IGD1205W

Hybrid Integrated Isolated N-Channel IGBT Driver

Key Features:

- Internal DC/DC Converter
- Internal OptoCoupler
- 30 kV/µS CMR
- VISO = 3,750V
- TTL Compatible Input
- Short Circuit Protected
- Fault Signal Output
- Switching Freq. to 20 kHz
- Compact SIP Package

Recommended For:

- 600V Series IGBT (up to 600A)
- 1200V Series IGBT (up to 400A)
- 1700V Series IGBT (up to 200A)

MicroPower Direct

292 Page Street Suite D Stoughton, MA 02072 USA

T: (781) 344-8226 **F:** (781) 344-8481

E: sales@micropowerdirect.com

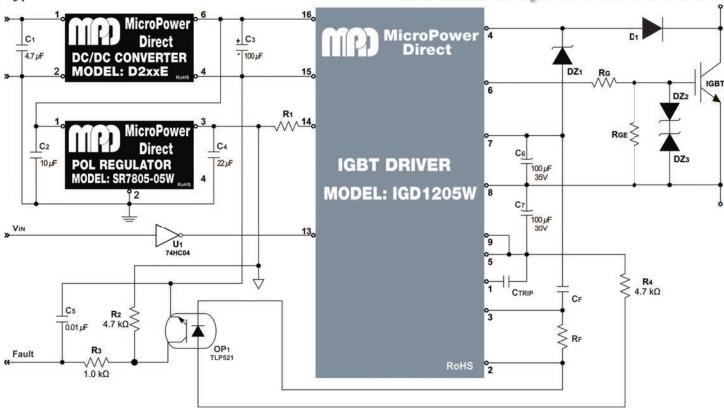
W: www.micropowerdirect.com

Electrical Specifications

Absolute Maximum Ratings, $T_A = 25$ °C, $V_D = 12V$ or 15V, $R_G = 5\Omega$, unless otherwise noted.

Parameter		Conditions Mi		Тур.	Max.	Units
Supply Voltage	VD	IGD1205W-12			13	VDC
	VD	^{'D} IGD1205W-15			16	VDC
Input Voltage	VIN	See Note 3			50	VDC
Input Current	lin	See Note 4			25	mA
Output Voltage	Vo	When Output is "H"			Vcc	VDC
Output Current	Igon	Dulas Width Out Fraguesia / 20 ld la			+5.0	Α
Output Gurrent	Output Current Pulse Width 2μ S, Frequency ≤ 20 k	Fulse Width 2μ 5, Frequency $\leq 20 \text{ kHz}$			-5.0	A
Isolation Voltage	Viso	Sine Wave Voltage 50 Hz/ 60 Hz , 1 Min			3,750	VAC
Operating Temperature	Тор		-40		+70	°C
Storage Temperature	Tst		-50		+125	°C
Fault Output Current	IFO	See Note 5			20	mA

Electrical Characteristics, TA = 25 °C, Vcc = 15 VDC, VEE = -10 VDC unless otherwise noted.


Parameter		Conditions	Min.	Тур.	Max.	Units	
Cupply Voltage	VD	IGD1205W-12 Recommended Range	11.6	12	12.4	VDC	
Supply Voltage	VD	IGD1205W-15 Recommended Range	14.5	15	15.5		
Switching Frequency	f	Recommended Range	0		20	kHz	
Gate Resistor	Rg		2			Ω	
Cata Supply Valtage	Vcc		14.5		18.0	VDC	
Gate Supply Voltage	VEE		-7.0		-10.0		
Input CMR			15	30		kV/μS	
"H" Input Current	lін	Recommended Range	10	16	20	mA	
"H" Output Voltage	Vон		13.5	15.3	17.0	VDC	
"L" Output Voltage	Vol		-6		-10	VDC	
"L-H" Propagation	TPLH	I _I H = 16 mA		0.5	1.0	μS	
"L-H" Rise Time	TR	I _I H = 16 mA		0.3	1.0	μS	
"H-L" Propagation	TPHL	I _I H = 16 mA		1.0	1.3	μS	
"H-L" Fall Time	TF	I _I H = 16 mA		0.3	1.0	μS	
Protection Threshold Voltage	Vocp			9.5			
Protection Reset Time	TTIMER	Between Start & Cancel	1.0	1.4	2.0	mS	
Fault Output Current	IFO	See Note 6		5.0		mA	
Controlled Time Detect	TTRIP1	Short Circuit 1, See Note 7		2.6		μS	
Soft Turn-Off Time	TCF	See Note 8		4.5		μS	
SC Detect Voltage	Vsc	Collector Voltage of Module	15			VDC	

Notes

- 1. Exceeding Absolute Maximum Ratings may damage the module. These are not continuous operating ratings.
- 2. "H" = high level signal. "L" = low level signal.
- 3. The voltage applied to pin 14.
- 4. The current measured between pins 13 and 14.
- 5. The input current at pin 15.
- 6. The input current at pin 15. $R_4 = 4.7 \text{ k}\Omega$.
- 7. Pin 13 ≥ 15 VDC. Pin 16 open.
- 8. Pin 13 ≧ 15 VDC. Pin 14 open.
- 9. Pin 1 \geq 15 VDC.

Typical Connection

www.micropowerdirect.com

Connection Notes:

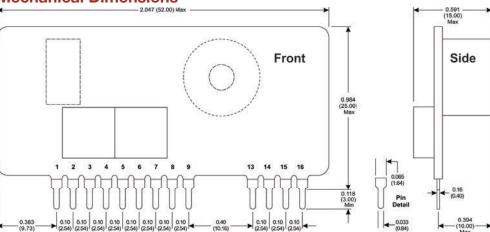
To minimize the potential for problems (and/or failures) caused by induced noise, EMI interference and/or oscillation, the connection of the gate driver must be done with great care. Some recommendations would include:

- 1 The **D200E** is a 2W DC/DC converter. It will convert a 5. 12. or 24V bus voltage to the 12 or 15V needed to power the IGD1205W. The SR7805 is a switching POL regulator. It provides a stable 5V input signal voltage to the input (pin 14) of the IGD1205W.
- 2 The input signal voltage (pin 14) cannot exceed 5.0V. The internal dissipation caused by the resultant increase in input current could damage the input optocoupler. A current limiting resistor (R1) is used to help prevent this. The resistor value is calculated by the formula:

$$R_1 = \frac{V_N - 1.7V}{16 \text{ mA}} - 150\Omega$$

- 3 The gate wiring of the IGBT gate-emitter drive loop must be shorter
- Twisted pair wiring is recommended for the gate-emitter drive loop to minimize mutual induction.

- the gate resistor (Rg) should be increased.
- The IGD1205W includes an internal DC/DC converter that provides isolated gate drive power at pin 9 (Vcc, 15V) and pin 7 (VEE, -8V). These outputs share a common ground at pin 8. This allows the IGD to provide a floating gate drive suitable for high or low side switching. Low impedance electrolytic capacitors (C6 and C7) are used to decouple the internal supply outputs. It is important that these components be selected for low impedance and a maximum allowable ripple current that is sufficinet for the application. Assuming the ripple current in the decoupling capacitors is about equal to the rms gate current, it can be estimated by the formula:


$$i_{\text{RMS}} = i_{\text{P}} \sqrt{\frac{t_{\text{P}} \times f}{3}}$$

Where \dot{P} = peak current; \dot{P} = base width of pulse; and f = frequency. Capacitors C6 and C7 should be mounted as close to the driver as

The peak reverse voltage rating of D₁ must be higher than the peak value of the IGBT collector voltage.

- 5 If a large voltage spike is generated at the IGBT collector, the value of 8 The voltage level at pin 4 could go "High" depending on the reverse recovery characteristics of D₁. A 30V zener diode DZ₁ is connected between pin 4 and pin 7 to prevent any problems caused by this.
 - If the short cicuit protection circuit is not used, a 4.7 k Ω should be connected between pin 4 and pin 8.
 - **10** The **IGD1205W** has a short circuit detection time delay of 1.6 μ S. Sufficient for most applications. If required, this can be extended by connecting a capacitor (CTRIP) between pin 1 and pin 9. Contact the factory for details. If used, CTRIP should be mounted as close to the driver as possible.
 - To help limit any transient voltage surges that could occur when a shor circuit is interrupted, a soft shutdown is provided by the IGD1205W. The default time is set to 4.5 μ S, but it can be adjusted from 2.5 μ S to 10 μ S by using either CF or RF. Contact the factory for details.
 - 12 If the IGD1205W short circuit protection is activated, it will immediately shut down the gate drive and pull pin 2 low to indicate a fault (via OP1). During normal operation, the collector of OP1 is pulled high by R2. In the event of a fault, the driver output is disabled and a fault signal is produced that lasts a minimum of 1 mS. The RC filter (C5 and R3) help provide noise immunity. If the short circuit protection circuit is not used, these components can be eliminated and pin 2 should be left open.

Mechanical Dimensions

Model Selection Guide

Model Number	Input Power (VDD)
IGD1205W-12	12 VDC
IGD1205W-15	15 VDC

Pin Connections

Pin	Function	Pin	Function
1	Control Pin (ForTtrip)	8	DC/DC Ouput (Comm)
2	Fault Signal Output	9	DC/DC Ouput (+)
3	Soft Turn-Off Adj	13	Drive Signal Input (-)
4	Fault Detection	14	Drive Signal Input (+)
5	Internal Power Tube	15	-VDD (- Power Supply)
6	Drive Output	16	+VDD (+ Power Supply)
7	DC/DC Ouput (-)		

MicroPower Direc We Power Your Success - For Less!

- All dimensions are typical in inches (mm)
- Tolerance x.xx = ± 0.01 (± 0.25)