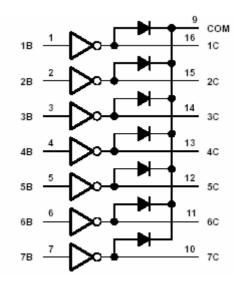
HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

ILN2003A

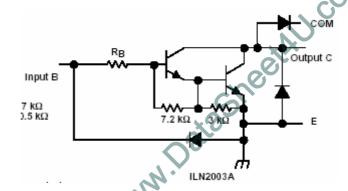
The ILN2003A are monolithic high-voltage, high-current Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with commoncathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The ILN2003A has a 2.7-k $\,$ series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.


- 500-mA Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay Driver Applications

LOGIC SYSBOL

COM CLAMP 16 10 1B 15 2B 2C 14 3C 3B 13 4C 12 5C 11 6 6C 6B 10


LOGIC DIAGRAM

SCHEMATICS (each Darlington Pair)

All resistor values shown are nominal.

ILN2003A: $R_B = 2.7 \text{ kW}$

Absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Continuous total power dissipation

See Dissipation Rating Table

Operating free-air temperature range, T_A

-20°C to 85°C

Storage temperature range, Tstg

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

-65°C to 150°C

260°C

NOTE 1: All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.

DISSIPATION RATING TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	494 mW
N	1150 mW	9.2 mW/°C	598 mW

Electrical characteristics, TA = 25°C (unless otherwise noted)

PARAMETER		TEST COMPLETIONS		NOITIONS	ILN2003A			UNIT														
		FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNII														
				I _C = 125 mA																		
				I _C = 200 mA			2.4															
V On etc	On-state input voltage	6	V _{CE} = 2 V	I _C = 250 mA			2.7	v														
V _{I(on)}	Cir-state input voltage			I _C = 275 mA																		
				I _C = 300 mA			3															
				I _C = 350 mA																		
	Collector-emitter		$I_I = 250 \mu A$,	I _C = 100 mA		0.9	1.1															
V _{CE(sat)}	saturation voltage	5	$I_{\parallel} = 350 \mu A$,	I _C = 200 mA		1	1.3	V														
			I_{\parallel} = 500 μ A,	I _C = 350 mA		1.2	1.6															
		1	V _{CE} = 50 V,	I _I = 0			50															
CEX	Collector cutoff current	2	2 VCE = 50 V, TA = 70°C	I _I = 0			100	μA														
		_		V _I = 1 V																		
٧ _F	Clamp forward voltage	8	I _F = 350 mA			1.7	2	V														
li(off)	Off-state Input current	3	V _{CE} = 50 V, T _A = 70°C	I _C = 500 μA,	50	65		μА														
lj ing		4	V _I = 3.85 V			0.93	1.35															
	Input current		4	4	4	4	4	4	4	4	4	4	4	4	4	4	V _I = 5 V					mA
			V _I = 12 V																			
ln.	Clamp reverse current	7	V _R = 50 V				50	μА														
lR	Clamp reverse corrent		$V_{R} = 50 V$	T _A = 70°C			100	μА														
CI	Input capacitance		$V_{\parallel} = 0$,	f = 1 MHz		15	25	pΕ														

switching characteristics, T_A = 25°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	See Figure 9		0.25	1	μS
t _{PHL}	Propagation delay time, high-to-low-level output	See rigule 9		0.25	1	μS
Vон	High-level output voltage after switching	V_S = 50 V, $I_O \approx$ 300 mA, See Figure 10	VS-20			mV

PARAMETER MEASUREMENT INFORMATION

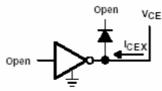


Figure 1. I_{CEX} Test Circuit

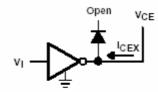


Figure 2. I_{CEX} Test Circuit

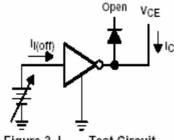


Figure 3. I_{I(off)} Test Circuit

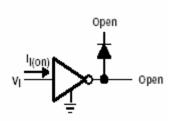
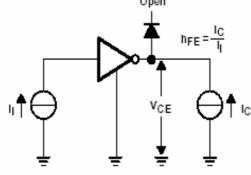



Figure 4. I_I Test Circuit

NOTE: I_I is fixed for measuring V_{CE(sat)}, variable for measuring h_{FE}.

Figure 5. hFE, VCE(sat) Test Circuit

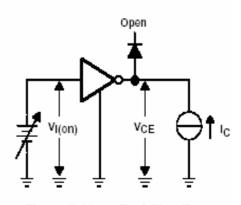
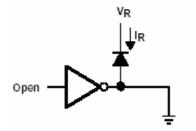



Figure 6. V_{I(on)} Test Circuit

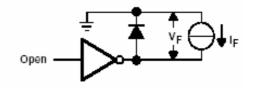


Figure 7. IR Test Circuit

Figure 8. V_F Test Circuit

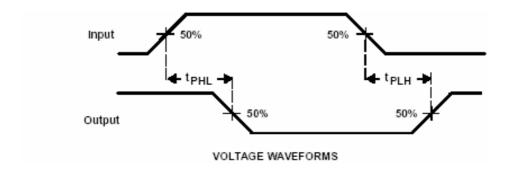
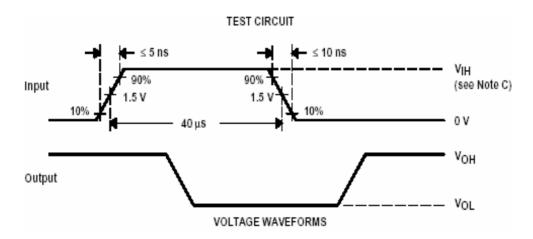
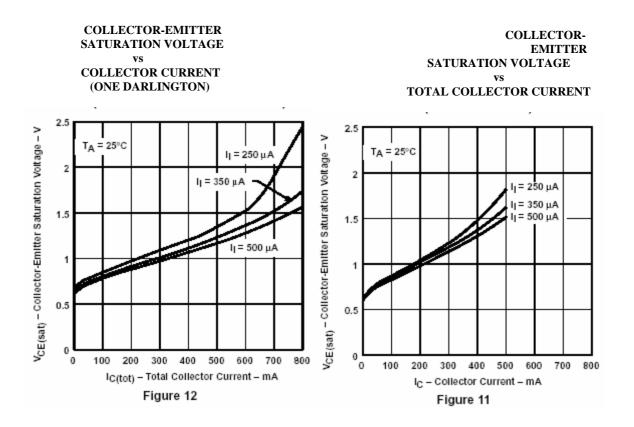



Figure 9. Propagation Delay-Time Waveforms


NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_0 = 50$.

 $B.\ C_L$ includes probe and jig capacitance.

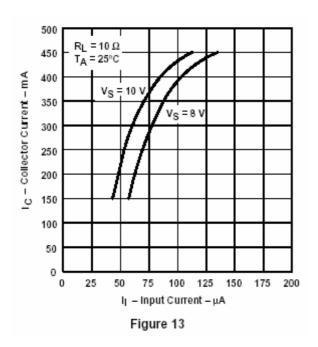
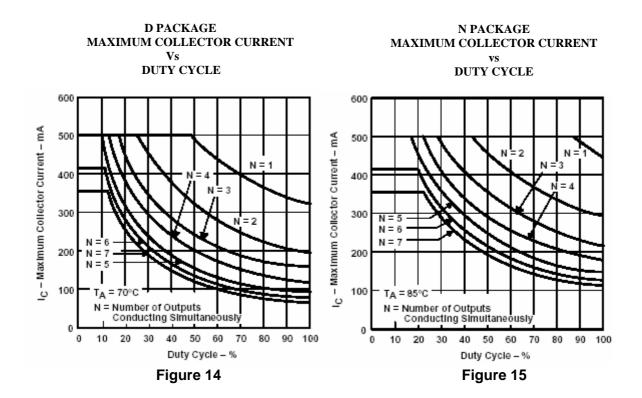

C. $V_{IH} = 3 V$;

Figure 10. Latch-Up Test Circuit and Voltage Waveforms


TYPICAL CHARACTERISTICS

COLLECTOR CURRENT vs INPUT CURRENT

THERMAL INFORMATION

APPLICATION INFORMATION

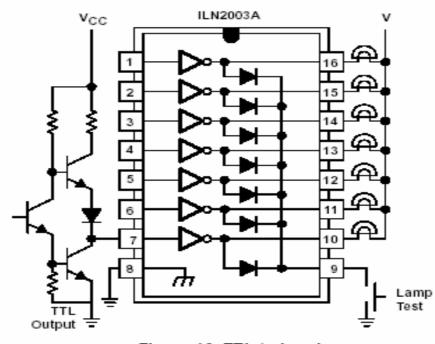


Figure 16. TTL to Load

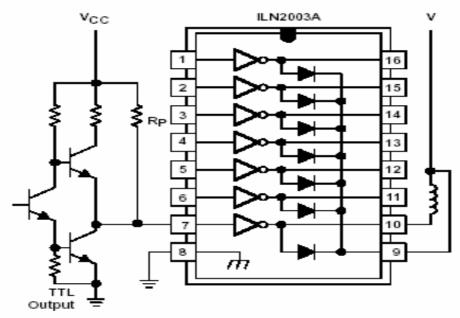
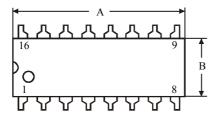
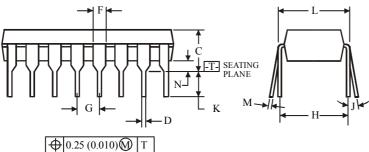
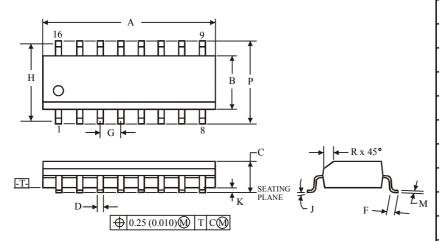




Figure 17. Use of Pullup Resistors to Increase Drive Current

N SUFFIX PLASTIC DIP (MS - 001BB)


NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side.

16

	Dimension, mm			
Symbol	MIN	MAX		
A	18.67	19.69		
В	6.10	7.11		
C	5.33			
D	0.36 0.56			
F	1.14 1.78			
G	2.54			
Н	7.62			
J	0° 10°			
K	2.92 3.81			
L	7.62 8.26			
M	0.20 0.36			
N	0.38			

D SUFFIX SOIC (MS - 012AC)

NOTES:

- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

	Dimension, mm		
Symbol	MIN MAX		
A	9.80 10.00		
В	3.80	4.00	
C	1.35 1.75		
D	0.33 0.51		
F	0.40 1.27		
G	1.27		
Н	5.72		
J	0° 8°		
K	0.10 0.25		
M	0.19 0.25		
P	5.80 6.20		
R	0.25 0.50		