4K-BIT SERIAL EEPROM WITH MICROWIRE INTEFACE

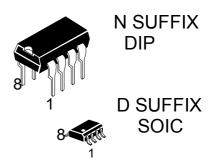
(compatible to CAT93C66 Catalyst)

DESCRIPTION

The IN93LC66 is a Electric erasable programmable ROM (EEPROM) memory data capacity 4K (512x8 or 256x16) with 3-wire interface.

There are 3 modification of ICs

A: ICs IN93AA66AD/AN are 8 bits registers (512x8) - ORG pin not used


B: ICs IN93AA66BD/BN are 16 bits registers (256x16) - ORG pin not used

C: ICs IN93AA66CN/CD are configured as either registers of 8 bits (ORG pin at GND) or 16 bits (ORG pin at Vcc, or not connected). Each register can be written (or read) serially by using the DI (or DO) pin.

The ICs is purposed for reading, writing & nonvolatile data storage. ICs can be used in TV-sets, telecom equipment & consumer electronic devices.

FEATURES

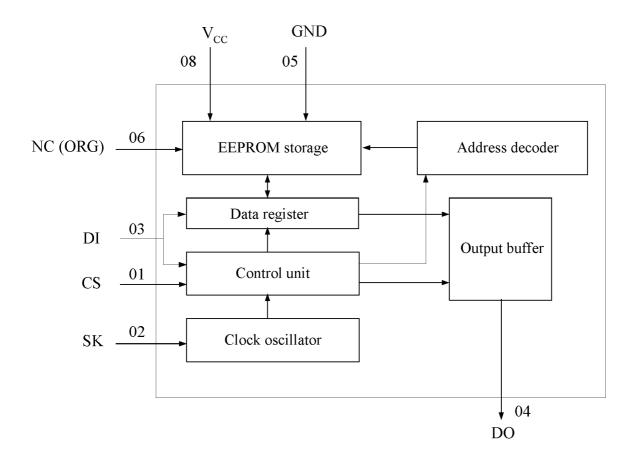
- 100 year data (4K) retention for Ta=25°C;
- Single power supply source (V_{CC} = 1,8 V − 6,0 V);
- Build-in voltage multiplier;
- Serial I/O bus;
- Autoincrement of address word;
- Self-timed write cycle;
- 1,000,000 Program/erase cycles;
- Power-up internal logic setup;
- Read cycles quantity are not limited;
- Low power consumption;
- Operating temperature range -40 … +85 °C.

PIN FUNCTIONS

Pin Name	Function	CS 01 08 Vcc	
CS	Chip Select	CS 01 08 VCC	
SK	Clock Input	SK 02 07 NC	
DI	Serial Data Input		
DO	Serial Data Output		
V _{CC}	+1.8 to 6.0V Power Supply	DI 03 06 ORG*(NC)	
GND	Ground		
ORG*	Memory Organization pin *	DO 04 05 GND	
NC	No Connection		

Note

* this pin is present only in IN93AA66CN, IN93AA66CD:


When the ORG pin is connected to V_{CC} , the x16 organization is selected.

When it is connected to ground, the x8 pin is selected.

If the ORG pin is left unconnected, then an internal pullup device will select the x16 organization.

IN93AA66AN/AD, IN93AA66BN/BD, IN93AA66CN/CD Block Diagram

Recommended Operation Conditions & Maximum Ratings*

Р	arameter, unit	Symbol	Recommended Operation Conditions		Maximum Ratings		
			Min	Max	Min	Max	
Supply voltage,	1	U _{cc}	1,8	6,0	- 0,5	7,0	
High level input	4,5 V ≤ Ucc ≤ 5,5 V		2,0	Ucc + 1,0	-0,5		
voltage, V	1,8 V ≤ Ucc < 4,5 V	UIH	0,7Ucc	Ucc + 1,0		Ucc + 1,0	
Low level input	4,0 V ≤ Ucc ≤ 5,5 V		-0,1	0,8	- 0,5		
voltage, V	1,8 V ≤ Ucc < 4,0 V	U _{IL}	0	0,2Ucc		_	
Low level output	current мA	I _{OL}	_	2,1	_	-	
Output short-circ	uit current, mA	I _{OS} ¹⁾	_	-	_	100	
Output short-circ		l _{os} ¹⁾	-	-	_	100	

Electric Parameters

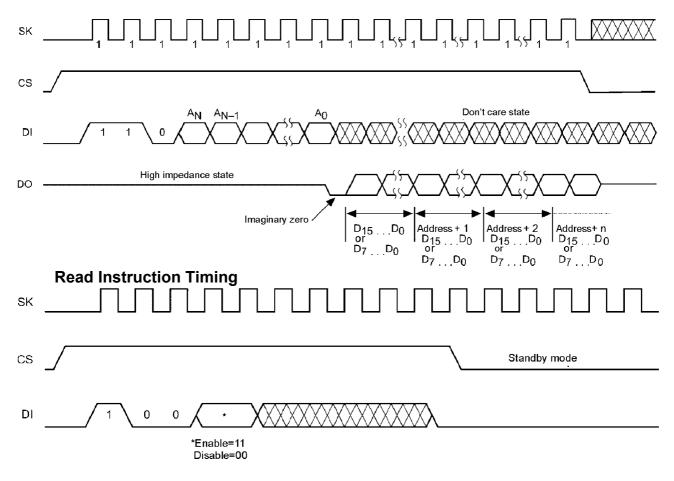
Parameter, unit	Symbol	Mode	Min	Max	Т _А , °С	
Low level output voltage, V	U _{OL1}	4,5 V ≤ U _{CC} ≤ 5,5 V I _{OL} = 2,1 mA	-	0,4	25 ± 10; -45; 85	
High level output voltage, V	U _{OH1}	4,5 V ≤ U _{CC} ≤ 5,5 V I _{OH} = -400 uA	2,4	_		
Low level output voltage, V	U _{OL2}	1,8 V ≤ U _{CC} < 4,5 V I _{OL} = 1 mA	-	0,2		
High level output voltage, V	U _{OH2}	1,8 V ≤ U _{CC} < 4,5 V I _{OH} = -100 uA	U _{CC} -0,2	_		
Low level input leakage current, uA	I _{ILL}	U ₁ =0 V 1,8 V ≤ U _{CC} ≤ 6,0 V	-	-1,0		
High level input leakage current, uA	I _{ILH}	U₁ = Ucc 1,8 V ≤ U _{CC} ≤ 6,0 V	-	1,0		
Low level output leakage current, uA	I _{OLL}	$1,8 V \le U_{CC} \le 6,0 V$ Ucs = 0 V U ₀ = 0 V	-	-1,0		
High level output leakage current, uA	I _{OLH}	$U_{\rm O} = U_{\rm CC}$ $U_{\rm CS} = 0 V$ $1,8 V \le U_{\rm CC} \le 6,0 V$	-	1,0		
Consumption current (8-bit mode), uA IN93AA66CN, IN93AA66CD IN93AA66AN, IN93AA66AD		Ucc = 5,5 V U_{cs} = 0 V U_{ORG} = 0 V ORG not connected	-	10		
Consumption current (16-bit mode), uA IN93AA66CN, IN93AA66CD	I _{CC2}	Ucc = 5,5 V $U_{CS} = 0 V$ $U_{ORG} = Ucc or$ not connected	-	10		
IN93AA66AN, IN93AA66AD		ORG not connected				
Consumption current (Operating Read), uA	I _{OCC R}	Ucc = 5,0 V f _c = 1 MHz	-	500		
Consumption current (Operating Write/Erase), mA	I _{OCC E/W}	Ucc = 5,0 V f _c = 1 MHz	-	3,0		
	t _{PD0}	$\begin{array}{l} \text{4,5 V} \leq \text{U}_{\text{CC}} \leq \text{6,0 V} \\ \text{f}_{\text{C}} \text{= 2 MHz} \end{array}$	-	250		
Output Delay to Low, ns		$2,5 V \le U_{CC} \le 6,0 V$ f _c = 0,5 MHz	-	500		
		$1,8 \text{ V} \le \text{U}_{CC} \le 6,0 \text{ V}$ f _c = 250 kHz	-	1000	1	
Output Delay to High, ns	t _{PD1}	$\begin{array}{c} 4,5 \text{ V} \leq \text{U}_{\text{CC}} \leq 6,0 \text{ V} \\ \text{f}_{\text{C}} = 2 \text{ MHz} \end{array}$	-	250	1	
		$2,5 V \le U_{CC} \le 6,0 V$ f _c = 0,5 MHz	-	500		
		$1.8 V \le U_{CC} \le 6.0 V$ $f_{C} = 250 \text{ kHz}$	-	1000		

Parameter, unit	Symbol	Mode	Min	Max	T _A , °C
Output Delay to High-Z, ns	t _{HZ}	4,5 V \leq U _{CC} \leq 6,0 V f _C = 1 MHz	-	100	25 ± 10; -40; 85
		$2,5 V \le U_{CC} \le 6,0 V$ f _c = 0,5 MHz	-	200	
		$1,8 V \le U_{CC} \le 6,0 V$ f _c = 250 kHz	-	400	
Write/Erase cycle, ms	t _{CY}	$4,5 V \le U_{CC} \le 6,0 V$ $f_{C} = 1 MHz$	-	5	
		$2,5 V \le U_{CC} \le 6,0 V$ f _C = 0,5 MHz	-	5	
		$1,8 V \le U_{CC} \le 6,0 V$ f _c = 250 kHz	-	5	
Output Delay to Status Check, ns	t _{sv}	$4,5 V \le U_{CC} \le 6,0 V$ $f_{C} = 2 MHz$	-	250	
		$2,5 V \le U_{CC} \le 6,0 V$ f _c = 0,5 MHz	-	500	
		$1,8 V \le U_{CC} \le 6,0 V$ f _c = 250 kHz	-	1000	
Power-up to Read Operation Time, ms	t _{PUR}	$4,5 V \le U_{CC} \le 6,0 V$ $f_{C} = 2 MHz$	-	1,0	
		$2,5 V \le U_{CC} \le 6,0 V$ f _C = 0,5 MHz	-	1,0	
		$1,8 V \le U_{CC} \le 6,0 V$ f _c = 250 kHz	-	1,0	
Power-up to Wtite Operation Time, ms	t _{PUW}	$4,5 V \le U_{CC} \le 6,0 V$ $f_{C} = 2 MHz$	-	1,0	
		$2,5 V \le U_{CC} \le 6,0 V$ f _C = 0,5 MHz	-	1,0	
		$1,8 V \le U_{CC} \le 6,0 V$ f _c = 250 kHz	-	1,0	
Program/erase cycles	N _{E/W}	Ucc = 5,0 V	1000000	-	25 ± 10
Notes 1.t _{PUR} & t _{PUW} times are delays from 2. U _{CS} U _{DDC} – voltages applied to C			_11		

2. U_{CS}, U_{ORG} – voltages applied to CS, ORG pins

3-wire Interface Parameters (-40 $^{\circ}C \le T_A \le 85 {^{\circ}C}$, C_L=100 pF)

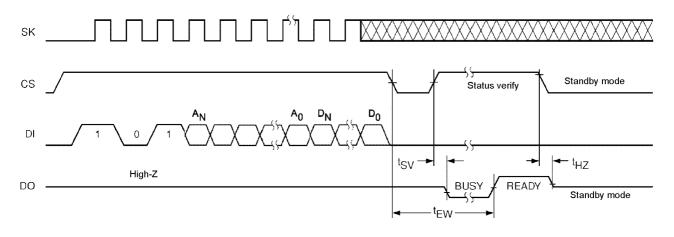
Symbol	Parameter, unit	1,8V≤U _{CC} ≤6,0V		2,5V≤L \	J _{CC} ≤6,0 ∕	4,5V≤U _{CC} ≤6,0V	
		Min	Max	Min	Max	Min	Max
f _C	Clock frequency, MHz	-	0,25	-	0,5	-	2
t _{css}	CS Setup Time, ns	200	-	100	-	50	-
t _{CSH}	CS Hold Time, ns	0	-	0	-	0	-
t _{DIS}	DI Setup Time, ns	400	-	200	-	100	-
t _{DIH}	DI Hold Time, ns	400	-	200	-	100	-
$t_{\rm CSMIN}$	Minimum CS Low Time, ns	1000	-	500	-	250	-
t _{skhi}	Minimum SK High Time, ns	1000	-	500	-	150	-
t _{sklow}	Minimum SK Low Time, ns	1000	-	500	-	150	-



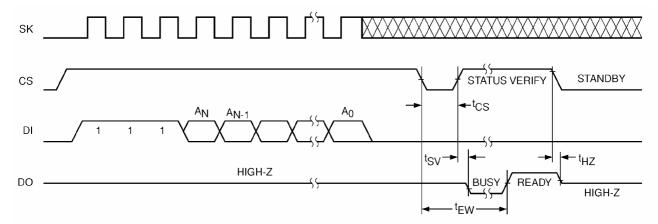
Instruction	n Set						
	Start	Op-	Addre	ess	D	ata	Comments
Instruction	Bit	code	x8	x16	x8	x16	Comments
READ	1	10	A8-A0	A7-A0			Read Address AN- AO
ERASE	1	11	A8-A0	A7-A0			Clear Address AN- AO
WRITE	1	01	A8-A0	A7-A0	D7-D0	D15-D0	Write Address AN- AO
EWEN	1	00	11XXXXXXX	11XXXXXX			Write Enable
EWDS	1	00	00XXXXXXX	00XXXXXX			Write Disable
ERAL	1	00	10XXXXXXX	10XXXXXX			Clear All Addresses
WRAL	1	00	01XXXXXXX	01XXXXXX	D7-D0	D15-D0	Write All Addresses

There are 7 instructions 11bit for 128x16 or 12bit for 256x8 memory organization to execute WRITE, ERASE or READ operation

The format for all instructions sent to the device is a logical "1" start bit, a 2-bits (or 4-bits) operation code, 8-bit address (256x16)/ 9-bit address (512x8).

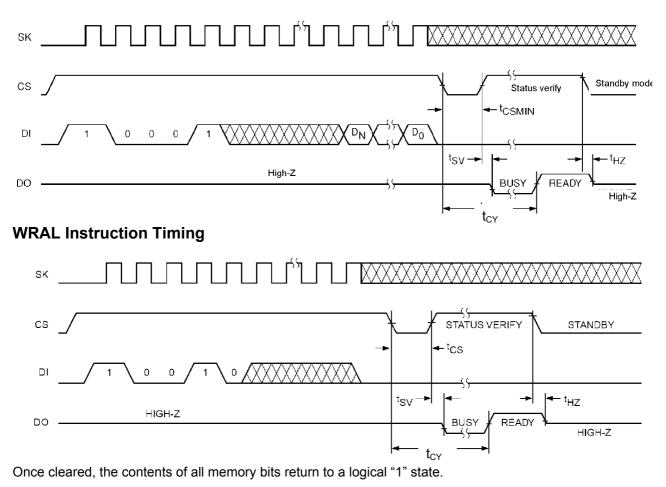

A 16-bit data field (organization 256x16) or 8-bit data field (organization 512x8) is additionally required for write operations.

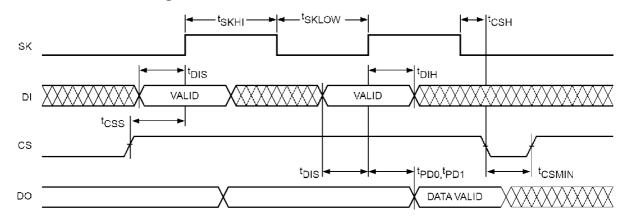
EWEN/EWDS Instruction Timing


The IN93AA66 powers up switch IC to the write disable state. Any writing after power-up

or after an EWDS (write disable) instruction must first be preceded by the EWEN (write enable) instruction.

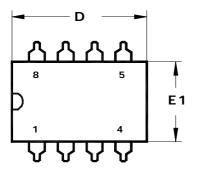
ERAL Instruction Timing

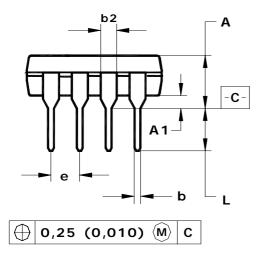

The IN93AA66 ignore all external signals applied to SK and DI pins during cycle of active programming. Erase/write cycle duration (t_{CY}) can be measured (controlled) by scanning of IC output. Low level (logical "0") means that programming still in progress, high level (logical "1") means that programming is already completed. Transition of output to High-Z state after programming cycle was completed is executed by applying low level (logic "0") to CS pin or applying high level (logical "1") to DI pin (for case CS = 1).

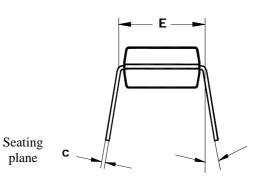

ERASE Instruction Timing

Once cleared, the content of a cleared location returns to a logical "1" state.

t_{CY}

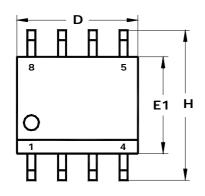


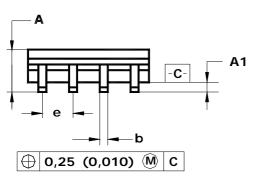

ERAL Instruction Timing

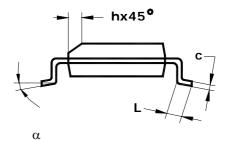


Sychronous Data Timing

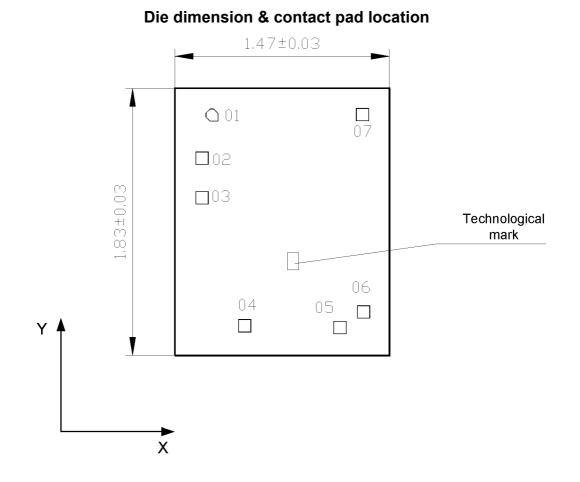
N SUFFIX PLASTIC DIP (MS-001BA)






	D	E1	А	b	b2	е	α	L	Е	С	A1
mm											
min	9.02	6.07		0.36	1.14		0°	2.93	7.62	0.20	0.38
max	10.16	7.11	5.33	0.56	1.78	2.54	15°	3.81	8.26	0.36	_
inches	6	•							•		
min	0.355	0.240		0.014	0.045		0°	0.115	0.300	0.008	0.015
max	0.400	0.280	0.210	0.022	0.070	0.1	15°	0.150	0.325	0.014	_

D SUFFIX PLASTIC SOP (MS-012AA)



	D	E1	Н	b	е	α	Α	A1	С	L	h
mm											
min	4.80	3.80	5.80	0.33		0°	1.35	0.10	0.19	0.41	0.25
max	5.00	4.00	6.20	0.51	1.27	8°	1.75	0.25	0.25	1.27	0.50
inches											
min	0.1890	0.1497	0.2284	0.013		0°	0.0532	0.0040	0.0075	0.016	0.0099
max	0.1968	0.1574	0.2440	0.020	0.100	8°	0.0688	0.0090	0.0098	0.050	0.0196

Technology mark coordinates, mm: left bottom corner x = 0,771, y = 0,586. Die thickness 0,46±0,02 mm.

Pad number	Coordinates (left bo	Coordinates (left bottom corner), mm					
	Х	Y	Contact pad description				
01	0,2123	1,6059	CS				
02	0,1436	1,3096	SK				
03	0,1436	1,0382	DI				
04	0,4362	0,1608	DO				
05	1,0891	0,1490	GND				
06	1,2501	0,2563	NC (ORG*)				
07	1,2430	1,6069	V _{CC}				

Pad location table