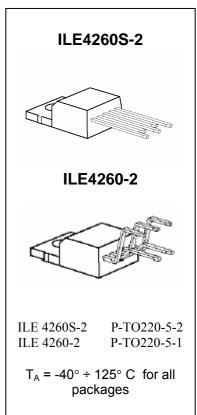
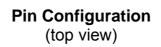
ILE4260-2

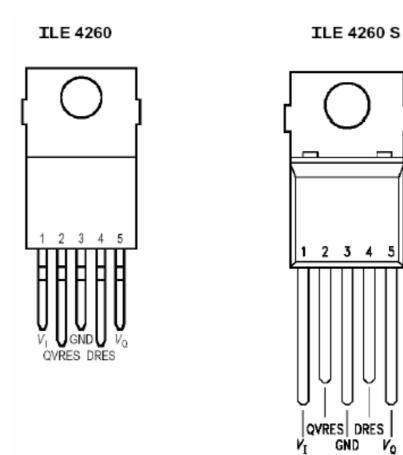
5-V Low-Drop Voltage Regulator

ILE 4260 is a 5-V low-drop fixed-voltage regulator in P-TO220-5 package. The maximum input voltage is 42 V (65 V≤ 400 ms). The device can produce an output current of more than 500 mA. It is shortcircuit-proof and incorporates temperature protection that disables the circuit at unpermissibly high temperatures.


Due to the wide temperature range of -40 to 150 °C, the ILE 4260 is also suitable for use in automotive applications.

The IC regulates an input voltage VI in the range $6 < V_1 < 35$ V to V_Q nominal =5.0 V. A reset signal is generated for an output voltage of $V_Q < 4.75$ V. The reset delay can be set externally with a capacitor. If the output current is reduced below 10 mA, the regulator switches internally to standby and the reset generator is turned off.


The standby current drops to max. 700 µA.


Features

- Low-drop voltage
- Very low quiescent current
- Low starting current consumption
- Integrated temperature protection
- · Protection against reverse polarity
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- Suited for automotive electronics
- Wide temperature range

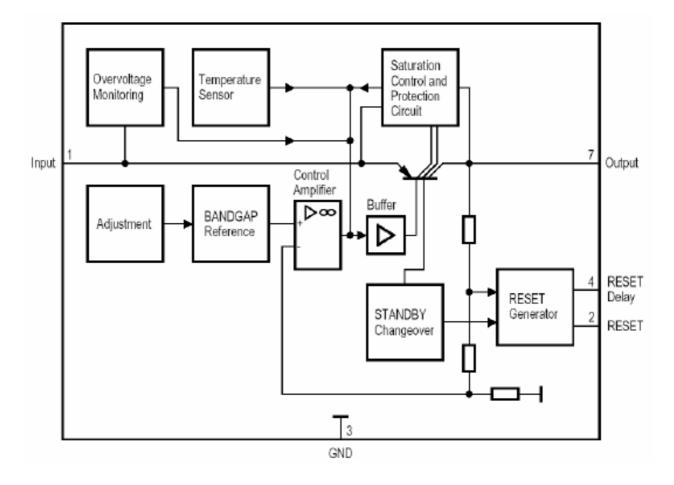
3

٧I

V₀

Pin Definitions and Functions (ILE 4260 and ILE 4260 S)

Pin No.	Symbol	Function
1	Vı	Input; block directly to ground at the IC by a 470-nF capacitor
2	QVRES	Reset output ; open collector output controlled by the reset delay
3	GND	Ground
4	DRES	Reset delay; wired to ground with a capacitor
5	VQ	5-V output voltage; block to ground with a 22-µF capacitor



Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the output voltage goes below 96% of its typical value, an external capacitor is discharged on pin 4 by the reset generator. If the voltage on the capacitor reaches the lower threshold V_{ST} , a reset signal is issued on pin 2 and not cancelled again until the upper threshold V_{DT} is exceeded. For an output current of less than I_{QN} off = 10 mA the standby changeover turns off the reset generator. The latter is turned on again when the output current increases, the output voltage drops below 4.2 V or the delay capacitor is discharged by external measures.

The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Block Diagram

Absolute Maximum Ratings

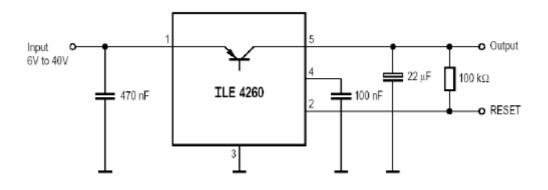
Parameter	Symbol	Limit	Values	Unit	Remarks	
Falailletei	Symbol	min	max	Onit	Remarks	
Input (Pin 1)						
Input voltage	VI	- 42	42	V	-	
	VI	_	65	V	<i>t</i> ≤ 400 ms	
Input current	I	_	1.6	А	_	
Reset Output (Pin 2)						
Voltage	V_{R}	-0.3	42	V	-	
Current	IR	-	-	-	internally limited	
Ground (Pin 3)						
Current	Ignd	-0.5	-	А	-	
Reset Delay (Pin 4)			_			
Voltage	VD	- 0.3	42	V	_	
Current	ID	-	-	-	internally limited	
Output (Pin 5)						
Differential voltage	VI – V Q	- 5.25	V_1	V	_	
Current	IQ	_	1.4	А	_	
Temperature						
Storage temperature	Tstg	- 50	150	°C	-	
Operating Range						
Input voltage	V_{I}	_	32	V	1)	
Junction temperature	Tj	- 40	165	°C	_	
Thermal Resistances						
Junction ambient	Rthja	_	65	K/W	_	
Junction case	Rthjc	_	3	K/W	-	

1) See diagram "Output Current versus Input Voltage"

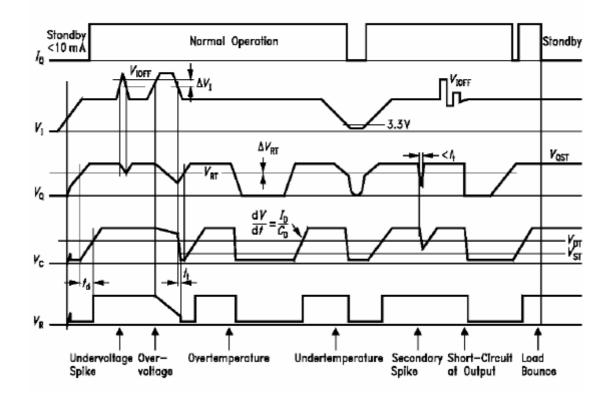
Characteristics

 V_1 = 13.5 V; T_j = 25 °C; (unless otherwise specified)

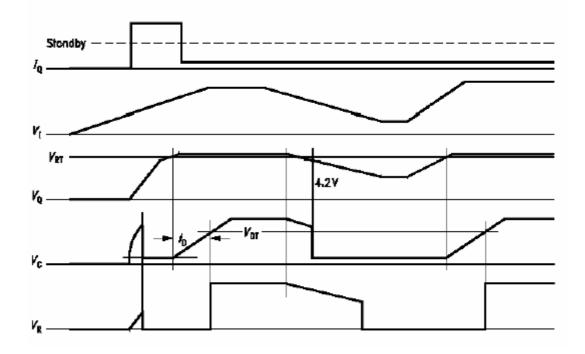
	Symbol		Limit Valu	es	Unit	Test Condition
Parameter		min.	typ.	max.		
Normal Operation				-		
Output voltage	VQ	4.75	5.0	5.25	V	$25 \text{ mA} \le I_Q \le 500 \text{ mA}$
						$6 V \le V_1 \le 28 V$
						-40 °C ≤ T_{j} ≤ 125 °C
Short -circuit current	I _{SC}	500	1000	-	mA	V ₁ =17 V to 28 V;
						$V_{\rm Q} = 0 \ V$
Current consumption $I_q = I_1 - I_Q$	I _q	_	8.5	10	mA ₁₎	$6 V \le V_{\rm I} \le 28 V$ $I_{\rm Q} = 150 \text{ mA}$
Current consumption $I_q = I_1 - I_Q$	l _q	_	50	65	mA ₁₎	$6 V \le V_1 \le 28 V$ /Q = 500 mA
Current consumption $I_q = I_1 - I_Q$	I _q	-	-	80	mA ₁₎	$V_{\rm l} \le 6 {\rm V} I_{\rm Q} = 500 {\rm mA}$
Drop voltage	V _{DR}	-	0.35	0.5	V	$VI = 4.5 V; I_Q = 0.5 A$
Drop voltage	$V_{\rm DR}$	-	0.2	0.3	V	$VI = 4.5 V; I_Q = 0.15 A$
Load regulation	ΔV_{Q}	-	15	35	mV	25mA≤ <i>I</i> _Q ≤ 500 mA
Supply-voltage regulation	ΔV_{Q}	-	15	50	mV	$V_{\rm l} \le 6$ V to 28 V; $I_{\rm Q} = 100$ mA
Supply-voltage regulation	ΔV_{Q}	-	5	25	mV	$V_{\rm l} \le 6$ V to 16 V; $I_{\rm Q} = 100$ mA
Ripple rejection	SVR	_	54	-	dB	f = 100 Hz;
						V_r = 0.5 V_{pp}
Temperature drift of output voltage ₁₎	α _{VQ}	-	2× 10_4	_	1/°C	-
Standby Operation						
Quiscent current; $I_q = I_1 - I_Q$	I _q	_	500	700	μA	$10V \le V_{\rm I} \le 16 \text{ V};$ $I_{\rm Q} = 0\text{mA}$
Quiscent current; $I_q = I_1 - I_Q$	l _q	-	750	850	μA	$10V \le V_l \le 16 V;$ $I_Q = 5mA$


Characteristics (cont'd) *V*_l = 13.5 V; *T*_j = 25 °C; (unless otherwise specified)

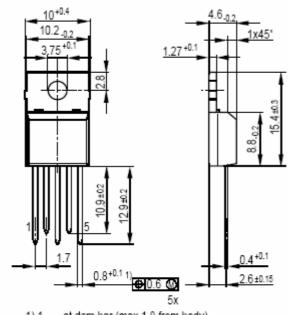
	Symbol		Limit Valu	ies		Test Condition
Parameter		min.	typ.	max.	Unit	
Standby Off/Normal On						
Current consumption	I _{qSOFF}	-	1.0	1.2	mA	see test diagram
Current consumption	I _{qNON}	_	1.7	2.2	mA	see test diagram
Normal Off/Standby On						•
Current consumption	I _{qNOFF}	_	1.55	2.00	mA	see test diagram
Current consumption	I _{qSON}	-	850	1050	μA	see test diagram
Switching threshold		7.5	10	12.5	mA	see test diagram
Switching hysteresis	Δ <i>I</i> Q	2.25	3	4	mA	see test diagram
Reset Generator						·
Switching threshold	V _{RT}	94	96	97	%	in % of $V_{\rm o}$;
						$I_{\rm Q} > 500 {\rm mA}; V_{\rm I} = 6 {\rm V}$
Saturation voltage	V _R	_	0.25	0.40	V	$I_{\rm R}$ = 3 mA; $V_{\rm I}$ = 4.5 V
Reverse current	I _R	_	_	1	μA	V _R = 5 V
Charge current	I _D	7	10	13	μA	-
Switching threshold	V _{ST}	0.9	1.1	1.3	V	-
Delay switching threshold	V _{DT}	2.15	2.50	2.75	V	-
Delay time	t _D	-	25	-	ms	<i>C</i> _D = 100 nF
Delay time	<i>t</i> t	_	5	-	μs	<i>C</i> _D = 100 nF
General Data	•					
Turn-Off voltage	VIOFF	40	43	45	V	<i>I</i> _Q < 1 mA
Turn-Off hysteresis	$\Delta V_{\rm I}$	-	3.0	-	V	-
Leakage current	I _{QS}	_	500	_	μA	$V_{\rm Q} = 0 \text{ V}; V_{\rm I} = 45 \text{ V}$
				1.5	1	$V_{\rm Q}$ = 5 V; $V_{\rm I}$ = open

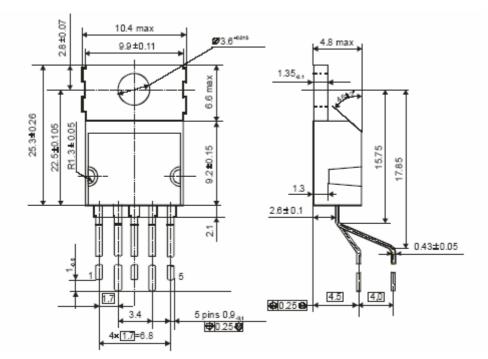

1) See diagram

Application Circuit



Time Responce


Time Response in Standby Condition


Package Dimensions

1) 1._{0.15} at dam bar (max 1.8 from body) 1) 1._{0.15} im Dichtstegbereich (max 1.8 vom Körper)

P-TO220-5-1

