IMS T801

transputer

Preliminary Data

FEATURES

32 bit architecture

33 ns internal cycle time

30 MIPS (peak) instruction rate

4.3 Mflops (peak) instruction rate .))

64 bit on-chip floating point unit which conforms to j E
[4Y]

IEEE 754
4 Kbytes on-chip static RAM
120 Mbytes/sec sustained data rate to internal memory ,
4 Gbytes directly addressable external memory System L _Np 32 bit
60 Mbytes/sec sustained data rate to external memory Services 35 | rocessor
630 ns response to interrupts N~V
Four INMOS serial links 10/20 Mbits/sec
Bi-directional data rate of 2.4 Mbytes/sec per link
High performance graphics support with block move Link
instructions) Services
Boot from ROM or communication links Timers
Single 5 MHz clock input N—MN Link
Single +5V +5% power supply 32 Interface
MIL-STD-883C processing will be available

4kbytes |4)\ LK

A
APPLICATIONS onnip N2 224 interface

- - - RAM
Scientific and mathematical applications Link

High speed multi processor systems 32 | |nterface
High performance graphics processing
alupﬁ;computersd 5 | = Link
orkstations and workstation clusters
Digital signal processing EA’gfn'g%' N N Intertace
Accelerator processors
Distributed databases Interface N™"1
System simulation -
Telecommunications
Robotics
Fault toierant systems
Image processing
Pattern recognition
Artificial intelligence

™

——

Event

42 1441 00 May 1989

128

1 Introduction

The IMS T801 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support.
It has 4 Kbytes on-chip RAM for high speed processing, a 32 bit non-multiplexed external memory interface
and four standard INMOS communication links. The instruction set achieves efficient implementation of high
level languages and provides direct support for the 0ccam model of concurrency when using either a single
transputer or a network. Procedure calls, process switching and typical interrupt latency are sub-microsecond.

For convenience of description, the IMS T801 operation is split into the basic blocks shown in figure 1.1,

Floating Point Unit
<
VCC — o
GND — R ,
Cap?lus 14
CapMinus 32 32 bit
Reset —> o clem N Y] Processor
Analyse ——> Jices
ErrorOut -=——
BootFromROM ——»
Clockin —
ProcSpeedSelect0-2 — Link
Timers "357] Link |~ Linkin0
N— 4 Interface —— LinkOut0
4k bytes |, N 32 Link [=—— Linkini
of 35 N—] Interface |—— LinkOut1
On-chip N—
RAM 55" Link |e— Linkin2
N~ | Interface — LinkOut2
ProcClockOut ——— 4—5‘5—’\ Link le—— Linkin3
notMemWrB0-3 <— N—11 Interface |~ LinkOut3
notMemCE -——
External 43_2’\ < EventReq
Memory N——W Event —— EventAck
Interface — — EventWaiting
MemWait — <_ 32 > MemD0-31
MemReq —
MemGranted -<— 30 > MemA2-31

Figure 1.1 IMS T801 block diagram

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS
sustained. The extended temperature version of the device complies with MIL-STD-883C.

The IMS T801 provides high performance arithmetic and floating point operations. The 64 bit floating point unit
provides single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic.
It is able to perform fioating point operations concurrently with the processor, sustaining a rate of 2.2 Mflops
at a processor speed of 20 MHz and 3.3 Mflops at 30 MHz.

1 Introduction 129

High performance graphics support is provided by microcoded block move instructions which operate at the
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating.

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams,
to provide error detection where data integrity is critical. Another feature of the IMS T801, useful for pattern
recognition, is the facility to count bits set in a word.

The IMS T801 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses non-multiplexed data and address lines and provides a data rate of up to 4 bytes every 66 nanoseconds
(60 Mbytes/sec) for a 30 MHz device.

System Services include processor reset and bootstrap control, together with facilities for error analysis.

The standard INMOS communication links allow networks of transputer family products to be constructed by
direct point to point connections with no external logic. The IMS T801 links support the standard operating
speed of 10 Mbits/sec, but also operate at 20 Mbits/sec. Each link can transfer data bi-directionally at up to
2.35 Mbytes/sec.

The transputer is designed to implement the 0ccam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine
level is seldom required, but if necessary refer to the Transputer instruction Set - A Compiler Writers’ Guide,
where the IMS T800 instruction set is applicable.

This data sheet supplies hardware implementation and characterisation details for the IMS T801. 1t is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of 0ccam.

The IMS T801 instruction set contains a number of instructions to facilitate the implementation of breakpoints.
For further information concerning breakpointing, refer to Support for debugging/breakpointing in transputers
(technical note 61).

Figure 1.2 shows the internal datapaths for the IMS T801.

130

5 IMS T801 engineering data

shift x]
normalise a
]

interface

»
\/ : nstruction Sireame
¥ [instruction ptr
operand reg
4 Kbyte Scheduler
RAM
C—] X
2 data n reg
@ data out rag
.g channel data reg
g =
m
3
B
(" V)Ln-
external
memory
interface
Links
Address -"g\"“:l-
registers | instruction feich address
L< channel address

dala address

Figure 1.2 IMS T801 internal datapaths

131

2

Pin designations

Table 2.1 IMS T801 system services

Pin In/Qut Function
VCC, GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in Input clock
ProcSpeedSelect0-2 in Processor speed selectors
Reset in System reset
ErrorQut out Error indicator
Analyse in Error analysis
BootFromRom in Boot from external ROM or from link

Table 2.2 IMS T801 external memory interface

Pin In/Qut Function
ProcClockOut out Processor clock
MemA2-31 out Thirty address lines
Data0-31 infout | Thirty-two non-multiplexed data lines
notMemWrB0-3 out Four byte-addressing write strobes
notMemCE out Chip enable
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted

Table 2.3 IMS T801 event

Pin 1n/Out Function
EventReq in Event request
EventAck out Event request acknowledge
EventWaiting out Event input requested by software

Table 2.4 IMS T801 link

Pin In/Out Function
Linkin0-3 in Four serial data input channeis
LinkOut0-3 out Four serial data output channels
LinkSpeed in Select speed for Links 0-3 to 10 or 20 Mbits/sec

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 186.

132

3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or programs.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a smal!
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.
The instruction pointer which points to the next instruction to be executed.
The operand register which is used in the formation of instruction operands.

The A, B and C registers which form an evaluation stack.

A, B and C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes Binto C, and A into B, before loading A. Storing a value from A, pops Binto A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in Transputer Instruction Set - A Compiler Writers’ Guide.

Registers Locals Program
A

B

c
Workspace »
Next Inst >
Operand

Figure 3.1 Registers

3 Processor 133

3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in-
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

FunctionT Data]
7 43 0

Operand Register I]

Figure 3.2 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant add constant

load local store local load local pointer
load non-local store non-local

jump conditional jump call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.,

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction’s operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

134 5 IMS T801 engineering data

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as

add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic

x=0 Ide ¢

st X

X = #24 pfix 2

ide 4

stl x

X=y+2 idl y

ol z

) add

st x

3.25 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buifer contents to be discarded.

3 Processor 135

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 136).

The processor has a microcoded scheduler which enables ary number of concurrent processes to be exe-
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Aclive - Being executed.
- On a list waiting to be executed.
Inactive - Ready to input.

- Ready to output.
- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor’s time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
{(page 136). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, @ and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals Program
FPtr1 (Front) - p -
BPtr1 (Back)

My
: SN —

Cc
Workspace -
Next Inst -
Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority | Low Priority
Pointer to front of active process list Fptr0 Fptr1
Pointer to back of active process list Bptr0 Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forciply
descheduled at the next descheduling point (page 140). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.

136 5 IMS T801 engineering data

A process can only be descheduled on certain instructions, known as descheduling points (page 140). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 uS, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T801 supports two levels of priority. Priority 1 (low priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to pravide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum iatency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopalises the transputer’s time; i.e. it has a distribution of descheduling points (page 140).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high pricrity process is waiting for an external channel to become ready, and if no other high pricrity
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM).
It the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles.
To ensure this latency, certain instructions are interruptable.

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to-
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
ng message buffer.

3 Processor 137

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and oulput message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without know!edge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Block move

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any
other byte boundary, using the smallest possibie number of word read, and word or part-word writes.

A block move instruction can be interrupted by a high priority process. On interrupt, block move is completed
to a word boundary, independent of start position. When restarting after interrupt, the last word written is
written again. This appears as an unnecessary read and write in the simplest case of word aligned block
moves, and may cause problems with FIFOs. This problem can be overcome by incrementing the saved
destination (BreglIntSaveLoc) and source pointer (CregintSaveloc) values by BytesPerWord during the high
priority process.

3.7 Timers

The transputer has two 32 bit timer clocks which ‘tick’ periodically. The timers provide accurate process
timing, allowing processes to deschedule themseives until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com-
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre-
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
76 hours.

Table 3.4 Timer registers

Clocko Current value of high priority (level 0) process clock
Clock1 Current value of low priority (level 1) process clock
TNextReg0 Indicates time of earliest event on high priority (level 0) timer queue
TNextReg 1 Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a /oad timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the ‘past’ then the
instruction has no effect. If the time is in the “future’ then the process is descheduled. When the specitied
time is reached the process is scheduled again.

138

5 IMS T801 engineering data

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

Workspaces

Program

3y

Alarm

i

21

TPirl.oc | } —

m

3

O
<

Figure 3.4 Timer registers

139

4 Instruction set summary

The Function Codes table 4.8 gives the basic function code set (page 133}. Where the operand is less than 16,
a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix)
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction

will be nfix.

Table 4.1 prefix coding

Function Memory
Mnemonic code code

ide #3 #4 #43
ldc #35

is coded as
pfix #3 #2 #23
Idc #5 #4 #45
Ide #3987

is coded as
pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47
Ide -31 (idc #FFFFFFET)

is coded as
nfix #1 #6 #61
ldc #1 #4 #41

Tables 4.9 to 4.28 give details of the operation codes. Where an operation code is less than 16 (e.g. add.
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. /add: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code
add (op. code #5) #F5
is coded as
opr add #F #F5
ladd (op. code #16) #21F6
is coded as
pfix #1 #2 #21
opr #6 #F #F6

The load device identity (/ddevid) instruction (table 4.20) pushes the device type identity into the A register.
Each product is allocated a unique group of numbers for use with the lddevid instruction. The product identity
numbers for the tIMS T801 are 20 to 29 inclusive.

In the Floating Point Operation Codes tables 4.22 to 4.28, a selector sequence code (page 149) is indicated
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the
operand for the /dc instruction.

The FPU and processor operate ¢concurrently, so the actual throughput of floating point instructions is better
than that implied by simply adding up the instruction times. For full details see Transputer Instruction Set - A

Compiler Writers' Guide.

140

IMS T801 engineering data

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it

is interpreted from table 4.3.

Table 4.3 Instruction set interpretation

ident

Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

m Bit number of the highest bit set in the absolute value of register A.
Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

Number of words per row.
r Number of rows.,

The DE column of the tables indicates the descheduling/error features of an instruction as described in

table 4.4.
Table 4.4 Instruction features
ident Feature See page:
D The instruction is a descheduling point 140
E The instruction wil! affect the Error flag 141, 156
F The instruction will affect the FP_Error flag 149, 141
4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 135). They are

also the ones at which the processor will halt if the Analyse pin is asserted (page 155).

Table 4.5 Descheduling point instructions

input message
timer alt wait
jump

output message

timer input
loop end

oulput byte
stop on error
end process

output word
alt wait
stop process

4 Instruction set summary 141

4.2 Error instructions
The instructions in table 4.6 are the only ones which can affect the Error flag (page 156) directly. Note,

however, that the floating point unit error flag FP_Error is set by certain floating point instructions (page 141),
and that Error can be set from this flag by focheckerror.

Table 4.6 Error setting instructions

add add constant subtract

multiply fractional muitiply divide remainder

long add long subtract long divide

set error lesterr focheckerror

check word check subscript from 0 check single check count from 1

4.3 Debugging support

Tabie 4.21 contains a number of instructions to facilitate the implementation of breakpoints. These instructions
overload the operation of j0. Normally j0 is a no-op which might cause descheduling. SetiObreak enables the
breakpeinting facilities and causes j0 to act as a breakpointing instruction. When breakpointing is enabled,
JO swaps the current Iptr and Wptr with an Iptr and Wptr stored above MemStart. The breakpoint instruction
does not cause descheduling, and preserves the state of the registers. It is possible to single step the pro-
cessor at machine level using these instructions. Refer to Support for debugging/breakpointing in transputers
(technical note 61) for more detailed information regarding debugger support.

4.4 Floating point errors

The instructions in table 4.7 are the only ones which can affect the floating point error flag FP_Error (page 149).
Error is set from this flag by focheckerror it FP_Error is set.

Table 4.7 Floating point error setting instructions

fpadd fosub fomul fodiv
foldniaddsn fpldniadddb foldnimulsn foldnimuldb
fpremfirst fousqrtfirst fogt fpeq
fouseterror fouclearerror fotesterror

fpuexpincby32 fouexpdecby32 foumulby2 foudivby2
four32toré4 fpur64tor32 foucki32 foucki64
fprtoi32 fouabs foint

142

5 IMS T801 engineering data

Table 4.8 IMS T801 function codes

Function Memory Processor D
Code Code Mnemonic Cycles Name E
0 0X j 3 jump D
1 1X Idip 1 load local pointer
2 2X pfix 1 prefix
3 3X idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnip 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X idl 2 load local
8 8X adc 1 add constant E
9 ax call 7 call
A AX Cj 2 conditional jump (not taken)
4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate
Table 4.9 IMS T801 arithmetic/logical operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
46 24F86 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shi n+2 shift left
40 24F0 shr n+2 shift right
05 F5 add 1 add E
0c FC sub 1 subtract E
53 25F3 mui 38 multiply E
72 27F2 fmul 35 fractional multiply {no rounding) E
40 fractional muitiply (rounding) E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
og F8 prod b+4 product for positive register A
m+5 product for negative register A

4 Instruction set summary 143
Table 4.10 IMS T801 long arithmetic operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
16 21F6 ladd 2 long add £
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 iong sum
4F 24FF diff 3 long diff
31 23F1 tmul 33 long multiply
1A 21FA Idiv 35 long divide E
36 23F6 ishl n+3 long shift left (n<32)
h-28 iong shift left{n>32)
35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n>32)
19 21F9 norm n+5 normalise {n<32)
n-26 normalise (n>32)
3 normalise {n=64)
Table 4.11 IMS T801 general operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
00 FO rev 1 reverse
3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
1D 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer
BA 25FA dup 1 duplicate top of stack
79 27F9 pop 1 pop processer stack
Table 4.12 IMS T801 2D block move operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
5B 25FB move2dinit 8 initialise data for 2D block move
5C 25FC move2dall (2p+23)«r | 2D block copy
5D 25FD move2dnonzero (2p+23)sr | 2D block copy non-zero bytes
5E 25FE moveZ2dzero (2p+23)*r | 2D block copy zero bytes
Table 4.13 IMS T801 CRC and bit operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte
76 27F6 bitent b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits h+4 reverse bottom n bits in word

144

5 IMS T801 engineering data

Table 4.14 IMS T801 indexing/array operation codes

Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
02 F2 bsub 1 byte subscript
0A FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bent 2 byte count
3F 23FF wcnt 5 word count
01 F1 b 5 load byte
3B 23FB sb 4 store byte
4A 24FA move 2w+8 move message
Table 4.15 IMS T801 timer handling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D
4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D
48 timer alt wait {time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer
Table 4.16 IMS T801 input/output operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
07 F7 in 2w+19 input message D
0B FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D
43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D
17 alt wait (channel not ready) D
45 24F5 altend 4 alt end
49 24F9 enbs 3 enable skip
30 23F0 diss 4 disable skip
12 21F2 resetch 3 reset channe!
48 24F8 enbc 7 enable channel (ready)
5 enable channel (not ready)
2F 22FF disc 8 disable channel

4 Instruction set summary 145
Table 4.17 IMS T801 control ocperation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
20 22F0 ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 Fé geall 4 general call
21 22F1 lend 10 loop end (loop) D
5 loop end (exit) D
Table 4.18 IMS T801 scheduling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
0D FD startp i2 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority
Table 4.19 IMS T801 error handling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
13 21F3 csub0 2 check subscript from 0 E
4D 24FD centt 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)
3 test error false and clear (error)
10 21F0 seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 cirhaiterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error
Table 4.20 IMS T801 processor initialisation operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
2A 22FA testpranai 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25F0 sthb 1 store high priority back pointer
1C 21FC stif 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer
17C 2127FC | Iddevid 1 load device identity
7E 27FE Idmemstartval 1 load value of memstart address

146

5 _IMS T801 engineering data

Table 4.21 IMS T801 debugger support codes

Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
0 00 jump O 3 jump 0 (break not enabled) D
11 jump 0 (break enabled, high priority)
13 jump 0 (break enabled, low priority)
B1 2BF1 break 9 break (high priority)
11 break (low priority)
B2 2BF2 clrjCbreak 1 clear jump 0 break enabie flag
B3 2BF3 setj0break 1 set jump 0 break enable flag
B4 2BF4 testjObreak 2 test jump O break enable flag set
7A 27FA timerdisableh 1 disable high priority timer interrupt
78 27FB timerdisablel 1 disable low priority timer interrupt
7C 27FC timerenableh 6 enable high priority timer interrupt
7D 27FD timerenablel 6 enable low priority timer interrupt
Table 4.22 IMS T801 floating point load/store operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
8E 28FE fpldnisn 2 fp load non-local single
8A 28FA tpldnidb 3 fp load non-local double
86 28F6 tpldnisni 4 fp load non-local indexed single
82 28F2 fpidnidbi 6 fp load non-local indexed double
9F 29FF fpldzerosn 2 load zero single
A0 2AF0 fpldzerodb 2 load zero double
AA 2AFA fpldnladdsn 8/11 fp load non local & add single F
A6 2AF6 fpldnladddb 9112 fp load non local & add double F
AC 2AFC fpldnimulsn 13/20 fp load non local & multiply single F
A8 2AF8 fpldnimuidb 21/30 fp load non locat & muitiply double F
88 28F8 fpstnisn 2 fp store non-local single
84 28F4 fpstnidb 3 fp store non-local double
9E 29FE fpstnlid2 4 store non-local int32
Processor cycles are shown as Typical/Maximum cycles.
Table 4.23 IMS T801 floating point general operation codes
Operation | Memory Processor 0D
Code Code Mnemonic Cycles Name E
AB 2AFB fpentry 1 floating point unit entry
A4 2AF4 fprev 1 fp reverse
A3 2AF3 fpdup 1 fp duplicate

4 Instruction set summary 147
Table 4.24 IMS T801 floating point rounding operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
22 s fpurn 1 set rounding mode 1o round nearest
06 s fpurz 1 set rounding mode to round zero
04 s fpurp 1 set rounding mode to round positive
05 s fpurm 1 set rounding mode to round minus
Table 4.25 IMS T801 floating point error operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
83 28F3 fpchkerror 1 check fp error E
oC 29FC tptesterror 2 test fp error false and clear F
23 s fpuseterror 1 set fp error F
9C 8 fpuclearerror 1 clear fp error F
Table 4.26 IMS T801 floating point comparison operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
94 29F4 fpgt 4/6 fp greater than F
95 29F5 fpeq 3/5 fp equality F
92 29F2 fpordered 3/4 fp orderability
91 29F1 fpnan 2/3 fp NaN
93 29F3 tpnotfinite 2/2 fp not finite
OE [} fpuchki32 3/4 check in range of type int32 F
OF [fpuchkic4 3/4 check in range of type int64 F
Processor cycles are shown as Typical/Maximum cycles.
Table 4.27 IMS T801 floating point conversion operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
07 L] fpur32tor64 3/4 real32 to real64 F
08 S fpurédtor32 6/9 real64 to real32 F
9D 29FD fortoi32 719 real to int32 F
96 29F6 fpi32tor32 8/10 int32 to real32
o8 29F8 fpi32tor64 8/10 int32 to real64
9A 29FA fpb32tore4 8/8 bit32 to real64
] s fpunoround 2/2 real64 to real32, no round
Al 2AF1 fpint 5/6 round to floating integer F

Processor cycles are shown as Typlcal/Maximum cycles.

148 § IMS T801 engineering data

Table 4.28 IMS T801 floating point arithmetic operation codes

Operation | Memory Processor cycles D
Code Code Mnemonic Single | Double Name E
87 28F7 fpadd 6/9 6/9 fp add F
89 28F9 fpsub 6/9 6/9 1p subtract F
8B 28FB fomui 1118 18/27 | p multiply F
8C 28FC fpdiv 16/28 31/43 | fp divide F
0B] fpuabs 2/2 212 tp absolute F
8F 28FF fpremfirst 36/46 36/46 | fp remainder first step F
90 29FC fpremstep 32/36 32/36 | fp remainder iteration
01 8 fousqrtfirst 27/29 27/28 | fp square root first step F
02 8 fpusqrtstep 42/42 42/42 | fp square root step
03 8 tpusgrilast 8/9 8/9 fo square root end
0A s fpuexpinc32 6/9 6/9 multiply by 232 F
09 s fpuexpdec32 6/9 6/9 divide by 232 F
12 s fpumuiby2 6/9 6/9 multiply by 2.0 F
11 8 fpudivby2 6/9 6/9 divide by 2.0 F

Processor cycles are shown as Typical/Maximum cycles.

149

5 Floating point unit

The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985.
It is able to perform floating point arithmetic concurrently with the central processor unit (CPU), sustaining
3.3 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs under control
of the CPU.

The FPU consists of a microcoded computing engine with a three deep fioating point evaluation stack for
manipulation of fioating point numbers. These stack registers are FA, FB and FC, each of which can hold
either 32 bit or 64 bit data; an associated flag, set when a fioating point value is loaded, indicates which. The
stack behaves in a similar manner to the CPU stack (page 132).

As with the CPU stack, the FPU stack is not saved when rescheduling {page 135) occurs. The FPU can
be used in both low and high priority processes. When a high priority process interrupts a low priority one
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its
current operation. The high priority process will not start, however, before the FPU has completed its current
operation.

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready.
The data transfer will then occur and both processors will proceed concurrently again. In order to make
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by
minimising the CPU and FPU idle times.

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985 floating point arithmetic
standard. Denormalised numbers are fully supported in the hardware. All rounding modes defined by the
standard are implemented, with the defauit being round to nearest.

The basic addition, subtraction, muitiplication and division operations are performed by single instructions.
However, certain less frequently used floating point instructions are selected by a value in register A (when
allocating registers, this should be taken into account). A load constant instruction idc is used to load
register A; the floating point entry instruction fpentry then uses this value to select the floating point operation.
This pair of instructions is termed a selector sequence.

Names of operations which use fpentry begin with fou. A typical usage, returning the absolute value of a
floating point number, would be

idc fpuabs; fpentry;

Since the indirection code for fpuabs is 0B, it would be encoded as

Table 5.1 fpentry coding

Function Memory
Mnemonic code code
fde fouabs #4 #4B
fpentry (op. code #AB) #2AFB
is coded as
pfix #A #2 #2A
opr #B #F #FB

150 5 IMS 1801 engineering data

The remainder and square root instructions take considerably longer than other instructions to complete. In
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences.
As an example, the instruction sequence for a single length square root is
fousqrtfirst; fousqristep; fousgrtstep; fpusqrilast;

The FPU has its own error flag FP-Error. This reflects the state of evaluation within the FPU and is set in
circumstances where invalid operations, division by zero or overfiow exceptions to the ANSI-IEEE 754-1985
standard would be flagged (page 141). FP_Erroris also set if an input to a floating point operation is infinite or
is not a number (NaN). The FP_Error flag can be set, tested and cleared without affecting the main Error flag,
but can also set Error when required (page 141). Depending on how a program is compiled, it is possible for
both unchecked and fully checked floating point arithmetic to be performed.

Further details on the operation of the FPU can be found in Transputer Instruction Set - A Compiler Writers’
Guide.

Table 5.2 Typical floating point operation times for IMS T801

T801-20 T801-30
Operation Single length Double length Single length Double length
add 350 ns 350 ns 233 ns 233 ns
subtract 350 ns 350 ns 233 ns 233 ns
multiply 550 ns 1000 ns 367 ns 667 ns
divide 850 ns 1600 ns 567 ns 1067 ns

Timing is for operations where both operands are normalised fp numbers.

151

6 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

6.1 Power

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip
by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer boards
are recommended; if two layer boards are used, extra care shouid be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power-
down ramping, otherwise /atchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

6.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1uF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 10 MHz. It a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

vcC
_Ij CapPlus P.C.B. track
(,
Phase-locked = Dc?:auc?:g]rg
loops T 1uF
l

Q CapMinus P.C.B. track
GND

Figure 6.1 Recommended PLL decoupling

6.3 Clockin

Transputer family components use a standard clock frequency, supplied by the user on the Clockin input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockin,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockin clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of ClockIn pulse widths are met.

Osciliator stability is important. Clockln must be derived from a crysta! oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of butfers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

152 5 IMS T801 engineering data

Table 6.1 Input clock

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TODCLDCH | Clockin pulse width low 40 ns 1
TDCHDCL | Clockin pulse width high 40 ns 1
TDCLDCL | Clockin period 200 ns 1,24
TDCerror | Clockin timing error +0.5 ns 1,3
TDGC1DC2 | Difference in Clockin for 2 linked devices 400 ppm 14
TDCr Clockin rise time 10 ns 15
TDCt Clockin fall time 8 ns 1,5
Notes

1 These parameters are not tested.

2 Measured between corresponding points on consecutive falling edges.

3 Variation of individual falling edges from their nominal times.

4 This value aliows the use of 200 ppm crystal oscillators for two devices connected together by a link.

5 Clock transitions must be monotonic within the range VIH to VIL (table 11.3).

TDCerror ~ TDCerror ot

3 TDCerror
152.0v——-- _____ _-——— —
S A Y- Vet v . Syl it b N
08v—- — — — N

"TDCLDCH =~ TDCHDCL
TDCLDCL

Figure 6.2 Clockin timing

6.4 ProcSpecdSelect0-2

Processor speed of the IMS T801 is variabie in discrete steps. The desired speed can be selected, up to the
maximum rated for a particular component, by the three speed select lines ProcSpeedSelect0-2. The pins
are tied high or low, according to table 6.2, for the various speeds. The frequency of Clockin for the speeds
given in table 6.2 is 5 MHz. There are six valid speed select combinations.

6 System services 153

Table 6.2 Processor speed selection

Proc Proc Proc Processor Processor

Speed Speed Speed Clock Cycle

Select2 Select1 Select0 | Speed MHz Time ns Notes
0 0 0 20.0 50.0
0 0 1 225 44 4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 i Invalid
1 1 0 17.5 571
1 1 1 Invalid

Note: inclusion of a speed selection in this table does not imply immediate availability.

6.5 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC
is valid Clockin should be running for a minimum period TDCVRL before the end of Reset. The falling edge
of Reset initialises the transputer and starts the bootstrap routine. Link outputs are forced low during reset;
link inputs and EventReq should be held low. Memory request (DMA) must not occur whilst Reset is high
but can occur before bootstrap (page 167).

If BootFromRom is high, bootstrapping will take place immediately after Reset goes low, using data from
external memory; otherwise the transputer will await an input from any link. The processor will be in the low
priority state.

6.6 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot-
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority
state, and the W register points to MemStart (page 157).

154 S IMS T801 engineering data

Table 6.3 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TPVRH Power vaiid before Reset 10 ms
TRHRL. Reset pulse width high 8 Clockin 1
TDCVRL | Clockin running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockin 1
TBRVRL | BootFromRom setup 0 ms
TRLBRX | BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3
Notes
1 Full periods of Clockin TDCLDCL required.
2 At power-on raset.
3 Must be stable until after end of bootstrap period. See Boctstrap section.
ol o
Clockin Ay AT
| TDCVRL
[
VvCC
TPVRH i TRHRL
Reset 7 N
TBRVRLT = TRLBRX | | _
- | |- -
BootFromRom I P4 J J \
7’
Figure 6.3 Transputer reset timing with Analyse low
. _TRHRL [f
Reset N
TAHRH > TRLAL
Analyse]/
TBRVRL>| TALBRX /
BootFromRom / / ¢

Figure 6.4 Transputer reset and analyse timing

6 System services 155

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on any one of its links. The transputer is ready to receive the first byte on a link within two processer
cycles TPCLPCL after Reset goes iow.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Foliowing
reception of the iast byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

6.7 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

6.8 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling paint
(page 140). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered at
reset, whether Analyse is asserted or not. Memory refresh continues.

input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
. are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4.

Table 6.4 Register values after Analyse

! MemStart it bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of / when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (i.e. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.

156 5§ IMS T801 engineering data

6.9 ErrorOut

The ErrorQut pin is connected directly to the internal Error flag and follows the state of that flag. If ErrorOut
is high it indicates an error in one of the processes caused, for example, by arithmetic overfiow, divide by
zero, array bounds violation or software setting the flag directly (page 141). it can also be set from the floating
point unit under certain circumstances (page 141, 149). Once set, the Error flag is only cleared by executing
the instruction testerr. The error is not cleared by processor reset, in order that analysis can identify any
errant transputer (page 155).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
hait. This can be done by applying the ErrorOut output signal of the errant transputer to the EventReq pin
of a suitably programmed master transputer. Since the process state is preserved when stopped by an error,
the master transputer can then use the analyse function to debug the fault. When using such a circuit, note
that the Error flag is in an indeterminate state on power up; the circuit and software should be designed with
this in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

It a high priority process pre-empts a low priority one, status of the Eror and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status ot the Error flag is
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access o
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register / points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register / points
one byte past the instruction being executed. In both cases / will be copied to register A.

Analyse
A N - Slave Slave
Latch Transputer Transputer
Master N— 11 - 0 1
Transputer Reset out[o] Eroroutl1]
ErrorOut rrorQOut[1
Event [ErrorQu [ErrorOu
7
; Slave Slave
(transputer links not shown) + Transputer . Transputer
2 3
/L ErrorOut[2]]
E ErrorOut{3]
K

Figure 6.5 Error handling in a multi-transputer system

157

7 Memory

The IMS T801 can access 4 Gbytes of external memory space. The IMS T801 also has 4 Kbytes of fast
internal static memory for high rates of data throughput. Each internal memory access takes one processor
cycle ProcClockOut (page 162). Internal and external memory are part of the same linear address space.

IMS T801 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered 0. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory
begins at #80000070; this location is given the name MemStart.

The reserved area of internal memory below MemStart is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLoc0 for high priority processes and TPtrLoc! for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSavelLoc
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended
features such as block moves and floating point operations.

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. ROM boot-
strapping code must be in the most positive address space, starting at #7FFFFFFE. Address space immedi-
ately below this is conventionally used for ROM based code.

158 5 IMS T801 engineering data

hi Machine map lo Byte address Word offsets occam map
Reset Inst | #7FFFFFFE
#0 _
#80001000 — Start of external memory — #0400
1 #80000070 MemStart MemStart #1C ;
Reserved for #8000006C)
Extended functions #80000048
EregintSaveLoc #80000044
STATUSIntSaveLoc | #80000040
CregintSaveloc #8000003C
BregIntSavel.oc #80000038
AregintSaveloc #80000034
IptrintSavelLoc #80000030
WdescintSaveloc #8000002C
TPtrl.oc1 #80000028 >Note]
TPtrLocO #80000024
Event #80000020 #08 Event
Link 3 Input #8000001C #07 Link 3 Input
Link 2 Input #80000018 #06 Link 2 Input
Link 1 Input #80000014 #05 Link 1 Input
Link 0 Input #80000010 #04 Link 0 Input
Link 3 Output #8000000C #03 Link 3 Qutput
Link 2 Qutput #80000008 #02 Link 2 Output
Link 1 Output #80000004 #01 Link 1 Qutput
Link 0 Output #80000000 (Base of memory) #00 Link O Qutput

Figure 7.1 IMS T801 memory map
Notes

1 These locations are used as auxiliary processor registers and should not be manipulated by the user. Like
processor registers, their contents may be useful for implementing debugging tools (Analyse, page 155). For
details see Transputer Instruction Set - A Compiler Writers' Guide.,

159

8 External memory interface

The IMS T801 External Memory Interface (EMI) allows access to a 32 bit address space via separate address
and data buses.

The external memory cycle is divided into four Tstates with the following functions:

T1 Address and control setup time.
T2 Data setup time.
T3 Data read/write.

T4 Data and address hold after access.

Each Tstate is haif a processor cycle TPCLPCL long. An external memory cycle is always a complete
number of cycles TPCLPCL in length. The start of T1 always coincides with a rising edge of ProcClockOut.

T2 can be extended indefinitely by adding externally generated wait states of one complete processor cycle
each.

During an internal memory access cycle the external memory interface address bus MemA2-31 reflects the
word address used to access internal RAM, notMemWrB0-3 and notMemCE are inactive and the data bus
Mem©DO0-31 is tristated. This is true unless and until a DMA (memory request) activity takes place, when the
MemA2-31, MemDO0-31, nhotMemCE and notMemWrBO0-3 signals will be placed in a high impedance state
by the transputer.

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 155).

ProcClockout /U~ L N L
notMemWrB0-3 >~ Wiite Read Read N

notMemCE 4 X

MemA2-31 > Address X Address X Address X

— —
MemBbD0-31 > <

Figure 8.1 IMS T801 bus activity for 3 internal memory cycles

160 5 IMS T801 engineering data

8.1 Pin functions
8.1.1 MemA2-31

External memory addresses are output on a non-multiplexed 30 bit bus. The address is valid at the start of
T1 and remains so until the end of T4.

8.1.2 MemDO-31

The non-multiplexed data bus is 32 bits wide. The data bus is high impedance except when the transputer is
writing data. If only one byte is being written, the unused 24 bits of the bus are high impedance at that time.

if the data setup time for read or write is too short it can be extended by inserting wait states at the end of
T2.

8.1.3 notMemCE

The active low signal notMemCE is used to enable external memory on both read and write cycles.

Table 8.1 notMemCE to ProcClockOut skew

T801-30 T801-25 T801-20
SYMBOL | PARAMETER MIN [MAX | MIN | MAX | MIN | MAX | NOTE
TPCHEL | notMemCE falling 6 i0 8 12 10 14 1
from ProcClockOut rising
TPCLEH | ProcClockOut falling 6 10 8 12 10 14 1
to notMemCE rising

Notes

1 Units are ns.

ProcClockQut
TPCHEL TPCLEH

notMemCE \r—

Figure 8.2 IMS T801 skew of notMemCE to ProcClockOut

P
i

8 External memory interface 161

CapPlus vCeC +—
Clockin |'| : o m wbe by m—
GMHz) — CapMinus GND 1T -
LinkOIn — ErrorOut
100K é — notMemCE

GND — notMemWrB0

—{ — notMemWwrB1
Link0Out 56R — notMemWrBz
Linkiin . — notMemWrB3
Link10ut — A8 Link0 MomD0.7 JJ:—

IMS emut T Ks4
Link2In - T801 = MemDB8-15 :,FC
Link20ut ~——3— -—i 4
S6R ~ MemD16-23 ' atic
Link3ln —{ =0 [tf4 M |14 p
. 1 - . IC -
Link30ut MemD24-31 B4Ks4 v
Analyse RAM
MemWait ——— — MemGranted
MemReq
| MemA2-31

Figure 8.3 IMS T801 static RAM application

814 notMemWrB0-3

Four write enables notMemWrB0-3 are provided, one to write each byte of a word. When writing a word, the
four appropriate write enables are asserted; when writing a byte only the appropriate write enable is asserted.

815 MemWait

Wait states can be selected by taking MemWait high. Externally generated wait states of one complete
processor cycle can be added to extend the duration of T2 indefinitely.

8.1.6 MemRaq, MemGranted
Direct memary access (DMA) can be requested at any time by driving the asynchronous MemReq input high.
MemGranted follows the timing of the bus being tristated and can be used to signal to the device requesting

the DMA that it has control of the bus. Note that MemGranted changes on the falling edge of ProcClockOut
and can therefore be sampled to establish control of the bus on the rising edge of ProcClockOut.

162 5 IMS TB801 engineering data

8.1.7 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockin. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockin Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section).

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or
falling edges of ProcClockOut.

Table 8.2 ProcClockOut

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE

TPCLPCL | ProcClockQut period a-1 a a+1 ns 1

TPCHPCL | ProcClockOut pulse width high b-25 b b+2.5 ns 2

TPCLPCH | ProcClockOut pulse width low c ns 3

TPCstab | ProcClockQut stability 4 % 4
Notes

1 ais TDCLDCL/PLLx.
2 b is 0.5+TPCLPCL (half the processor clock period).
3 ¢is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

TPCLPCH | TPCHPCL
TPCLPCL .

A

Figure 8.4 IMS T801 ProcClockOut timing

8 External memory interface

8.2 Read cycle

Read cycle data may be set up on the bus at any time after the start of T1, but must be valid when the
IMS T801 reads it during T4. Data can be removed any time after the rising edge of notMemCE, but must
be off the bus no later than the middle of T1, which allows for bus turn-around time before the data lines are

driven at the start of T2 in a processor write cycle.

Byte addressing is carried out internally by the tMS T801 for read cycles.

Table 8.3 Read cycle

T801-30 T801-25 T801-20
SYMBOL | PARAMETER MIN | MAX | MIN | MAX | MIN | MAX | NOTE
TAVEL Address valid before chip enable low 6 8 10 1,3
TELEH Chip enable low 48 53 58 64 72 78 1,3
TEHEL Delay before chip enable re-assertion | 14 16 20 1,23
TEHAX Address hold after chip enable high 6 8 10 1,3
TELDrV Data valid from chip enable low 0 34 0 40 0 47 3
TAVDrvV Data valid from address valid 0 40 0 48 0 57 3
TDrVEH | Data setup before chip enable high 14 18 25 3
TEHDrZ Data hold after chip enable high 0 14 0 16 0 20 3
TWEHEL IWrite enable setup before chip enable | 14 16 20 3.4
ow
TPCHEL | ProcClockQut high to chip enable low 4] 8 10 1.3
Notes

1 This parameter is common to read and write cycles and to byte-wide memory accesses.

2 These values assumae back-to-back external memory accesses.

3 Units are ns,

4 Timing is for all four write enables notMemWrB0-3.

Tstates | Tt | T2 | T3 | T4 | T1 |
ProcClockOut y
el J‘—TPCHEL
T e
— jt— TAVEL [EHAX
TELEH | TEHEL

-y

3

N 1 \
notMemCE \ y
TAVOY | TDVEH Ferny
_ TELDV |

— TWEHEL

1
notMemwrB0-3 ~ / \

A

I

Y
Data0-31 >

Figure 8.5 IMS T801 external read cycle

164 5 IMS T801 engineering data

8.3 Write cycle

For write cycles the relevant bytes in memory are addressed by the write enabies notMemWrBO0-3. If a par-
ticular byte is not to be written, then the corresponding data cutputs are tristated. notMemWrB0 addresses
the least significant byte.

The write enables are gated with the chip enable signal notMemCE, allowing them to be used without
notMemCE for simple designs.

Data may be strobed into memory using notMemWrB0-3 without the use of notMemCE, as the write enables
go high between consecutive external memory write cycles.

Write data is placed on the data bus at the start of T2 and removed at the end of T4. The write cycle is
completed with notMemCE going high.

Table 8.4 Write cycle

T801-30 T801-25 T801-20
SYMBOL | PARAMETER MIN | MAX | MIN | MAX | MIN | MAX [NOTE
TDwVEH | Data setup before chip enable high | 33 40 50 1
TEHDwZ | Data hold after write 6 10 8 12 10 15 1
TDwZEL | Write datainvalid to nextchipenable | 6 8 10 1
TWELEL | Write enable setup to chip -1 0 -2 0 -3 0 1,2
enable low
TEHWEH \r:\{rirt]e enable hold after chip enable 0 1 0 2 0 3 1,2
i
Notes 2

1 Units are ns.

2 Timing is for all four write enables notMemWrB0-3.

Tstates | Tt | T2 | T3 | T4 | T1 |

ProcClockOut m
MemA2-31 X : X
notMemCE \ / \
L TOWZEL

s

Data0-31 _ —
——' et~ TWELEL =] [ﬂ- TEHWEH
notMemWrB0-3 \ /

Figure 8.6 IMS T801 external write cycle

8 External memory interface 165

8.4 Wait

Taking MemWait high with the timing shown in the diagram will extend the duration of T2 by one processor
cycle TPCLPCL. One wait state comprises the pair W1 and W2. MemWait is sampled during T2, and should
not change state in this region. If MemWait is still high when sampled in W2 then another wait period will be
inserted. This can continue indefinitely. Internal memory access is unaffected by the number of wait states
selected.

The wait state generator can be a simple digital delay line, synchronised to notMemCE. The Single Wait
State Generator circuit in figure 8.7 can be extended to provide two or more wait states, as shown in figure
8.8.

Table 8.5 Memory wait

T801-30 T801-25 T801-20
SYMBOL | PARAMETER MIN | MAX | MIN | MAX | MIN | MAX | NOTE
TPCHWtH | MemWait asserted after 16 20 25 1
ProcClockOut high
TAVWEH MemWait asserted after 16 20 25 i
Address valid
TPCHWIL | Wait low after 22 28 35 1
ProcClockOut high

Notes

1 Units are ns.

Tstates | T4 | T2 |wi [w2 | T3 | T4 | T1 |
ProcClockOut m
MemA2-31 X R X
notMemCE _\ / n__
- TPCHWL -
e S

MemWait 5/ / \ \ /
Data0-31 »—— B —
notMemWwrB0-3 \ /

Figure 8.7 IMS T801 memory wait timing

166 5 IMS T801 engineering data

vCC
1/2 74F74
S
R
notMemCE ——— 1 D Q t———> MemWait
ProcClockOut ———— | CP

Figure 8.7 Single wait state generator

VCC

1/6 74F04

¢ I ¢ T

notMemCE —[>0 L r
|

|

|

Lt

O >Dw

Q ——{—l— MemWait
cp |
| 12 74F784 |

Figure 8.8 Extendable wait state generator

1/2 74F74

|

|

|

|

Q |
|

ProcClockOut

8 External memory interface 167

8.5 Direct memory access

Direct memory access (DMA) can be requested at any time by driving the asynchronous MemReq input
high. MemReq is sampled during T1 of the processor cycle and the DMA device will then have control of
the bus at the beginning of the next processor cycle, (after one ProcClockQut for internal accesses and
two ProcClockOut cycles for external memory accesses, without wait states). When the processor transfers
control of the bus the signals MemA2-31, notMemWrB0-3 and notMemCE are tristated and MemGranted
is asserted high. MemGranted follows the timing of the bus being tristated and can be used to signal to
the device requesting the DMA that it has control of the bus. Note that MemGranted changes on the falling
edge of ProcClockOut and can therefore be sampled to establish control of the bus on the rising edge of
ProcClockOut. During the DMA cycles, MemReq is sampled during each high phase of ProcClockOut and
after it is taken low, control of the bus will be returned to the processor within two ProcClockOut cycles.

The processor is still able to access its internal memory while the DMA transter proceeds, however when an
external memory request is made the processor is forced to wait until the end of the DMA request. The DMA
device has no access to the transputer's internal memory.

While control of the bus is being transferred from the processor to the DMA device, an extra clock phase,
(one guarter of a ProcClockOut cycle) is allowed before the DMA transfer begins to ensure that the not-
MemCE and notMemWrB0-3 signals have been driven high before being tristated. This normally removes
the requirement for external pull-up resistors.

DMA allows a bootstrap program to be loaded into external memory for execution after reset. If MemReq
is asserted high during reset, MemGranted will be asserted high allowing access to the external memory
before the bootstrap sequence begins. MemReq must be asserted for at least one period of TDCLDCL of
Clockin before Reset is asserted. The DMA control circuitry should ensure that correct operation will result
if Reset should interrupt a normal DMA cycle.

s/ V4
MemReq | vz
MemGranted | I g7z
Reset | L
Bootstrap
activity 5 y) [B]

B Bootstrap sequence

Figure 8.9 IMS T801 DMA sequence at reset

168 5 IMS T801 engineering data

Table 8.6 Memory request

T801-30 T801-25 T801-20
SYMBOL PARAMETER MIN | MAX | MIN | MAX | MIN | MAX | NOTE
TMRHMGH | Memory request response time 58 a 70 a 85 a 1,2
TMRLMGL {_Aemory request end response 60 66 75 80 80 | 100 2
ime
TAZMGH Address bus ftristate before 0 0 0 2
MemGranted
TDZMGH Data bus tristate before 0 0 0 2
MemGranted
Notes

1 Maximum respense time a depends on whether an external memory cycle is in progress. Maximum time is
(2 processor cycles) + (number of wait state cycles) for word access.

2 Units are ns.

Tstate | T1 | T2 | T3 | T4 | T1{T2 | Tn| T4 |T1|T2|T3|T4 | T1|
o

ProcClockOut _ /~ __/ _/ 1IN/ "/ /L \
notMemCE ~ | \ / \ /]
notMemWrB0-3 ~) N

TAZMGH
*
MemA2-31 _ X~ X > X
I
TDZMGH :
Data0-31 :
I
I
MemReq '
I
» TMRHMGH TMRLMGL :
!
MemGranted) {
/7 |
Write TriState DMA Write

Figure 8.10 IMS T801 memory request timing

169

9 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel {additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

EventWaiting is asserted high by the transputer when a process executes an input on the event channel;
typically with the occam EVENT ? ANY instruction. It remains high whilst the transputer is waiting for or
servicing EventReq and is returned low when EventAck goes high. The EventWaiting pin changes near the
falling edge of ProcClockOut and can therefore be sampled by the rising edge of ProcClockOut.

The EventWaiting pin can only be asserted by executing an in instruction on the event channel. The
EventWaiting pin is not asserted high when an enable channel (enbc) instruction is executed on the Event
channel (during an ALT construct in occam, for example). The EventWaiting pin can be asserted by executing
the cccam input on the event channel (such as Event ? ANY), provided that this does not occur as a
guard in an alternative process. The EventWaiting pin can not be used to signify that an alternative process
(ALT) is waiting on an input from the event channel.

EventWaiting allows a process to control external logic; for example, to clock a number of inputs into a
memory mapped data latch so that the event request type can be determined.

Only one process may use the event channe! at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 136. Setting a high priority task to wait for an event input allows the user to interrupt a transputer
program running at low priority. The time taken from asserting EventReq to the execution of the microcode
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles:

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise.
Cycle 2 Edge detect the synchronised EventReq and form the interrupt request.
Cycle 3 Sample interrupt vector for microcode ROM in the CPU.

Cycle 4 Execute the interrupt routine for Event rather than the next instruction.

170 5 IMS T801 engineering data

Table 9.1 Event

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a+5 ns 1
TKLVH Delay before re-assertion of event request 0 ns
TKHEWL | Event acknowiedge to end of event waiting 0 ns
TKLEWH | End of event acknowledge to event waiting 0 ns
Notes
1 ais 3 processor cycles TPCLPCL.
EventReq j
TVHKH e TVLKL
TKLVH
EventiAck \\ /
TKHEWL <« TKLEWH
EventWaiting * ‘[m
Process waiting for Event Event waiting for Process

Figure 9.1 IMS T801 event timing

171

10 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit foliowed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T801 links allow an acknowledge packet to be sent before the data packet has been fully received.
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links.

The IMS T801 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they
can be used at 20 Mbits/sec for IMS T801-20 and IMS T801-25. Links are not synchronised with Clockin
or ProcClockQut and are insensitive to their phases. Thus links from independently clocked systems may
communicate, providing only that the clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be iess than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, aithough the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpeed. LinkSpeed allows Links 0, 1, 2 or 3 to be set to 10 or 20 Mbits/sec.
Table 10.1 shows uni-directional and bi-directional data rates in Kbytes/sec for each link speed. Data rates
are quoted for a transputer using internal memory, and will be affected by a factor depending on the number
of external memory accesses and the length of the external memory cycle.

Table 10.1 Speed Settings for Transputer Links

Link Kbytes/sec
Special | Mbits/sec Uni Bi
0 10 910 1250
1 20 1740 2350

_[H™H[o]1]2]3]4 5 6]7]L, AL

| Data | | Ack |

Figure 10.1 IMS T801 link data and acknowledge packets

172 5 IMS T801 engineering data

Table 10.2 Link

SYMBOL PARAMETER MIN NOM MAX { UNITS | NOTE
TJQr | LinkOut rise time 20 ns 1
TJQf LinkOut fall time 10 ns 1
TJDr Linkin rise time 20 ns 1
TJDf Linkin fall time 20 ns 1
TJQJD Buffered edge delay 0 ns
TJBskew | Variation in TJQJD 20 Mbits/s 3 ns 2
10 Mbits/s 10 ns 2
CLiz Linkln capacitance @ f=1MHz 7 pF 1
CLL LinkQut load capacitance 50 pF
RM Series resistor for 1000} transmission line 56 ohms
Notes

1 These parameters are samplad, but are not 100% tested.

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

Figure 10.2 IMS T801 link timing

LinkOut 15V~ — = X — - — — — — —

Latest TUQJD
Earliest TIQJD

Linkin 15V— = - — — — e -

TJBskew

Figure 10.3 IMS T801 buffered link timing

10 Links

173

Transputer family device A
LinkOut,

Linkin

y

A

Linkin

LinkOut
Transputer family device B

Figure 10.4 IMS T801 Links directly connected

Transputer family device A

20=1000hms
LinkQut —— £) F Linkin
RM
Linkin LinkOut
Zo=100ohms RM

Transputer family device B

Figure 10.5 IMS T801 Links connected by transmission line

Transputer family device A

LinkOut

LinkIn

M~

L/
buffers

.
-~

Py
r

Linkin

!
~

LinkQut
Transputer family device B

Figure 10.6 IMS T801 Links connected by buffers

174

11 Electrical specifications

11.1

DC electrical characteristics

Table 11.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS | NOTE
VCC DC supply voltage 0 7.0 \ 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 Vv 1,23
1| Input current +25 mA 4
OSCT Output short circuit time {(one pin) 1 S 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W
Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies 1o any input or output pin and applies when the voltage on the pin is between GND

and VCC.
Table 11.2 Operating conditions
SYMBOL PARAMETER MIN MAX UNITS | NOTE
VCC DC supply voltage 4.75 5.25 Y 1
VI, VO Input or output voltage 0 VvCC \ 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range 0 70 °C 3
Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rata 400 linear ft/min transverse air flow.

11

Electrical specifications 175
Table 11.3 DC characteristics
SYMBOL PARAMETER MIN MAX UNITS | NOTE
VIH High level input voltage 2.0 VCC+0.5 Vv 1,2
VIL Low level input voltage -0.5 0.8 Vv 1.2
Il Input current @ GND<«VI<VCC +10 uA 1,2
VOH Output high voltage @ IOH=2mA VCC-1 \" 1,2
vOL Output low voltage @ 10L=4mA 04 \" 1,2
i0S Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6
65 100 mA 1,2,4,6
102 Tristate output current @ GND<VO<VCC +10 uA 1,2
PD Power dissipation 1.2 w 25
CIN Input capacitance @ f=1MHz 7 pF 6
CcOzZ Qutput capacitance @ f=1MHz 10 pF 6
Notes

1 All voltages are with respect to GND.

2 Parameters for IMS T801-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency = S MHz.

3 Current sourced from non-link outputs excluding ProcClockOut.

4 Current sourced from link outputs and ProcClockOut.

5 Power dissipation varies with output loading and program execution.
Power dissipation for procassor operating at 20 MHz.

6 This parameter is sampled and not 100% tested.

11.2 Equivalent circuits
vCC
R1 Load for: R1 R2 Equivaient load:
Output > Link outputs 1K96 47K |1 Schottky TTL input
Other outputs | 970R 24K |2 Schottky TTL inputs
50pF === R2 Diodes are 1N916
GND i

Figure 11.1

Load circuit for AC measurements

176 § IMS T801 engineering data

Vdd-1
Inputs VIH
ov
Vdd-1
Inputs VIL
ov
tPHL
Vdd
Outputs 1.5V
ov
tpLH _
Vdd B |
Outputs 1.5V
ov

Figure 11.2 AC measurements timing waveforms

vCC
Test point :'-—j—-
510R
Output under test

e
anD 50pF T T

Figure 11.3 Tristate load circuit for AC measurements

11.3 AC timing characteristics

Table 11.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS | NOTE

TDr Input rising edges 2 20 ns 1,2,3

TOf Input falling edges 2 20 ns 1,23

TQr OCutput rising edges 25 ns 1,4

TQf Cutput falling edges 15 ns 1,4
Notes

1 Non-link pins; see section on links.
2 All inputs except Clockin; see section on Clockin.
3 These parameters are not tested.

4 These parameters are sampled, but are not 100% tested.

11 Electrical specifications 177

Figure 11.4 IMS T801 input and output edge timing

30 30 — Rise time
- Rise time -
Time 20 Time 20 7 Fall time
ns - Fall time ns -
10 10 - Skew
I I 1T 1 T 1T 7 1T 1T T 1 |
40 60 80 100 40 60 80 100
Load Capacitance pF Load Capacitance pF
Link and ProcClockQut EMI
Figure 11.5 Typical rise/fall times
Notes

1 Skew is measured between notMemCE with a standard load (2 Schottky TTL inputs and 30 pF) and notMemCE
with a load of 2 Schottky TTL inputs and varying capacitance.

11.4 Power rating

Internal power dissipation P;yr of transputer and peripheral chips depends on VCC, as shown in figure 11.6.
Prnr is substantially independent of temperature.

Total power dissipation Pp of the chip is
Pp =Pyt + Pro
where P;o is the power dissipation in the input and output pins; this is application dependent.
Internal warking temperature T; of the chip is
Ty=T4s+6J4Pp

where T4 is the external ambient temperature in °C and 8J 4 is the junction-to-ambient thermal resistance in
°C/W. §.J4 for each package is given in the Packaging Specifications section.

178 5 IMS T801 engineering data

.~ 1801-30 (projected)
-

800 T801-25
R T801-20
700
Power
PINT 600 -
mw -
500
\ r T 1 i [| 1T T T T | i
44 46 48 50 52 54 58
VCC Volts
Figure 11.6 IMS T801 internal power dissipation vs VCC
[
— —I—
650 -
Power 600 +
PD —
mw 550
- +
500
[T | 1 | | { T 7T I
15 20 25 30

Processor frequency MHz

Figure 11.7 IMS T801 typical power dissipation with processor speed

179

12 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

With transputers incorporating an FPU, this type of performance calculation is straight forward when consider-
ing only integer data types. However, when floating point calculations using the REAL32 and REAL64 data
types are present in the program, complications arise due to the concurrency inherent in the transputer's de-
sign whereby integer caiculations can be overlapped with floating point calculations. A more comprehensive
guide to the impact of this concurrency on transputer performance can be found in the Transputer Instruction
Set - A Compiler Writers’ Guide.

12.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table 12.1 are used to represent the guantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 12.1 Key to performance table

np | number of component processes

ne | number of processes earlier in queue

r 1 it INT parameter or array parameter, 0 if not

ts number of table entries {table size)

w width of constant in nibbles

p number of places to shift

Eg | expression used in a guard

Et timer expression used in a guard

Tb | most significant bit set of multiplier {(-1) if the multiplier is 0)

Tbp | most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbe | most significant bit set in the two’s complement of a negative multipiier
nsp | Number of scalar parameters in a procedure

nap | Number of array parameters in a procedure

180 5 IMS T801 engineering data
Table 12.2 Performance
Size (bytes) Time (cycles)
Names
variables
in expression 1.1+r 2.1+42(r)
assigned to or input to 1.14r 1.1+(r)
in PROC or FUNCTION call,
corresponding to an INT parameter 1.14r 1.1+(r)
channels 1.1 2.1
Array Variables (for single dimension arrays)
constant subscript 0 0
variable subscript 5.3 7.3
exprassion subscript 5.3 7.3
Declarations
CHAN OF protocol 3.1 3.1
[size]CHAN OF protocol 9.4 2.2 +202+8ize
PROC body+2 0
Primitives
assignment 0 0
input 4 26.5
output 1 26
STOP 2 25
SKIP 0 0
Arithmetic operators
+ - 1 1
* 2 39
/ 2 40
REM 2 38
>> << 2 3+p
Modulo Arithmetic operators
PLUS 2 2
MINUS 1 1
TIMES (fast multiply, positive operand) 1 4+Tbp
TIMES (fast multiply, negative operand) 1 5+The
Boolean operators
OR 4 8
AND NOT 1 2
Comparison operators
= constant 0 1
= variable 2 3
<> constant 1 3
<> variable 3 5
> < 1 2
>= <= 2 4
Bit operators
NN >~ 2 2
Expressions
constant in expression w w
check if error 4 6

12 Performance

181

Table 12.3 Performance

Procedure or function call

3.5+(nsp-2)*1.1

Size (bytes) Time (cycles)
Timers
timer input 2 3
timer AFTER
if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne«9
ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+nes9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et
Constructs
SEQ 0 0
IF 1.3 1.4
if guard 3 43
ALT (non timer) 6 26
alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg
PAR 11.5+{np-1)x7.5 19.5+(np-1)+30.5
WHILE 4 12

16.5+(nsp-2)*1.1

+hapx2.3 +nap+2.3
Replicators
replicated SEQ 7.3{+5.1} (-3.8)+15.1xcount{+7.1}
replicated IF 12.3{+5.1} (-2.6)+19.4xcount{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4scount{+14.2}
replicated timer ALT 24.8{+10.2} 62.4+33.4xcount{+14.2}
replicated PAR 39.1{+5.1} (-6.4)+70.9«count{+7.1}

12.2 Fast multiply, TIMES

The IMS T801 has a fast integer multiplication instruction product. For a positive multiplier its execution time
is 4+Thp cycles, and for a negative multiplier 5+Thc cycles (table 12.1). The time taken for a multiplication

by zero is 3 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the 0occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

182 5 IMS T801 engineering data

12.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic. In the IMS T801, floating point arithmetic is taken care of by the FPU. In
table 12.4 n gives the number of places shifted and all arguments and results are assumed to be local. Full
details of these functions are provided in the occam reference manual, supplied as part of the development
system and available as a separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling

overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.

Table 12.4 Arithmetic performance

+ cycles for
Function Cycles parameter access
LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDIFF 3 8
LONGPROD 34 8
LONGDIV 36 8
SHIFTRIGHT (n<32) 4+n 8
(h>=32) n-27
SHIFTLEFT (n<32) 4+n 8
(n>=32) n-27
NORMALISE (n<32) n+6 7
(n>=32) n-25
(n=64) 4
ASHIFTRIGHT SHIFTRIGHT+2 5
ASHIFTLEFT SHIFTLEFT+4 5
ROTATERIGHT SHIFTRIGHT 7
ROTATELEFT SHIFTLEFT 7
FRACMUL LONGPRCD+4 5

t Assuming local variables.

12 Performance 183

12.4 Floating point operations

All references to REAL32 or REAL64 operands within programs compiled for the IMS T801 normally produce
the following performance figures.

Table 12.5 Floating point performance

Size (bytes) | REAL32 Time (cycles) | REAL64 Time (cycles)
Names
variables
in expression 3.1 3 5
assigned to or input to 3.1 3 5
in PROC or FUNCTION call,
corresponding to a REAL
parameter 1.14r 1.1+r 1.14r
Arithmetic operators
+ - 2 7 7
* 2 11 20
/ 2 17 32
REM 11 19 34
Comparison operators
= 2 4 4
<> 3 6 6
> < 2 5 5
>= L= 3 7 7
Conversions
REAL32 to - 2 3
REALG64 t0 - 2 6
To INT32 from - 5 9 9
To INTE4 from - 18 32 32
INT32 10 - 3 7 7
INT64 to - 14 24 22

12.4.1 Floating point functions
These functions are provided by the development system. They are compiled directly into special purpose

instructions designed to support the efficient implementation of some of the common mathematical functions
of other languages. The functions provide ABS and SQRT for both REAL32 and REAL64 operand types.

Table 12.6 IMS T804 fioating point arithmetic performance

+ cycles for parameter access t
Function | Cycles REAL32 REAL64
ABS 2 8
SQRT 118 8
DABS 2 12
DSQRT 244 12

t+ Assuming local variables.

184 5 IMS T801 engineering data

12.4.2 Special purpose functions and procedures

The functions and procedures given in tables 12.8 and 12.9 are provided by the development system to give
access to the special instructions available on the IMS T801. Table 12.7 shows the key to the table.

Table 12.7 Key to special performance table

Tb | most significant bit set in the word counting from zero

n | number of words per row (consecutive memory locations)
r number of rows in the two dimensional move

nr | number of bits to reverse

Table 12.8 Special purpose functions performance

+ cycles for
Function Cycles parameter access }
BITCOUNT 2+Tb 2
CRCBYTE 1 8
CRCWORD 35 8
BITREVNBIT 5+nr 4
BITREVWORD 36 2

t Assuming local variables.

Table 12.9 Special purpose procedures performance

+ cycles for
Procedure Cycles parameter access *
MOVE2D B8+(2n+23)«r 8
DRAWZD 8+(2n+23)xr 8
CLIP2D 8+(2n+23)xr 8

t Assuming local variables.

12.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are heid in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memaory cycle, denoted
as e. The vaiue of e for the IMS T801 is greater than or equal to 1.

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated
for linear code sequences. For larger values of e, the number of extra cycles required for linear code
sequences may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles.

These estimates may be refined for various constructs. In table 12.10 n denotes the number of components
in a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

12 Performance 185

Table 12.10 External memory performance

IMS T801
Program off chip Data off chip

Boolean expressions e-2 0
IF 3en-8 en
Replicated IF (6e-4)n+7 (5e-2)n+8
Replicated SEQ (3e-3)n+2 (4e-2)n
PAR (3e-1)n+8 3en+4
Replicated PAR (10e-8)h+8 16en-12
ALT (2e-4)n+be (2e-2)h+10e-8
Array assignment and 0 max (2e, e(b/2))

communication in

one transputer

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program {Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

Table 12.11 IMS T801 external memory performance

Program =2 | e=3 | e=4 ; e=5 || On chip
Program oft chip 1 13115117 {19 1
_ 2 1111212 |13 1
Data off chip 1 15 (18] 21 | 23 1
2 12114] 16 | 1.7 1
Program and data off chip 1 18 | 22 | 27 | 3.2 1
2 13116 1| 18 | 2.0 1

12.6 Interrupt latency
If the process is a high priority one and no other high priority process is running, the latency is as described

in table 12.12. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also
given where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 12.12 Interrupt latency

Typical Maximum
TPCLPCL ™m TPCLPCL Tm
IMS T801 with FPU in use 19 38 78 156
IMS T801 with FPU not in use 19 38 58 116

186

13 Package specifications
13.1 100 pin grid array package

Index .
1 2 3 4 5 6 7 8 9 10
N N/ N N T W N \(NN
A A21 A23 A25 A26 A30 A31 D2 D5 D6 D13
\, A A A o A\ N\ /N A /
/7 A — Y a4 Y 4 N/ N \ ™\
B A5 A9 A11 A24 A29 GND D3 D7 vCC D14
N A A A A J\ A A N /
4 N/ N N N N N N N N
C A4 A6 A8 A22 A10 DO I D4 D9 D12 D16
—— J; —O—— T <
D| GND A2 A3 A7 A27 D1 D8 D10 D15 D17
N N\ N VaN PaN FaN N 2\ N 7
4 N A N N N N \ N
E A17 A19 A18 A20 A28 D11 Ims D19 D20 D21
N Fa FaN Ve Ve Ul 4 FaN PN N\ Ve
/7 ~N \r N N A" A4 N/ N N N\
F| A6 A15 A14 A13 | Reset Eé{ﬁ' D24 | GND | D23 D22
\ PN A A o N N A A A y
(N N NS N N N N N
hot not Link | Link
G Al12 Mem Mem GND ini Speed D31 D27 D26 D25
WrB2 | WrB0 P
\ A A A A / \, A /
d Y N N N N Y v N
not Proc
Mem Mem Link Link Proc
H xfg?s Wait Req Out3 in0 cg’u‘ik GND Speedi D30 D28
N\ VaN Fa N 2\ FaN 7\)\ e /
7 AV AV N Y N N A4 AV N
hot Boot
Mem Event Link Link Event
J wfan: Granted| Req In2 Out1 | waiting | Clockin ';{gm Analyse| D29
N\ N N N)\ N P Y o 7
r ~/ A4 N ’ N N N N N
not .
Event Link Link Link Cap Cap Proc Proc
K| NMem | “Ack in3 | outz2 | outo | YCC | Plus | Minus |Speedo | Speed2
. P A A A N e A N\ /

Figure 13.1 IMS T801 100 pin grid array package pinout - top view

13 Package specifications 187
. M
index ¥ "El‘ 10987 65 4321
\ g N a 7
= PEPOOOOOOOO (A
F CNoNoNORONONONONONONE:)
PPPEPAEROEO®E |C
p—a oNoNcEoNONONONONONOMIY
ABY P K OCNONONONONONORONONONNES
pe——= ONONONONONORORONONCIEY
p—x PPRPPRPOPOEE G
oNoNoNONONONONONONOMI
* | {—@@@@@@@@@@J
| \ N = ‘g@@)@@@@@@@@,K
le——— B2 ——— ~C [: J G > Ll
- A - D - K -
Figure 13.2 100 pin grid array package dimensions
Table 13.1 100 pin grid array package dimensions
Millimetres inches
DIM NOM TOL NOM TOL Notes
A 26.924 +0.254 1.060 +0.010
B1 17.019 +0.127 0.670 +0.005
B2 18.796 +0.127 0.740 +0.005
C 2.456 +0.278 0.097 +0.011
D 4572 +0.127 0.180 +0.005
E 3.302 +0.127 0.130 +0.005
F 0.457 +0.051 0.018 £0.002 | Pin diameter
G 1.143 +0.127 0.045 +0.005 | Flange diameter
K 22.860 +0.127 0.900 +0.005
L 2.540 +0.127 0.100 +0.005
M 0.508 0.020 Chamfer
Table 13.2 100 pin grid array package junction to ambient thermal resistance
SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
fJA At 400 linear f/min transverse air fiow 35 °C/W

188

14 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockin is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 14.1 IMS T801 ordering details

INMOS Processor Processor
designation clock speed | cycle time | PLLx Package
IMS T801-G20S 20.0 MHz 50 ns 4.0 | Ceramic Pin Grid
IMS T801-G25S 25.0 MHz 40 ns 5.0 | Ceramic Pin Grig
IMS T801-G30S 30.0 MHz 33ns 6.0 | Ceramic Pin Grid
IMS T801-G20M 20.0 MHz 50 ns 4.0 | Ceramic Pin Grid

