
CONSTANT CURRENT LINEAR LED DRIVER

IK402U

DESCRIPTION

IK402U is a high-stable current source IC designed to be used as a constant current LED driver. Application of a constant current source provides continuous brightness of LED light and long LED life time. Moreover, a constant current source provides an over-temperature protection to LED.

FEATURE

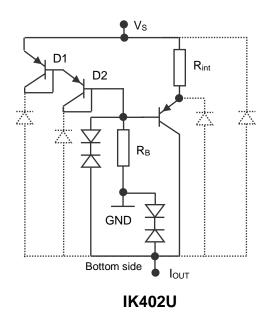
- High-stability output current
- Low dropout voltage
- Easy adjustable output current
- Negative thermal coefficient of output current
- Small overall dimensions, possible chip mount in a single package with LED
- Low cost, no external elements, simple use
- LED drive current of 22 mA
- Supply voltage up to 42 V
- Easy paralleling of drivers to increase current
- Low voltage overhead of 1.2 V
- High current accuracy at supply voltage variation
- No EMI
- ESD Rating: Human Body Model 2000V
- Reduced output current at higher temperatures negative thermal coefficient of - 0.1 %/K

APPLICATION

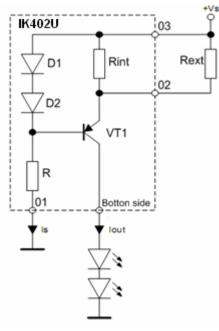
- Channel letters for advertising, LED strips for decorative lighting
- Aircraft, train, ship illumination
- Retrofits for general lighting, white goods like refrigerator lighting
- Medical lighting
- · Automotive applications like CHMSL and rear combination lights

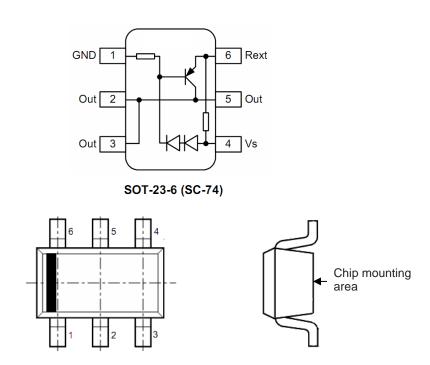
MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Supply voltage	Vs	42	V
Output voltage	V _{OUT}	18.6	V
Reverse voltage between all terminals	V _R	0.5	V
Junction Temperature	Tj	-40+150	°C

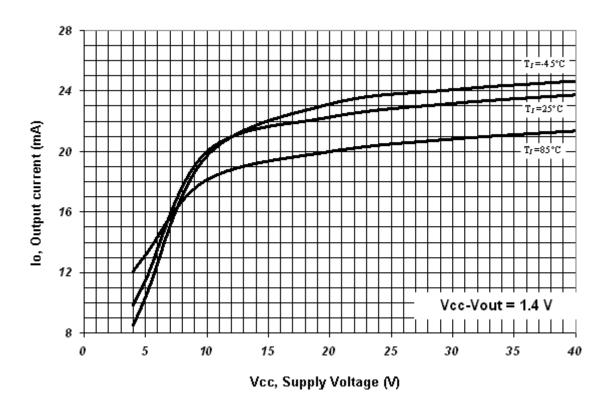

 P_{max} = $(V_S - V_{\text{OUT}}) \times I_{\text{OUT}}$ is determined by the condition Tj \leq 150°C

ELECTRICAL CHARACTERISTICS (Tj= +25°C, unless otherwise noted)

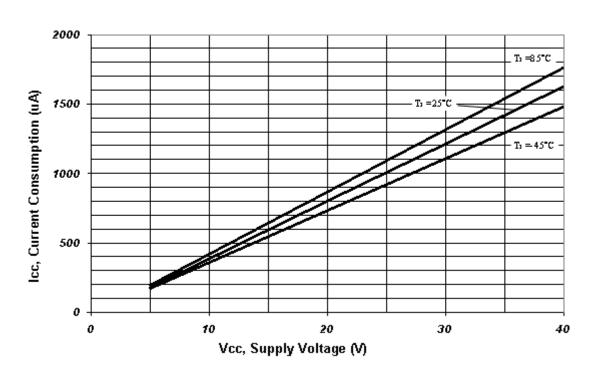

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Collector-emitter breakdown voltage	$V_{BR(CEO)}$	$I_{C} = 1 \text{ mA}, I_{B} = 0$	60	_	_	V		
Supply current	Is	V _S = 10 V	340	440	540	μΑ		
Output current	I _{OUT}	V _S = 10 V, V _{OUT} = 8.6 V	19	22	24	mA		
Internal resistor	R _{INT}	I _{Rint} = 20 mA	35	41	45	Ohm		
Voltage drop (V _S − V _E)	V_{drop}	I _C = 20 mA	0.7	0.82	0.9	V		
DC current gain	h _{FE}	I _C = 50 mA, V _{CE} = 1 V	50	100	400			
DC Characteristics with stabilized LED load								
Lowest sufficient battery voltage overhead	V_{Smin}	I _{OUT} > 18mA	-	1.2	-	V		
Output current change versus T _A	$\Delta I_{OUT}/I_{OUT}$	$V_S = 10 \text{ V},$ $T_A = (-45^{\circ}\text{C}+85^{\circ}\text{C})$	-	-0.1	_	%/°C		
Output current change versus V _S	$\Delta I_{OUT}/I_{OUT}$	V _S = 10 V	-	1.0	-	%/V		


SCHEMATIC DIAGRAM

APPLICATIONS INFORMATION

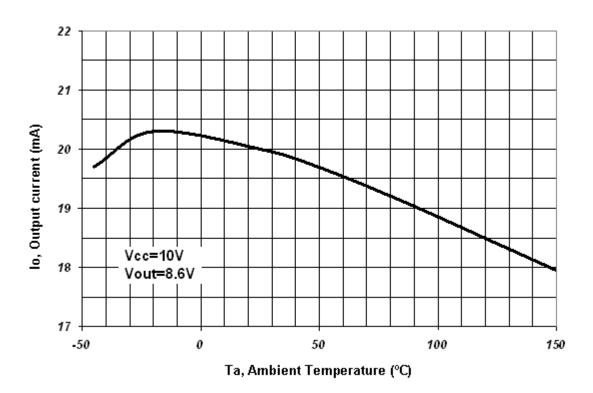


Typical Application

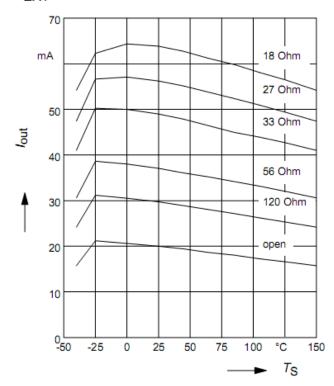


TYPICAL REFERENCE DIAGRAMS

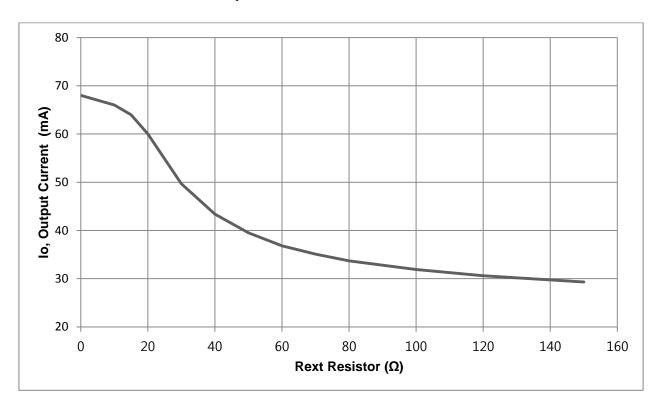
Output Current vs. Supply Voltage



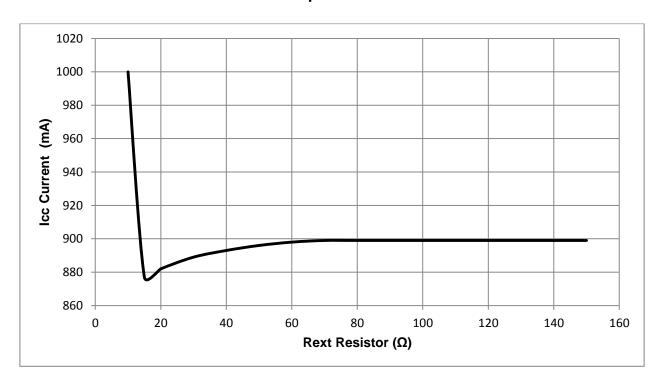
Current Consumption vs. Supply Voltage



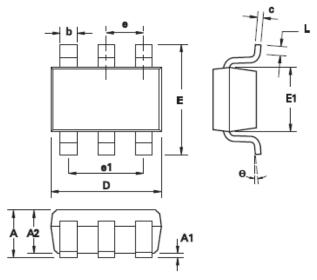
Output Current vs. Ambient Temperature

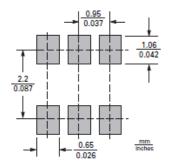


Output current


$$I_{\text{out}}$$
 (T_{S}), V_{S} = 10V, V_{S} - V_{out} = 1.4 V R_{EXT} = Parameter

Output Current vs. Rext Resistor


Current consumption vs. Rext Resistor


PACKAGE DIMENSION

SOT-23-6

DIM	Millimeters		Inc	hes	
	Min.	Max.	Min.	Max.	
Α	0.90	1.45	0.0354	0.0570	
A1	0.00	0.15	0.00	0.0059	
A2	0.90	1.30	0.0354	0.0511	
b	0.35	0.50	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.70	3.10	0.1062	0.1220	
E	2.20	3.20	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
L	0.10	0.60	0.0039	0.0236	
е	0.95 REF		0.0374 REF		
e1	1.90 REF		0.0748 REF		
L	0°	30°	0°	30°	

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

