

EDT2 IGBT for Automotive Applications

IGBT

Quality Requirement Category: Automotive

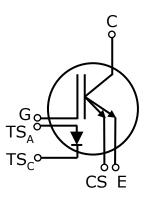
Features

- 750V trench + field stop technology
- Low V_{CE(sat)}
- Low switching losses
- Short tail current
- Positive temperature coefficient
- Integrated gate resistor
- Easy paralleling
- Integrated current mirror (current sensor)
- Integrated temperature sensor
- Solderable / sinterable front side pads

Applications

• Drives

Description


• Recommended for power modules

Product Validation

• Technology qualified for automotive applications. Ready for validation for automotive applications according to AEC Q100/101 or AQG324.

Key Performance Parameters

Chip Type	Vce	Icn	Die Size	Package
IGC80T75E12RD2CKA	750V	150A	80.1mm ²	Sawn on foil

Table of Contents

Features	1
Applications	1
Description	
Product Validation	
Key Performance Parameters	
Table of Contents	
1 Parameters and Characteristics	
2 Further Electrical Characteristics	
3 Chip Drawing	
4 Bare Die Product Specifics	
Revision History	

1 Parameters and Characteristics

Table 1 Mechanical Parameters	Table 1	Mechanical Parameters
-------------------------------	---------	------------------------------

Raster size		8.900 x 9.000	mm ²	
Area total		80.1	mm ²	
Emitter pad size		See chip drawing		
Gate pad size		See chip drawing		
Silicon thickness		70	μm	
Wafer size		300	mm	
Maximum possible chips per wafer		769		
Passivation frontside		Photoimide		
Pad metal		NiP/Pd/Au		
Backside metal		NiP/Pd/Au		
Die bond		Soft solder or sinter		
Wire bond		Al, ≤500μm		
Reject ink dot size		Inkless		
Storage environmentFor original and(<6 months)		Ambient atmosphere air, temperature 17°C – 25°C		

Table 2Maximum Ratings2

Parameter	Symbol	Conditions	Value	Unit	
Collector emitter veltage		$25^{\circ}C \le T_{vj} \le 175^{\circ}C$	750	- V	
Collector-emitter voltage	V _{CES}	$T_{vj} = -40^{\circ} C^{3}$	700		
DC collector current, limited by T_{vjmax}	Ic		_4	А	
Pulsed collector current, t_p limited by T_{vjmax}	I _{C,pulse}		450	А	
Gate-emitter voltage	V _{GE}		±20	V	
Operating junction temperature	T _{vj,op}		-40 +175	°C	
Short circuit withstand time 5/6	t _{sc}	$V_{GE} \le 15V, V_{CC} \le 450V,$ $T_{vj} \le 175^{\circ}C$ 3		μs	
Reverse bias safe operating area	RBSOA	$I_{C,max}$ = 300A, $V_{CE,max}$ = V_{CES} , -40°C $\leq T_{vj,op} \leq 175$ °C			

¹ <u>https://www.infineon.com/dgdl/Storage of Products Supplied by Infineon Technologie.pdf?fileId=5546d461641369bf01643b95d8500011</u>

 $^{\rm 2}$ Not subject to production test - verified by design/characterization.

 $^{^3}$ V_{CES} increases linearly between -40°C and 25°C.

⁴ Depending on thermal properties of assembly.

⁵ Allowed number of short circuits: <1000; time between short circuits: >1s.

⁶ Depending on electrical design of assembly.

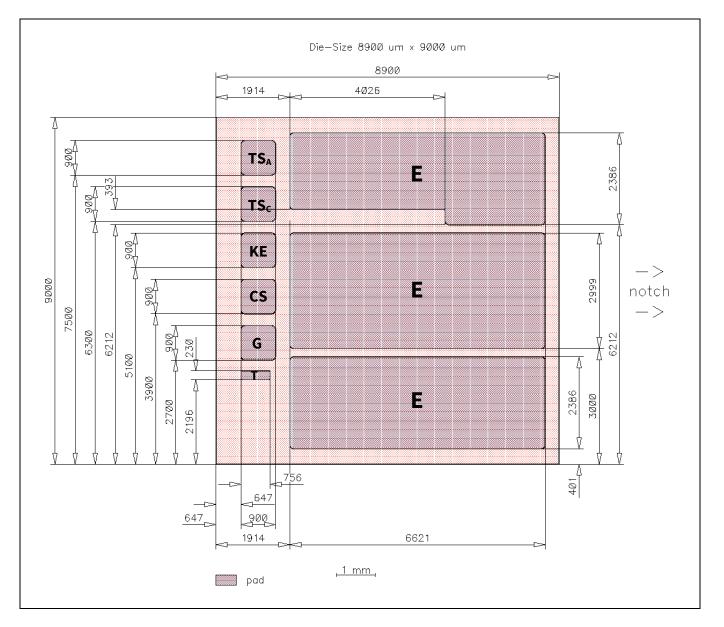
Table 3 Static Charac	ristics (Tested on Wafer), <i>T_{vj}</i> =25°C
-----------------------	--

Devementer	Cumhal	Conditions	Value			Unit
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Collector-emitter saturation voltage	V _{CEsat}	V_{GE} = 15V, I_C = 45A	-	1.0	1.15	V
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}$ = 2.2mA, $V_{\rm GE}$ = $V_{\rm CE}$	5.0	5.8	6.5	V
Zero gate voltage collector current	I _{CES}	V_{CE} = 750V, V_{GE} = 0V	-	-	100	μA
Gate-emitter leakage current	I _{GES}	$V_{CE} = 0V, V_{GE} = 20V$	-	-	600	nA
Integrated gate resistor	r _G		-	2	-	Ω
Temperature sensor	V _{fTS}	<i>I</i> _{TS} = 1mA, <i>T</i> _{vj} = 25°C	2.53	2.58	2.63	V

Table 4Electrical Characteristics1

	Course had	Conditions		Value			
Parameter	Symbol			min.	typ.	max.	Unit
Collector omitter saturation voltage	17	$V_{GE} = 15V,$	T_{vj} = 25°C	-	1.25	1.45	V
Collector-emitter saturation voltage	V _{CEsat}	<i>I</i> _c =150A	<i>T_{vj}</i> =175°C	-	1.4	-	V
Input capacitance	Cies	<i>V_{ce}</i> =25V,		-	18000	-	
Output capacitance	Coes	$V_{GE} = 0V, f = 100 \text{kHz}$ $T_{vj} = 25^{\circ}\text{C}$		-	320	-	pF
Reverse transfer capacitance	Cres			-	82	-	
Gate charge	Q _G	V_{CE} = 450V, I_{C} = 150A V_{GE} = -8V+15V		-	870	-	nC
Current sensor Area ratio of active cells to sense cells	A _{Load} /A _{CS}	Defined by design		-	610	-	
Temperature sensor Temperature coefficient	C _{TS}			-	-5	-	mV/K

2 Further Electrical Characteristics


Note:

Switching characteristics and thermal properties are dependent on module design and mounting technology and can therefore not be specified for a bare die.

 $^{^{1}}$ Not subject to production test - verified by design/characterization. Datasheet

3 Chip Drawing

Key

- E = Emitter
- G = Gate
- TS_A = Temperature sense (Anode)
- TS_c = Temperature sense (Cathode)
- KE = Kelvin emitter
- CS = Current sense
- T = Test pad, do not contact

4 Bare Die Product Specifics

Note: Test coverage at wafer level for IGBTs cannot cover the full range of customer application conditions. Therefore it is the responsibility of the customer to test all performance characteristics, which are relevant for their specific application, at the package level, including RBSOA and SCSOA.

Description

- AQL 0.1 for visual inspection according to failure catalogue
- Electrostatic Discharge Sensitive Device according to MIL-STD 883

Revision History

Document version	Date of release	Description of changes
V1.00	2020-06-15	Initial Datasheet
V1.01	2021-08-05	Condition I_c of $V_{GE(th)}$ parameter is corrected according to the condition at wafer level test. Condition of chip capacitances is changed from $f = 1$ MHz to 100kHz.
		The C_{res} value is modified with measurement result at $f = 100$ kHz.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-08-05 Published by Infineon Technologies AG 81726 München, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.