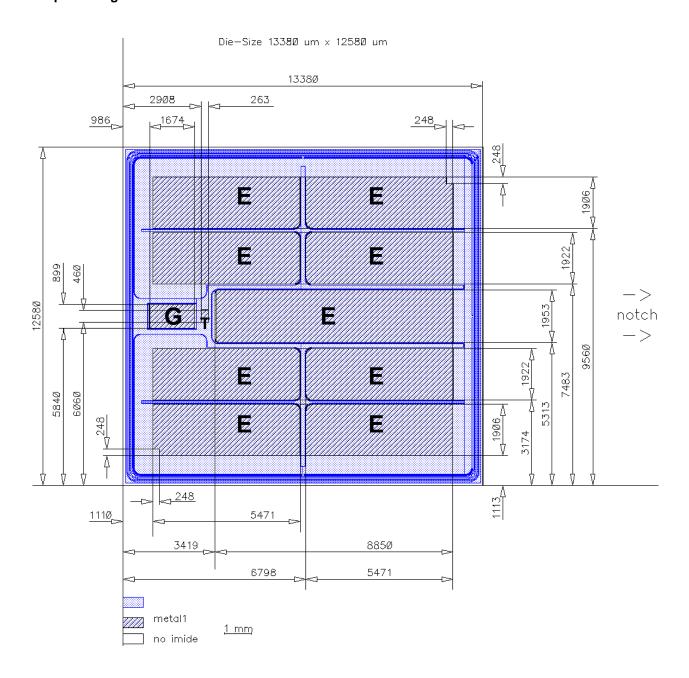
Parameter	Symbol	Conditions	Value			Unit
i didiletei			min.	typ.	max.	
Collector-Emitter breakdown voltage	V _{(BR)CES}	$V_{\rm GE}$ =0V , $I_{\rm C}$ = 2 mA	1700			
Collector-Emitter saturation voltage	V _{CEsat} ³⁾	V _{GE} =15V, I _C =150A	1.55	1.85	2.15	V
Gate-Emitter threshold voltage	$V_{\rm GE(th)}$	$I_{\rm C}$ =6mA , $V_{\rm GE}$ = $V_{\rm CE}$	5.2	5.8	6.4	
Zero gate voltage collector current	I _{CES}	V _{CE} =1700V , V _{GE} =0V			8	μA
Gate-Emitter leakage current	I _{GES}	V_{CE} =0V , V_{GE} =20V			300	nA
Integrated gate resistor	$r_{\rm G}$			5		Ω

³⁾ Vcesat tested at lower current

Dynamic Characteristics (not subject to production test - verified by design / characterization), T_{vj} =25 °C

Parameter	Symbol	Conditions	Value			Unit
raiailletei	Syllibol	Conditions	min.	typ.	max.	Oilit
Input capacitance	Cies	V _{CE} =25V,		13500		pF
Reverse transfer capacitance	C _{res}	$V_{GE}=0V$, f=1MHz		430		

²⁾ not subject to production test - verified by design/characterization



Further Electrical Characteristic

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

Chip Drawing

E = Emitter

G = Gate

T = Test pad do not contact

IGC168T170S8RH

Description
AQL 0,65 for visual inspection according to failure catalogue
Electrostatic Discharge Sensitive Device according to MIL-STD 883

Revision History

Version	Subjects (major changes since last revision)	Date

Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.